Conjunctive Query Processing
[A Formal Model for Theoretical Focus]

Zeyuan Hu
April 28th, 2021

Motivation for the Model

e Given a query on k relations, each of n rows (i.e., a k-way join),
naively
* Processing time: O (n)
* Size of the output, also, 0(n*)

* If basic complexity models are our guide, even simple queries should
be infeasible (e.g. n =1,000,000 and k =5)

What happens in practice?

* Joins are often with high reduction factor (i.e., low selectivity)
* Example: R ™ S on the the primary key p of R

* Assume the selectivity for p is % (i.e., there is 1 output result for each primary
key of R)

* Output size estimation is no longer 0(n?) but 0(n) (% Xn?)
* Relational queries usually work subject to good optimization choices

e — can still be slow
e - can be volatile in their performance

Conjunctive Queries (CQ)

* A subset of relational algebra
* Goals of studying CQ

* Enable theoretical study of the algorithmically hard part of queries
* Help explain (and thus help resolve) peculiar system behavior
* Develop new algorithms and hopefully impact practice

Full Conjunctive Query

* In Relational Algebra

* Natural join of [relations with O (n) tuples each, no projection
* Q(A1,A2,A3,44) = R1(A1,A3) M Ry(A1,A3,A3) X R3(A) X Ry(A1,A42,A4)

* In Datalog
* Q(A1,42,43,A4) < R1(A1,A2), Ry(Aq, Ag, A3), R3(A3), Ry(Aq, Az, Ay)

* In SQL, full CQ =SELECT .. FROM ... WHERE statement

* WHERE contains only equalities
* No projection

Full Conjunctive Query

Other parameters:
* Query size: O(l) (e.g., [= 4 for above query)
* Join output result size cardinality: r

With Tight Focus on the Computational Challenge

* Main concern: come up algorithms that can evaluate query fast

* Query evaluation problem is known to be NP-Complete

* No algorithm exists to evaluate any possible query correctly and runs in
polynomial time

* Not a death sentence yet!

* NP-Complete = algorithm cannot have all three properties

* General purpose. The algorithm accommodates all possible inputs of the computational
problem

e Correct. For every input, the algorithm correctly solves the problem.
* Fast. For every input, the algorithm runs in polynomial time.

* Choose one to compromise — General Purpose

A Critical Special Case: Acyclic Conjunctive Query

 CQs into fall two classes
* Acyclic CQ
* Cyclic CQ

* A polynomial algorithm exists to evaluate acyclic CQ

* Yannakakis Algorithm — a three-pass algorithm
* O(max(r, kn)) where r is the size of the output, kn is the size of the input

Acyclicity

* A query is acyclic iff it has at least one of these properties
1. ajointree
2. afull reducer
3. An acyclic hypergraph*

* Historically, query acyclicity was independently defined with different notations. They are shown
to be equivalent.

Running example

Q(A1, Az, Az, Ay) < R1(A1, A2), Ry (A1, Az, A3), R3(A3), Ry(Ay, Az, Ay)

* Goal: show 0 is acyclic through three properties above

Property 1: query has a join tree

* Join tree = acyclic query graph + connectedness condition

e query graph — introduced and leveraged for DP-based query opt.
* Relations are nodes
e Edges are joins

e Connectedness condition:
e Def 1: For each attribute A, the nodes containing A form a connected subtree

e Def 2: For each pair of nodes R and S that have common attributes, the
following conditions hold:
* Rand S are connected
* All variables common to R and S occur on the unique path from R to S

Example

* Suppose we have a database that contains U(C), N(C,A),E(C, A)

Join tree Not a Join tree

e A query is acyclic if we can find a join tree
e can be donein linear time!

Example

* Q(A1, Az, A3, 44) < R1(Aq, Az), Ry(A1, Az, A3), R3(A3), Ry(A1, A, Ay)
is acyclic because we can find a join tree

Rl (Alt AZ)

Property 2: query has a full reducer

A full reducer = a semi-join program that remove all dangling tuples in
relations
* Semi-join program = a set of semi-join operations (i.e., semi-join reduction)
* Dangling tuples = tuples that are not part of final join result

* Example:
* Q(A1, Az, A3, Ay) < R1(Ay, Ay), Ry(Aq, Az, A3), R3(A2), Ry(Aq, Ag, Ay) has a
full reducer (and thus acyclic)
* R, X R4y,R, X R3,R{ X Ry, R, X R{,R3 X Ry, R4 X R,
* Full reducer doesn’t depend on the actual data of each relation!
* How do you find a full reducer?

Find a full reducer —a two pass process

* Q(Aq,A,,A5,A,) < Ri(A1,A3), Ry (A4, A5, A3), R3(45),
R4(A1,A2,A4)

e Suppose we have a join tree of Q, we can construct a full reducer by

* Semi-join reduction sweep from leaves to root
* R, X Ry,R, X R3,R{ X R,

* Semi-join reduction sweep from root to leaves
* R XR{,R3 XR,,Ry XR,

e Will this work?

RZ (Ali AZ' A3)
R4(A11 AZ' A4)

Example ~
1 20

1 10
Q = R1(A1,A3) X Ry(Aq, A3, A3) X R3(Az) X Ry(Aq, A5, Ay) 4 60
All AZ
Ry
100
1 20 100
3 10 300
1 40 300
2 30 200
Az All AZ
R3 R4
10 10 1000
20 1 20 1000
30 1 20 2000
2 20 2000

Slides of this example are from DATA Lab@Northeastern University

Example N4, 4,
1 20

Q = R1(A41,42) X Ry(A1, A3, A3) X R3(A3) ™ Ry(A1, A2, Ay) éll ég

All AZ
1. Bottom-up traversal (semi-joins) R,

2 Ry X Ry

1 20 100

3 10 300

1 40 300

2 30 200

AZ All AZ

10 10 1000
20 1 20 1000
30 1 20 2000
2 20 2000

Slides of this example are from DATA Lab@Northeastern University

Example Ry
1 20
1 10
Q = R1(A1,A3) X Ry(Aq, A3, A3) X R3(Az) X Ry(Aq, A5, Ay) 4 60
All AZ
1. Bottom-up traversal (semi-joins) R,
1 10 100
1 20 100
3 10 300
1 40 300
2 30 200
A,
i) 4,
10
20
30

Slides of this example are from DATA Lab@Northeastern University

R, X R,
1 10
1 20
2 20

10 1000
20 1000
20 2000
20 2000

Example

Ry
1 20

Q =R{(A1,45) ¥ Ry(A,A5,A3) M R3(A5) ™ Ry(Ay, Ay, Ay) 1 10

1.

Bottom-up traversal (semi-joins)

Slides of this example are from DATA Lab@Northeastern University

4 60
.Al, A,

®

10 100
1 20 100

R, X R,

10 1 10 1000
20 1 20 1000
30 1 20 2000

2 20 2000

Example

Q =R;(A,A5) X Ry(Aq,A,,A3) X R3(A,) M Ry(Aq,4,5,A,) 1 10

1.

Bottom-up traversal (semi-joins)

Slides of this example are from DATA Lab@Northeastern University

Ry
1 20

4 60
.AliAZ
10 100
X X
R X R3]. 20 100 Rz X Ry
—3—46—366-
——40—300-
10 — 30200
20 1 zo
30 2 20
R;
10 1 10 1000
20 1 20 1000
30 1 20 2000
2 20 2000

Example

Q = R1(A1,A43) X Ry(A1,A3,A3) ™ R3(Az) ™ Ry(Aq, A, Ay)

1.

Bottom-up traversal (semi-joins)

Slides of this example are from DATA Lab@Northeastern University

1 20 Rq; X R,
1 10
460
1 10
! :
A 4, |4, |45
RyxRs 30 190 R2XRa
316300
140 300-

10 2 30 200

20 1 20
30 2 20
Rs
10 1 10 1000
20 1 20 1000
30 1 20 2000
2 20 2000

Example

Q =R;(A,A5) X Ry(Aq,A,,A3) X R3(A,) M Ry(Aq,4,5,A,) 1 10

1.

Bottom-up traversal (semi-joins)

Slides of this example are from DATA Lab@Northeastern University

Ry
1 20

R, X R,
10
20
Rz
10 100
X X
Rz = Rs]. 20 100 2K
10
20
30
R3
10 1 10 1000
20 1 20 1000
30 1 20 2000
2 20 2000

Ry
1 20

Example
1 1
Q = R1(A1, 42) ™ Ry(Ay, A3, A3) ™ R3(A2) ™ Ry(Ay, Az, Ay) °
Rz X R1
1. Bottom-up traversal (semi-joins) R,
2. Top-down traversal (semi-joins) 10 100
1 20 100
R3 X R, R4 X R;
10 10 1000
20 1 20 1000
~30- 1 20 2000

—2—20—2060

Slides of this example are from DATA Lab@Northeastern University

Example R1

Q =R{(A1,45) ¥ Ry(A,A5,A3) M R3(A5) ™ Ry(Ay, Ay, Ay) 1 10

1. Bottom-up traversal (semi-joins) R,

2. Top-down traversal (semi-joins) 10 100
1 20 100

10 10 1000
20 1 20 1000
1 20 2000

Slides of this example are from DATA Lab@Northeastern University

Yannakakis Algorithm

* Given acyclic conjunctive query represented by a join tree

e Two Phases

* Apply a full reducer based on join tree

e Semi-join reduction sweep from leaves to root
* Semi-join reduction sweep from root to leaves

* Use the join tree as the query plan and compute the joins bottom up

Example R1

Q =R{(A1,45) ¥ Ry(A,A5,A3) M R3(A5) ™ Ry(Ay, Ay, Ay) 1 10

1. Bottom-up traversal (semi-joins) R,

2. Top-down traversal (semi-joins) 10 100
1 20 100

10 10 1000
20 1 20 1000
1 20 2000

Slides of this example are from DATA Lab@Northeastern University

Example ~
1 20

Q - Rl(Al’AZ) X RZ(Al'AZ’AB) X RB(AZ) X R4(A11A2)A4-) 1 10

1. Bottom-up traversal (semi-joins) R,

2. Top-down traversal (semi-joins) 10 100
. 1 20 100
3. Join bottom-up
RZ — R3 el Rz
RZ — R4 A R2
Rl — R1 DA R2

10 10 1000
20 1 20 1000
1 20 2000

Slides of this example are from DATA Lab@Northeastern University

Property 3: query has an acyclic hypergraph

* A hypergraph for a natural join
* Node = attribute in query
* Hyperedge = relation

\/
S
 Example 1: Triangle Query 6"
* Q(A,B,C) « R(A,B),S(B,C), T(C,A) \‘J
 Relation R(4, B) is represented by the hyperedge {A, B} V
 Relation S(B, C) is represented by the hyperedge {B, C}

* This hypergraph is actually a graph, since the hyperedges are each pairs of
nodes

* Example2
* Q(A4,B,C,D,E,F) < R(AE,F),S(A,B,C), T(C,D,E),U(A,C,E)

ypergraph construction a legacy of “The
Jniversal Relation” war.

* Universal Relation: A concept where all relation schema would be
removed and all data merged into a single table.

* Plausibility: compute cross products as needed, and fill in implausible
combinations with NULLs

* Potential benefit: Obtain certain optimal properties that might not be
achievable without removing certain input from a developer.

Hypergraph definition (cont’)

* To define acyclic hypergraph, we need the notion of an “ear” in a
hypergraph

* A hyperedge H is an ear if there is some other hyperedge G in the
same hypergraph such that every node of H is either:

* Found onlyin H, or
e Also foundin G

* We shall say that G consumes H

Ear in Hypergraph Examples

AN

Hyperedge H = {A,E,F}is an ear Find ears in this hypergraph
G ={ACE}
* Node F is unique to H; it appears in no other hyperedge

 The other two nodes of H (A and E) are also members of G
* Whatabout {4,B,C},{C,D,E}?

Check Cyclicity of Hypergraph: GYO Algorithm

* GYO Algorithm = a sequence of ear reductions

* An ear reduction = the elimination of one ear from the hypergraph,
along with any nodes that appear only in that ear

* A hypergraph is acyclic = the output of GYO algorithm is empty

* i.e., all hyperedges can be removed by ear reductions

* Properties
* An ear, if not eliminated at one step, remains an ear after another ear is
eliminated

* Hyperedge that was not an ear, can become an ear after another hyperedge is
eliminated

Example

« {AE,F},{A,B,C},{C,D,E} are ears A
* Pick one and eliminate it 4'5

* Suppose we pick {A, E, F} L‘)

Example

« {AE,F},{A,B,C},{C,D,E} are ears

* Pick one and eliminate it \
* Suppose we pick {A, E, F} \ ,

Example

« {AE,F},{A,B,C},{C,D,E} are ears

* Pick one and eliminate it \
* Suppose we pick {A, E, F} \ ,

* Next, we pick {4, B, C} and eliminate it

Example

« {AE,F},{A,B,C},{C,D,E} are ears

* Pick one and eliminate it A
* Suppose we pick {4, E, F} '
* Next, we pick {4, B, C} and eliminate it v

Example

« {AE,F},{A,B,C},{C,D,E} are ears

* Pick one and eliminate it A
* Suppose we pick {4, E, F} '
* Next, we pick {4, B, C} and eliminate it v

* {4, C, E} now becomes an ear and eliminate it

Example

« {AE,F},{A,B,C},{C,D,E} are ears

* Pick one and eliminate it

* Suppose we pick {4, E, F}

* Next, we pick {4, B, C} and eliminate it

* {4, C, E} now becomes an ear and eliminate it

Example

« {AE,F},{A,B,C},{C,D,E} are ears

* Pick one and eliminate it

* Suppose we pick {4, E, F}

* Next, we pick {4, B, C} and eliminate it

* {4, C, E} now becomes an ear and eliminate it
« {C,D, E}is the only left ear and eliminate it

Example

« {AE,F},{A,B,C},{C,D,E} are ears

* Pick one and eliminate it

* Suppose we pick {4, E, F}

* Next, we pick {4, B, C} and eliminate it

* {4, C, E} now becomes an ear and eliminate it
« {C,D, E}is the only left ear and eliminate it

* Original hypergraph is acyclic

Example 2

* Pick an ear to remove

Example 2

* Pick an ear to remove
* No ear to remove = hypergraph is cyclic

Example 3

* Q(Aq,A,,A5,A,) < Ri(A1,A3), Ry (A4, A5, A3), R3(45),
R4(A1,A2,A4)

Sequence of ear reductions
* {45}

° {AlJAZ}
& » {A4,4,,A3}
° {A1»A2»A4}

() is acyclic

Recap

* We have seen three properties for acyclic query
1. It has ajoin tree, or
2. It has a full reducer, or
3. Its hypergraph is acyclic

* We see how to construct a full reducer from a join tree
* Question: how to find a join tree for a query, if it exists?

Find a Join Tree

* We can construct a join tree during GYO algorithm. In addition to ear
reduction, we follow additional steps:

* Tree nodes = hyperedges
* The children of a tree node H are all those hyperedges consumed by H

* Example
* R(4,B,C),S(B,F), T(B,C,D),G(C,D,E),H(D,E,G)

Join Tree 1

e Start to eliminate {4, B, C}

* Since {B, C, D} consumes {A, B, C},
{B,C,D} is the parent of {4, B, C}

R(A,B,C)

Join Tree 1

e Start to eliminate {4, B, C}

* Since {B, C, D} consumes {A, B, C},
{B,C,D} is the parent of {4, B, C}

* Next, remove {B, F}, which is also
consumed by {B, C, D}

Join Tree 1

>

[
6(c.0.5) \d

» Start to eliminate {4, B, C} @)

* Since {B, C, D} consumes {A, B, C},
{B,C,D} is the parent of {4, B, C}

* Next, remove {B, F}, which is also
consumed by {B, C, D}

* Remove {B, C, D}, which is consumed
by {C,D, E}

R(A,B,C)

Join Tree 1

e Start to eliminate {4, B, C}

* Since {B, C, D} consumes {A, B, C},
{B,C,D} is the parent of {4, B, C}

* Next, remove {B, F}, which is also
consumed by {B, C, D}

* Remove {B, C, D}, which is consumed
e <
* Remove {D, E, G}, which is consumed

by {C,D,E}

Join Tree 2

e Start to eliminate {D, E, G}

* Since {C, D, E} consumes {D, E, G},
{C,D,E}isthe parentof {D, E, G}

H(D,E,G)

Join Tree 2

e Start to eliminate {D, E, G}

* Since {C, D, E} consumes {D, E, G},
{C,D,E}isthe parentof {D, E, G}

* Remove {C, D, E'}, which is consumed
by {B, C, D}

Join Tree 2
R(A,B,C)
e Start to eliminate {D, E, G}

* Since {C, D, E} consumes {D, E, G},
{C,D,E}isthe parentof {D, E, G}

¢

)

e T(B,C,D)
* Remove {C, D, E'}, which is consumed C

by {B, C, D}
* Remove {B, C, D}, which is consumed

by {4, B, C} G(C,D,E)

H(D,E,G)

¢

&>

Join Tree 2

e Start to eliminate {D, E, G}

* Since {C, D, E} consumes {D, E, G},
{C,D,E}isthe parentof {D, E, G}

* Remove {C, D, E'}, which is consumed
by {B, C, D}

* Remove {B, C, D}, which is consumed
by {4, B, C}

* Remove {4, B, C} and {B, F'} sequentially

S(B,F)

O

R(A,B,C)

T(B,C,D)

amn

G(C,D,E)

(3
VAT,

H(D,E,G)

¢

Complexity Notation

e Standard O and () notation for time and memory complexity in the
RAM model of computation

e Use O-notation (soft-0)
* Abstracts away polylog factors in input size that clutter formulas

« 0(n/ W +(logn)/ V- r) becomes 0(n/® + 7)

Data Complexity

* Complexity in query grows in two dimensions:
* size of query (i.e., number of relations in a multi-way join query)
» database size (i.e., number of rows contained in each relation of the query)

* Data complexity: the query is fixed (i.e., the size of the query
expression itself [as a constant), and the complexity is expressed in
terms of the size of database

 Suppose the query Q size |Q| is [, then O(f(l) SO +(logn)/W. r)
with f() denote some arbitrary computable function can be
simplified to 0(n/® +(logn)™®. r)

Lower Bound for Any Join Algorithm

* Join output result size cardinality: r
* Query size [(i.e.,, number of relations in join query)

* Q(n + r) data complexity to compute any query

* The join algorithm has to read entire input at least once Q(In)
(data complexity: Q(n))
* The join algorithm has to output result Q(Ir) (data complexity: Q(7))
* This the cost of concatenating tuples from [relations to form the final join result set

* Yannakakis algorithm amazingly matches the lower bound for acyclic
CQs with data complexity O(n + 1)

Yannakakis Algorithm

* Given acyclic conjunctive query represented by a join tree

e Two Phases

* Apply a full reducer based on join tree

e Semi-join reduction sweep from leaves to root
* Semi-join reduction sweep from root to leaves

* Use the join tree as the query plan and compute the joins bottom up

Example R1

Q =R{(A1,45) ¥ Ry(A,A5,A3) M R3(A5) ™ Ry(Ay, Ay, Ay) 1 10

1. Bottom-up traversal (semi-joins) R,

2. Top-down traversal (semi-joins) 10 100
1 20 100

10 10 1000
20 1 20 1000
1 20 2000

Slides of this example are from DATA Lab@Northeastern University

Example ~
1 20

Q - Rl(Al’AZ) X RZ(Al'AZ’AB) X RB(AZ) X R4(A11A2)A4-) 1 10

1. Bottom-up traversal (semi-joins) R,

2. Top-down traversal (semi-joins) 10 100
. 1 20 100
3. Join bottom-up
RZ — R3 el Rz
RZ — R4 A R2
Rl — R1 DA R2

10 10 1000
20 1 20 1000
1 20 2000

Slides of this example are from DATA Lab@Northeastern University

Yannakakis Algorithm Property

* Key Property
* No intermediate join result size can be larger than the final result size
* i.e., each join step can never shrink intermediate result size

* Why?
* Semi-join reduction removes dangling tuples between pair-wise relations
* |s it sufficient? No!

* We need connectedness condition from join tree to ensure all dangling tuples
are removed by semi-join reductions

Importance of connectedness condition

e Suppose we have a database instance of
{N(“Navy”,13),U(“Navy”), E(“Navy”,17)}

* Final join result: @

NxXUNXEUXNEXN NxUExXUUXNUXE
U=Q,N=0Q,E= 0 U={(“Navy”)},N = {(“Navy”,13)}, E = {(“Navy”,17)}

Yannakakis Algorithm Complexity

* Semi-join sweeps take 0 (n)
* Recall R X S = Tgerr(r)(R X S)
* With sort-merge join, we can compute R X Sin O(nlogn) = O(n
* There are 2l — 2 pair-wise semi-join operation, (7((21 — Z)n) =
data complexity
* All intermediate results are of size O(r) b/c key property

* Each join step has O(n + r) input and O(r) output, which can be
computed in O(n + r) by sort-merge join (I join steps but ignored in
data complexity)

* In total, Yannakakis Algorithm takes O(n + r)

)
O(n) in

Worst-Case Optimal Join Algorithm

Zeyuan Hu
May 3", 2021

Recap

* Three properties for acyclic query
1. It has ajoin tree, or
2. It has a full reducer, or
3. Its hypergraph is acyclic

* How to construct a full reducer from a join tree
* Modify GYO algorithm to construct join tree
e Yannakakis algorithm can run in O(n + r) for acyclic CQ

CQs with Cycles

* 3-path: Q3, = Ry (A4, Az) ™ Ry(A3, A3) ™ R3(A3,A4)
* 3-cycle: Q3¢ = Ry (A1, 43) X Ry(43,43) ™ R3(A43,4,)

Q3p Q3c A3 A3

Slides of this example are from DATA Lab@Northeastern University

What’s Wrong with Cyclic CQ

 Essentially, we cannot find an acyclic query graph that meets
connectedness condition

* = intermediate results size can be larger than the final result size
* - key property of Yannakakis Algorithm falls through

* Example
* 3-path: Q3p = R1(A1,A2) X Ry(Az, A3) ™ R3(A3,A4)
* 3-cycle: Q3¢ = R1(A1,42) X Ry(Az, A3) ™ R3(A3,41)

What’s Wrong with Cyclic CQ (cont’)

Query Graph
* 3-path: Q3 = R1(A1,4;) X Ry(A4;,A3) X R3(A3,44) R3
* 3-cycle: Q3¢ = R1(A1,4;) ™ Ry(A43,43) X R3(A43,41) R
* Already semi-join-reduced input 2
R4

R, AES R, AFY R, AR
11 11 11

2 1 1 2 2 2

Slides of this example are from DATA Lab@Northeastern University

What’s Wrong with Cyclic CQ (cont’)

Query Graph
* 3-path: Q3, = Ry (A1, 43) M Ry(A,A3) ™M R3(A3,44) R3
* 3-cycle: Q3. = R1(A1,42) M Ry(Az,A3) M R3(A43,44) R
* Already semi-join-reduced input 2
* R, X R, produces n? intermediate results
* Final output size: ” for Q3,,, but only 1 for Q3. R1

R, AES R, AFY R, AR
11 11 11

21><12 2 2
n 1 1 n n n

Slides of this example are from DATA Lab@Northeastern University

What’s Wrong with Cyclic CQ (cont’)

Query Graph
* Both queries have acyclic query graph RB
* In the right tree, A, violates connectedness condition
Q3'p R (A3'A4) Q3c R (A3;A1) RZ
R, (A2,43) R, (A3,43) Rl
R1(A1)4) R, (41,)4)

* (3p ‘s query graph is a join tree

Solutions for Cyclic CQ?

* Maybe we just need an algorithm that targets at Cyclic CQ?

e A result that is from ’18 by Ngo et al shows that O(n + r) is
unattainable for full CQ based on well-accepted complexity-theoretic
assumptions (e.g., P 1= NP)

What Can Be Done?

 Two main ideas
* Worst-case Optimal Join Algorithms (WCOQOJA)
* Tree decompositions

* Tree decompositions
* Break down a cyclic CQ into query fragments called “bags”
* Evaluate each query fragment using WCOJA and materialize the result

* Connect bag results as a join tree and evaluate the whole query using
Yannakakis algorithm

 We will focus on WCOJA

Theory of Computation Revisit

* Query evaluation problem is known to be NP-Complete

* No algorithm exists to evaluate any possible query correctly and runs in
polynomial time

* Not a death sentence yet!

* NP-Complete = algorithm cannot have all three properties

* General purpose. The algorithm accommodates all possible inputs of the computational
problem

e Correct. For every input, the algorithm correctly solves the problem.
* Fast. For every input, the algorithm runs in polynomial time.

* Choose one to compromise — General Purpose = Yannakakis
Algorithm

 WCOJA chooses different to compromise - Fast

Query Evaluation Problem

e Given

* a full CQ of the form g = R (A1) @ R,(4;) X ... % Ry, (A,,) where 4; is the
attribute set of relation R;, j € [m]

* adatabase instance I on the schema {Ry, ..., R;;}

 Query evaluation problem is to compute q(I)

* q(I) = a set of tuples t over attribute set U je[m) 4; s.t. projection of t onto
the attributes A; belongs to R;, for each j € [m]

* Join output result size cardinality: r
* 7 is database instance dependent

e Yannakakis Algorithm reaches O(n + r)

Optimal Worst-case Join Evaluation Problem

* An easier problem than query evaluation problem

* Instead of O(n + r), hope to find a polynomial algorithm that can run
On+ ryc)
* 1y c = maximum possibly output size for the given size of the relations in g
e Let N = {N,, ..., N,,;} and let I(N) be the set of database instances
. I . . _ Sup
with ‘R]-| = N; for j € [m]. Then, 1y = IEI(N)|q(I)|
* i.e., supremum (maximum) of all possible r over I(N)

* Even database instance has the same size, the distribution of data can
be different and thus we can get different join output size

AGM Bound

* Example:
* Q(a,b,c) < R(a,b),S(b,c),T(a,c)

* How large is 1y, ¢ ?

* Given the sizes of |R|, |S|, and |T|, what is the largest possible query result
sizer?

* Solved by Aterias, Grohe, and Marx in ‘08
 We'll introduce intuition here

AGM Bound Intuition

* Given Q(a,b,c) < R(a,b),S(b,c),T(a,c)and |R| = |S| = |T| =N,
what is the bound on the query result size?

* One bound is O(N?) because we have three-way join and each tuple
can be part of final join result. Thus, we have a cartesian product.

* Can we do better? Yes! O(N?)

* Observe that join of any two relations is an upper bound on r

* Because we have a triangle query, third relation imposes additional constraint
on intermediate relation, which can at best not eliminate any tuples from
intermediate relation.

* R(a,b) ™~ S(b,c) already gives tuples with attributes (a, b, ¢), introduce T
can remove tuples

AGM Bound Intuition (cont’)

* For Q(a,b,c) « R(a,b),S(b,c),T(a,c), AGM bound gives O(N1>)

 How? By generalizing the observation we have for Q using fractional
edge cover

* Edge cover: a set of edges s.t. each vertex in graph G is an end of at
least one edge

 AGM formulate a linear programming problem based on edge cover
of hypergraph of Q. Solving such problem leads to the bound.

WCOJA (under graph model)

* We'll describe WCOIJA in the context of graph model using graph
pattern matching query (i.e., subgraph query)

* A match is a mapping from variables to constants such that when the
mapping is applied to the given pattern, the result is, roughly
speaking, contained within the original graph (i.e., subgraph).

* Focus on triangle query

* Q(a,b,c) < R(a,b),S(b,c),T(a,c)

* In Cypher syntax
* match (a)-[:TO]->(b)-[:TO]->(c)-[:TO]->(a) return distinct a, b, c

Edges

<

Relational View of Subgraph Queries

vollwlb=
O W<

* We have seen in Cypher that subgraph query = multi-way join query

* Suppose we use Edges relation to store the input graph G
* Edges relation contains every directed edges in G

* Query to find all directed triangles in G
* Q(aq,ay,a3) « Edges(aq,a,),Edges(a,,as), Edges(as, a;)

Evaluate Triangle Query: Traditional Approach

* Traditional Approach
* Treat subgraph query as relational query
* Evaluate the query using a sequence of binary joins
e “Edge-at-a-time” approach

* We have seen because of break of connectedness condition,
intermediate results can be greater than final result

* From acyclicity, you might sense some connection between query
representation and query processing algorithm
* Join tree (loosely, query graph) = pair-wise binary joins (Yannakakis)
e Hypergraph = vertex-at-a-time approach

Generic Join (GJ) as a WCOJA

GJ consists of the following three high-level ingredients
* Global Attribute Ordering

* GJ first orders the attributes. For example, we assume the orders a4, ..., a;,

 Extension Indices

* Prefix j-tuple = any fixed values of the first j < m attributes
* For each R; and j-tuple p only some values for attribute a;,1 exist in R;

* Extension index Extj‘ map each j-tuple p to values of a; 1 matching p in R;
. Extjl: (p = (al, ...,aj)) - {aj41}
 Each relation has its own extension index
* Such index needs to have some certain properties to enable GJ reaching O (n + ry¢)

Generic Join (GJ) as a WCOJA (cont’)

* Prefix Extension Stages

* GJ iteratively computes intermediate results Py, ..., P,
* P; =result of @ when each relation is restricted to the first j attributes in the global order

* GJ starts from the singleton relation Py with no attributes
* P, is the final join result for Q
* GJ determines P;, 4 from P; using the extension indices

* For each j-tuple p € P;, GJ first intersects Ext} of each relation R; containing a;1
* The result of intersection is added to Pj,4

* Intersection is performed from the smallest Ext} to ensure algorithm runtime bound

Generic Join (GJ) Pseudocode

| Po={)
2 for (9=1... m):

3 Pi={}

4 for (p € Pj—1):

5 // M below 1s performed starting from smallest E.'L't; (p)
6 ext, = NExt’(p)

7 Pj = P; Uext,

Example

* Q(all as, a3) < Rl (a11 aZ)J RZ (az, a3)) R3 (a31 al)
* R, R,, R; areall Edges relation

A
y

Example

* The global attribute ordering is a4, a,, as
* GJ starts with Py = {¢}

* GJ next computes P
* There is only one tuple in Py, which is empty
* Only Ry and R; contain a4
« Exty ={1,2,3,4,5,6,7}
- Extd ={1,6,7,89,10,11}
« Exty N Exty = {1,6,7}
* £ x{1,6,7} = {(1), (6),(7)}
« Pr={ }u{(D),(6),(7)}=1{(1),(6)(7)}

* No more tuple left in Py, done with P;

1 Po={}
2 for (y

for

4
5
6
7

=1... m):
3 p=

{1

(p € 1?1_1)2

//" N below is performed starting from smallest Ext(p)

ext, = ﬂE-'F’;;'(P)
P; = P; Uexrt,

Q(aq,ay,a3) « Ri(aq,a;3),Ry(a,, as), R3(as, a1)

1 <

O
(&
(s

10

11

Example

P, ={(1),(6),(7)}
* GJ next computes P,

* R, and R, contain a,

e Start with (1)
« Ext{ = {6}
« Ext? ={1,2,3,4,5,6,7}
« Exti n Ext? = {6}
* (1) x{6} = {(1,6)}
P, ={ }u{(1,6)}={(16)}

* More tuple leftin P;, continue

1 Po={}

2 for (y
for

4
5
6
7

=1... m):
3 P=

{1

(p € 1?1_1)2

//" N below is performed starting from smallest Ext(p)

ext, = NExt(p)
P; = P; Uexrt,

Q(aq,ay,a3) « Ri(aq,a;3),Ry(a,, as), R3(as, a1)

1

1

O
(&
(s

7

10

11

Example

P, ={(1),(6),(7)}
* GJ next computes P,

* R, and R, contain a,

* Next, (6)
« Ext{ ={7,8,9,10,11}
« Ext? ={1,2,3,4,5,6,7}
o ExtinExt? ={7}
* (6) x{7} = {(6,7)}
* P, ={(1,6)} Uu{(6,7)} ={(1,6),(6,7)}

* More tuple leftin P;, continue

I Po={}
2 for (y

for

4
5
6
7

=1... m):
3 P=

{1

(p € 1?1_1)2

//" N below is performed starting from smallest Ext(p)

ext, = NExt(p)
P; = P; Uexrt,

Q(aq,ay,a3) « Ri(aq,a;3),Ry(a,, as), R3(as, a1)

1

O101010]C

7

10

11

Example

P, ={(1),(6),(7)}
* GJ next computes P,

* R, and R, contain a,

* Next, (7)
« Ext{ = {1}
« Ext? ={1,2,3,4,5,6,7}
o ExtinExt? = {1}

* (7) x{1} ={(7. 1)}

1 Po={}
2 for (y
3 Pp=
4 for
5

6

7

=1... m):

{1

(p € 1?1_1)2

//" N below is performed starting from smallest Ext(p)

ext, = ﬂE-'F’;;'(P)
P; = P; Uexrt,

Q(aq,ay,a3) « Ri(aq,a;3),Ry(a,, as), R3(as, a1)

1 <

3

* P, =1(1,6),(6,7)}U{(7,1); ={(1,6),(6,7), (1)}

* No more tuple left in P;, done with P,

10

11

Example e

2 for (j=1... m):
3 Pi={}
for (p € Pj_1):
//" N below is performed starting from smallest Ext(p)

+ Py = {(1,6),(6,7), (7,1)} L

P; = P; Uexrt,

* GJ next computes P;

: Q(ay, az, as) < Ri(ay, az), Ry(ay, az), R3(az, a1)
* R, and R; contain a; VTR s R

* First, (1,6) !
« Ext? =1{7,89,10,11}
« Ext3 = {7} a 8
« Ext? N Ext; = {7}
(e (s

L (7) x{(16)} = {(16,7)) (5)
* More tuple left in P,, continue a 10

< 7

*P3=1 jUi(1,67)}=1(167)}

11

Example

- P, ={(1,6),(6,7),(7,1)}
* GJ next computes P;

* R, and R contain a,

* Next, (6,7)
« Ext = {1}
« Ext3 ={1,2,3,4,5}
« Ext? N Ext; = {1}

* (1) x{(6,7)} = 1(6,7,1)}

1 Po={}
2 for (y
3 Pp=
4 for
5

6

7

=1... m):

{1

(p € 1?1_1)2

//" N below is performed starting from smallest Ext(p)

ext, = ﬂE-'F’;;'(P)
P; = P; Uexrt,

Q(aq,ay,a3) « Ri(aq,a;3),Ry(a,, as), R3(as, a1)

1 <

3

* P3 =1(1,6,7)}u{(6,7,1)} =1(1,6,7),(6,7,1).

* More tuple leftin P,, continue

10

11

Exam P | e | Po=()

2 for (j=1... m):

3 P={}
4 for (p € Pj_1): |
P 1 6 6 7 7 1 5 // M below is performed starting from smallest Ext’(p)
° — { () () () } 6 exty, = mEJ;[,;. (P)
2 ’ ’ ’ ’ , 7 P; = P; Uext,

* GJ next computes P;

: Q(ay, az, as) < Ri(ay, az), Ry(ay, az), R3(az, a1)
* R, and R; contain a; VTR s R

* Next, (7,1) 1) 7

« Ext? = {6}
« Ext; = {6} Q 8

« Ext? N Ext; = {6}

'
* (6) xU(7,1)} = 1(7,1,6)} 3 9
« P, ={(1,6,7),(6,7,1)}u {(7,1,6)} = {(1,6,7),(6,7,1),(7,1,6)} ° N
* No more tuple left in P,, done with P; 10

© ;

Final Remarks

* In our example, since each attribute in the ordering is contained in
two relations, Ext;. from the smallest doesn’t apply but be aware

* Interested in time complexity proof (non-trivial), see “Skew strikes

back: New developments in the theory of join algorithms” by Ngo
et.al in 2014

