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Conjunctive Query Processing
[A Formal Model for Theoretical Focus]



Motivation for the Model

• Given a query on 𝑘 relations, each of 𝑛 rows  (i.e., a 𝑘-way join), 
naively
• Processing time: 𝑂(𝑛%)
• Size of the output, also, 𝑂(𝑛%)

• If basic complexity models are our guide, even simple queries should 
be infeasible (e.g.  𝑛 = 1,000,000 and 𝑘 = 5)



What happens in practice?

• Joins are often with high reduction factor (i.e., low selectivity)
• Example: 𝑅 ⋈ 𝑆 on the the primary key 𝑝 of 𝑅
• Assume the selectivity for 𝑝 is +, (i.e., there is 1 output result for each primary 

key of 𝑅)
• Output size estimation is no longer 𝑂 𝑛- but 𝑂 𝑛 (+,×𝑛

-)

• Relational queries usually work subject to good optimization choices
• à can still be slow
• à can be volatile in their performance



Conjunctive Queries (CQ)

• A subset of relational algebra
• Goals of studying CQ
• Enable theoretical study of the algorithmically hard part of queries
• Help explain (and thus help resolve) peculiar system behavior
• Develop new algorithms and hopefully impact practice 



Full Conjunctive Query

• In Relational Algebra
• Natural join of 𝑙 relations with 𝑂(𝑛) tuples each, no projection 
• 𝑄 𝐴+, 𝐴-, 𝐴3, 𝐴4 = 𝑅+ 𝐴+, 𝐴- ⋈ 𝑅- 𝐴+, 𝐴-, 𝐴3 ⋈ 𝑅3 𝐴- ⋈ 𝑅4 𝐴+, 𝐴-, 𝐴4

• In Datalog
• 𝑄 𝐴+, 𝐴-, 𝐴3, 𝐴4 ← 𝑅+ 𝐴+, 𝐴- , 𝑅- 𝐴+, 𝐴-, 𝐴3 , 𝑅3 𝐴- , 𝑅4 𝐴+, 𝐴-, 𝐴4

• In SQL, full CQ = SELECT … FROM … WHERE statement
• WHERE contains only equalities
• No projection



Full Conjunctive Query

Other parameters:
• Query size: 𝑂(𝑙) (e.g., 𝑙 = 4 for above query)
• Join output result size cardinality: 𝑟



With Tight Focus on the Computational Challenge

• Main concern: come up algorithms that can evaluate query fast
• Query evaluation problem is known to be NP-Complete
• No algorithm exists to evaluate any possible query correctly and runs in 

polynomial time
• Not a death sentence yet!
• NP-Complete à algorithm cannot have all three properties

• General purpose. The algorithm accommodates all possible inputs of the computational 
problem

• Correct. For every input, the algorithm correctly solves the problem.
• Fast. For every input, the algorithm runs in polynomial time.

• Choose one to compromise – General Purpose



A Critical Special Case: Acyclic Conjunctive Query

• CQs into fall two classes
• Acyclic CQ
• Cyclic CQ

• A polynomial algorithm exists to evaluate acyclic CQ
• Yannakakis Algorithm – a three-pass algorithm

• 𝑂(max(𝑟, 𝑘𝑛)) where 𝑟 is the size of the output, 𝑘𝑛 is the size of the input



Acyclicity

• A query is acyclic iff it has at least one of these properties
1. a join tree
2. a full reducer
3. An acyclic hypergraph*

* Historically, query acyclicity was independently defined with different notations. They are shown 
to be equivalent.



Running example

𝑄 𝐴+, 𝐴-, 𝐴3, 𝐴4 ← 𝑅+ 𝐴+, 𝐴- , 𝑅- 𝐴+, 𝐴-, 𝐴3 , 𝑅3 𝐴- , 𝑅4 𝐴+, 𝐴-, 𝐴4

• Goal: show 𝑄 is acyclic through three properties above



Property 1: query has a join tree 

• Join tree = acyclic query graph + connectedness condition
• query graph – introduced and leveraged for DP-based query opt.
• Relations are nodes
• Edges are joins

• Connectedness condition:
• Def 1: For each attribute 𝐴, the nodes containing 𝐴 form a connected subtree
• Def 2: For each pair of nodes 𝑅 and 𝑆 that have common attributes, the 

following conditions hold:
• 𝑅 and 𝑆 are connected
• All variables common to 𝑅 and 𝑆 occur on the unique path from 𝑅 to 𝑆



Example

• Suppose we have a database that contains 𝑈 𝐶 ,𝑁 𝐶, 𝐴 , 𝐸 𝐶, 𝐴

• A query is acyclic if we can find a join tree 
• can be done in linear time!

𝑁 𝐶, 𝐴

𝑈 𝐶 𝐸 𝐶, 𝐴

𝑈 𝐶

𝑁 𝐶, 𝐴 𝐸 𝐶, 𝐴

Join tree Not a Join tree



Example

• 𝑄 𝐴+, 𝐴-, 𝐴3, 𝐴4 ← 𝑅+ 𝐴+, 𝐴- , 𝑅- 𝐴+, 𝐴-, 𝐴3 , 𝑅3 𝐴- , 𝑅4 𝐴+, 𝐴-, 𝐴4
is acyclic because we can find a join tree

𝑅! 𝐴!, 𝐴"

𝑅" 𝐴!, 𝐴", 𝐴#

𝑅# 𝐴" 𝑅$ 𝐴!, 𝐴", 𝐴$



Property 2: query has a full reducer

• A full reducer = a semi-join program that remove all dangling tuples in 
relations
• Semi-join program = a set of semi-join operations (i.e., semi-join reduction)
• Dangling tuples = tuples that are not part of final join result

• Example:
• 𝑄 𝐴+, 𝐴-, 𝐴3, 𝐴4 ← 𝑅+ 𝐴+, 𝐴- , 𝑅- 𝐴+, 𝐴-, 𝐴3 , 𝑅3 𝐴- , 𝑅4 𝐴+, 𝐴-, 𝐴4 has a 

full reducer (and thus acyclic)
• 𝑅! ⋉ 𝑅", 𝑅! ⋉ 𝑅#, 𝑅$ ⋉ 𝑅!, 𝑅! ⋉ 𝑅$, 𝑅# ⋉ 𝑅!, 𝑅" ⋉ 𝑅!
• Full reducer doesn’t depend on the actual data of each relation!
• How do you find a full reducer?



Find a full reducer – a two pass process

• 𝑄 𝐴., 𝐴/, 𝐴0, 𝐴1 ← 𝑅. 𝐴., 𝐴/ , 𝑅/ 𝐴., 𝐴/, 𝐴0 , 𝑅0 𝐴/ , 
𝑅1 𝐴., 𝐴/, 𝐴1
• Suppose we have a join tree of 𝑄, we can construct a full reducer by
• Semi-join reduction sweep from leaves to root

• 𝑅! ⋉ 𝑅", 𝑅! ⋉ 𝑅#, 𝑅$ ⋉ 𝑅!
• Semi-join reduction sweep from root to leaves

• 𝑅! ⋉ 𝑅$, 𝑅# ⋉ 𝑅!, 𝑅" ⋉ 𝑅!

• Will this work?



Database TheoryExample 𝑨𝟏 𝑨𝟐
1 20
1 10
4 60

𝑅$

𝑨𝟏 𝑨𝟐 𝑨𝟑
1 10 100
1 20 100
3 10 300
1 40 300
2 30 200

𝑅!

𝑨𝟐
10
20
30

𝑅# 𝑨𝟏 𝑨𝟐 𝑨𝟒
1 10 1000
1 20 1000
1 20 2000
2 20 2000

𝑅"

𝐴! 𝐴$, 𝐴!

𝐴$, 𝐴!

𝑄 = 𝑅+ 𝐴+, 𝐴- ⋈ 𝑅- 𝐴+, 𝐴-, 𝐴3 ⋈ 𝑅3 𝐴- ⋈ 𝑅4 𝐴+, 𝐴-, 𝐴4

Slides of this example are from DATA Lab@Northeastern University 



Database TheoryExample

1. Bottom-up traversal (semi-joins)

𝑨𝟏 𝑨𝟐
1 20
1 10
4 60

𝑅$

𝑨𝟏 𝑨𝟐 𝑨𝟑
1 10 100
1 20 100
3 10 300
1 40 300
2 30 200

𝑅!

𝑨𝟐
10
20
30

𝑅#

𝐴!

𝐴$, 𝐴!

𝑄 = 𝑅+ 𝐴+, 𝐴- ⋈ 𝑅- 𝐴+, 𝐴-, 𝐴3 ⋈ 𝑅3 𝐴- ⋈ 𝑅4 𝐴+, 𝐴-, 𝐴4

𝑹𝟐 ⋉ 𝑹𝟒

𝑨𝟏 𝑨𝟐 𝑨𝟒
1 10 1000
1 20 1000
1 20 2000
2 20 2000

𝑅"

𝐴$, 𝐴!

Slides of this example are from DATA Lab@Northeastern University 
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1. Bottom-up traversal (semi-joins)
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𝐴!

𝐴$, 𝐴!

𝑄 = 𝑅+ 𝐴+, 𝐴- ⋈ 𝑅- 𝐴+, 𝐴-, 𝐴3 ⋈ 𝑅3 𝐴- ⋈ 𝑅4 𝐴+, 𝐴-, 𝐴4
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𝑨𝟏 𝑨𝟐
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1 20
2 20

Slides of this example are from DATA Lab@Northeastern University 
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Database TheoryExample

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)
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Slides of this example are from DATA Lab@Northeastern University 
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Slides of this example are from DATA Lab@Northeastern University 



Yannakakis Algorithm

• Given acyclic conjunctive query represented by a join tree
• Two Phases
• Apply a full reducer based on join tree

• Semi-join reduction sweep from leaves to root
• Semi-join reduction sweep from root to leaves

• Use the join tree as the query plan and compute the joins bottom up
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1. Bottom-up traversal (semi-joins)
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Slides of this example are from DATA Lab@Northeastern University 



Property 3: query has an acyclic hypergraph
• A hypergraph for a natural join
• Node = attribute in query
• Hyperedge = relation

• Example 1: Triangle Query
• 𝑄 𝐴, 𝐵, 𝐶 ← 𝑅 𝐴, 𝐵 , 𝑆 𝐵, 𝐶 , 𝑇 𝐶, 𝐴
• Relation 𝑅 𝐴, 𝐵 is represented by the hyperedge 𝐴, 𝐵
• Relation 𝑆 𝐵, 𝐶 is represented by the hyperedge 𝐵, 𝐶
• This hypergraph is actually a graph, since the hyperedges are each pairs of 

nodes

• Example2
• 𝑄 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ← 𝑅 𝐴, 𝐸, 𝐹 , 𝑆 𝐴, 𝐵, 𝐶 , 𝑇 𝐶, 𝐷, 𝐸 , 𝑈(𝐴, 𝐶, 𝐸)

𝐴 𝐵

𝐶 AF

E C

B

D



Hypergraph construction a legacy of “The 
Universal Relation” war.
• Universal Relation:  A concept where all relation schema would be 

removed and all data merged into a single table.
• Plausibility: compute cross products as needed, and fill in implausible 

combinations with NULLs
• Potential benefit: Obtain certain optimal properties that might not be 

achievable without removing certain input from a developer. 



Hypergraph definition (cont’)

• To define acyclic hypergraph, we need the notion of an “ear” in a 
hypergraph
• A hyperedge 𝐻 is an ear if there is some other hyperedge 𝐺 in the 

same hypergraph such that every node of 𝐻 is either:
• Found only in 𝐻, or
• Also found in 𝐺

• We shall say that 𝐺 consumes 𝐻



Ear in Hypergraph Examples

AF

E C

B

D

Hyperedge 𝐻 = {𝐴, 𝐸, 𝐹} is an ear
• 𝐺 = {A, C, E}
• Node 𝐹 is unique to 𝐻; it appears in no other hyperedge
• The other two nodes of 𝐻 (𝐴 and 𝐸) are also members of 𝐺
• What about 𝐴, 𝐵, 𝐶 , {𝐶, 𝐷, 𝐸}? 

𝐴 𝐵

𝐶

Find ears in this hypergraph



Check Cyclicity of Hypergraph: GYO Algorithm

• GYO Algorithm = a sequence of ear reductions
• An ear reduction = the elimination of one ear from the hypergraph, 

along with any nodes that appear only in that ear
• A hypergraph is acyclic = the output of GYO algorithm is empty 
• i.e., all hyperedges can be removed by ear reductions

• Properties
• An ear, if not eliminated at one step, remains an ear after another ear is 

eliminated
• Hyperedge that was not an ear, can become an ear after another hyperedge is 

eliminated



Example

• {𝐴, 𝐸, 𝐹}, 𝐴, 𝐵, 𝐶 , 𝐶, 𝐷, 𝐸 are ears
• Pick one and eliminate it
• Suppose we pick {𝐴, 𝐸, 𝐹}

AF

E C

B

D



Example

• {𝐴, 𝐸, 𝐹}, 𝐴, 𝐵, 𝐶 , 𝐶, 𝐷, 𝐸 are ears
• Pick one and eliminate it
• Suppose we pick {𝐴, 𝐸, 𝐹}

A

E C

B

D



Example

• {𝐴, 𝐸, 𝐹}, 𝐴, 𝐵, 𝐶 , 𝐶, 𝐷, 𝐸 are ears
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• Next, we pick 𝐴, 𝐵, 𝐶 and eliminate it
• 𝐴, 𝐶, 𝐸 now becomes an ear and eliminate it

E C

D



Example

• {𝐴, 𝐸, 𝐹}, 𝐴, 𝐵, 𝐶 , 𝐶, 𝐷, 𝐸 are ears
• Pick one and eliminate it
• Suppose we pick {𝐴, 𝐸, 𝐹}
• Next, we pick 𝐴, 𝐵, 𝐶 and eliminate it
• 𝐴, 𝐶, 𝐸 now becomes an ear and eliminate it
• 𝐶, 𝐷, 𝐸 is the only left ear and eliminate it 

E C

D



Example

• {𝐴, 𝐸, 𝐹}, 𝐴, 𝐵, 𝐶 , 𝐶, 𝐷, 𝐸 are ears
• Pick one and eliminate it
• Suppose we pick {𝐴, 𝐸, 𝐹}
• Next, we pick 𝐴, 𝐵, 𝐶 and eliminate it
• 𝐴, 𝐶, 𝐸 now becomes an ear and eliminate it
• 𝐶, 𝐷, 𝐸 is the only left ear and eliminate it 
• Original hypergraph is acyclic



Example 2

• Pick an ear to remove

𝐴 𝐵

𝐶



Example 2

• Pick an ear to remove
• No ear to remove à hypergraph is cyclic 𝐴 𝐵

𝐶



Example 3

• 𝑄 𝐴., 𝐴/, 𝐴0, 𝐴1 ← 𝑅. 𝐴., 𝐴/ , 𝑅/ 𝐴., 𝐴/, 𝐴0 , 𝑅0 𝐴/ , 
𝑅1 𝐴., 𝐴/, 𝐴1

Sequence of ear reductions
• {𝐴/}
• {𝐴., 𝐴/}
• 𝐴., 𝐴/, 𝐴0
• 𝐴., 𝐴/, 𝐴1

𝑄 is acyclic

𝐴! 𝐴"

𝐴#

𝐴$



Recap

• We have seen three properties for acyclic query
1. It has a join tree, or
2. It has a full reducer, or
3. Its hypergraph is acyclic

• We see how to construct a full reducer from a join tree
• Question: how to find a join tree for a query, if it exists?



Find a Join Tree

• We can construct a join tree during GYO algorithm. In addition to ear 
reduction, we follow additional steps:
• Tree nodes = hyperedges
• The children of a tree node 𝐻 are all those hyperedges consumed by 𝐻

• Example
• 𝑅 𝐴, 𝐵, 𝐶 , 𝑆 𝐵, 𝐹 , 𝑇 𝐵, 𝐶, 𝐷 , 𝐺 𝐶, 𝐷, 𝐸 , 𝐻(𝐷, 𝐸, 𝐺)

𝐴 𝐵

𝐶

𝐹

𝐷

𝐸 𝐺



Join Tree 1

• Start to eliminate 𝐴, 𝐵, 𝐶
• Since {𝐵, 𝐶, 𝐷} consumes 𝐴, 𝐵, 𝐶 , 
{𝐵, 𝐶, 𝐷} is the parent of 𝐴, 𝐵, 𝐶

𝐴 𝐵

𝐶

𝐹

𝐷

𝐸 𝐺

𝑅 𝐴, 𝐵, 𝐶

𝑇 𝐵, 𝐶, 𝐷



Join Tree 1

• Start to eliminate 𝐴, 𝐵, 𝐶
• Since {𝐵, 𝐶, 𝐷} consumes 𝐴, 𝐵, 𝐶 , 
{𝐵, 𝐶, 𝐷} is the parent of 𝐴, 𝐵, 𝐶
• Next, remove 𝐵, 𝐹 , which is also 

consumed by {𝐵, 𝐶, 𝐷}

𝐵

𝐶

𝐹

𝐷

𝐸 𝐺

𝑅 𝐴, 𝐵, 𝐶

𝑇 𝐵, 𝐶, 𝐷

𝑆 𝐵, 𝐹



Join Tree 1

• Start to eliminate 𝐴, 𝐵, 𝐶
• Since {𝐵, 𝐶, 𝐷} consumes 𝐴, 𝐵, 𝐶 , 
{𝐵, 𝐶, 𝐷} is the parent of 𝐴, 𝐵, 𝐶
• Next, remove 𝐵, 𝐹 , which is also 

consumed by {𝐵, 𝐶, 𝐷}
• Remove 𝐵, 𝐶, 𝐷 , which is consumed 

by {𝐶, 𝐷, 𝐸}

𝐵

𝐶 𝐷

𝐸 𝐺

𝑅 𝐴, 𝐵, 𝐶

𝑇 𝐵, 𝐶, 𝐷

𝑆 𝐵, 𝐹

𝐺 𝐶, 𝐷, 𝐸



Join Tree 1

• Start to eliminate 𝐴, 𝐵, 𝐶
• Since {𝐵, 𝐶, 𝐷} consumes 𝐴, 𝐵, 𝐶 , 
{𝐵, 𝐶, 𝐷} is the parent of 𝐴, 𝐵, 𝐶
• Next, remove 𝐵, 𝐹 , which is also 

consumed by {𝐵, 𝐶, 𝐷}
• Remove 𝐵, 𝐶, 𝐷 , which is consumed 

by {𝐶, 𝐷, 𝐸}
• Remove 𝐷, 𝐸, 𝐺 , which is consumed 

by {𝐶, 𝐷, 𝐸}

𝐶 𝐷

𝐸 𝐺

𝑅 𝐴, 𝐵, 𝐶

𝑇 𝐵, 𝐶, 𝐷

𝑆 𝐵, 𝐹

𝐺 𝐶, 𝐷, 𝐸

𝐻 𝐷, 𝐸, 𝐺



Join Tree 2

• Start to eliminate 𝐷, 𝐸, 𝐺
• Since {𝐶, 𝐷, 𝐸} consumes 𝐷, 𝐸, 𝐺 , 
{𝐶, 𝐷, 𝐸} is the parent of 𝐷, 𝐸, 𝐺

𝐴 𝐵

𝐶

𝐹

𝐷

𝐸 𝐺

𝐻 𝐷, 𝐸, 𝐺

𝐺 𝐶, 𝐷, 𝐸



Join Tree 2

• Start to eliminate 𝐷, 𝐸, 𝐺
• Since {𝐶, 𝐷, 𝐸} consumes 𝐷, 𝐸, 𝐺 , 
{𝐶, 𝐷, 𝐸} is the parent of 𝐷, 𝐸, 𝐺
• Remove {𝐶, 𝐷, 𝐸}, which is consumed

by {𝐵, 𝐶, 𝐷}

𝐴 𝐵

𝐶

𝐹

𝐷

𝐸

𝐻 𝐷, 𝐸, 𝐺

𝐺 𝐶, 𝐷, 𝐸

𝑇 𝐵, 𝐶, 𝐷



Join Tree 2

• Start to eliminate 𝐷, 𝐸, 𝐺
• Since {𝐶, 𝐷, 𝐸} consumes 𝐷, 𝐸, 𝐺 , 
{𝐶, 𝐷, 𝐸} is the parent of 𝐷, 𝐸, 𝐺
• Remove {𝐶, 𝐷, 𝐸}, which is consumed

by {𝐵, 𝐶, 𝐷}
• Remove {𝐵, 𝐶, 𝐷}, which is consumed 

by {𝐴, 𝐵, 𝐶}

𝐴 𝐵

𝐶

𝐹

𝐷

𝐻 𝐷, 𝐸, 𝐺

𝐺 𝐶, 𝐷, 𝐸

𝑇 𝐵, 𝐶, 𝐷

𝑅 𝐴, 𝐵, 𝐶



Join Tree 2

• Start to eliminate 𝐷, 𝐸, 𝐺
• Since {𝐶, 𝐷, 𝐸} consumes 𝐷, 𝐸, 𝐺 , 
{𝐶, 𝐷, 𝐸} is the parent of 𝐷, 𝐸, 𝐺
• Remove {𝐶, 𝐷, 𝐸}, which is consumed

by {𝐵, 𝐶, 𝐷}
• Remove {𝐵, 𝐶, 𝐷}, which is consumed 

by {𝐴, 𝐵, 𝐶}
• Remove {𝐴, 𝐵, 𝐶} and {𝐵, 𝐹} sequentially

𝐴 𝐵

𝐶

𝐹

𝐻 𝐷, 𝐸, 𝐺

𝐺 𝐶, 𝐷, 𝐸

𝑇 𝐵, 𝐶, 𝐷

𝑅 𝐴, 𝐵, 𝐶

𝑆 𝐵, 𝐹



Complexity Notation
• Standard 𝑂 and Ω notation for time and memory complexity in the 

RAM model of computation
• Use O𝑂-notation (soft-O)
• Abstracts away polylog factors in input size that clutter formulas
• 𝑂 𝑛P Q + log 𝑛 P Q ⋅ 𝑟 becomes O𝑂 𝑛P Q + 𝑟



• Complexity in query grows in two dimensions: 
• size of query (i.e., number of relations in a multi-way join query)
• database size (i.e., number of rows contained in each relation of the query) 

• Data complexity: the query is fixed (i.e., the size of the query 
expression itself 𝑙 as a constant), and the complexity is expressed in 
terms of the size of database 
• Suppose the query 𝑄 size |𝑄| is 𝑙, then 𝑂 𝑓 𝑙 ⋅ 𝑛4 5 + log 𝑛 4 5 ⋅ 𝑟

with 𝑓() denote some arbitrary computable function can be 
simplified to 𝑂 𝑛4 5 + log 𝑛 4 5 ⋅ 𝑟

Data Complexity



Lower Bound for Any Join Algorithm

• Join output result size cardinality: 𝑟
• Query	size	𝑙 (i.e.,	number	of	relations	in	join	query)
• Ω(𝑛 + 𝑟) data complexity to compute any query
• The join algorithm has to read entire input at least once Ω 𝑙𝑛

(data complexity: Ω(𝑛))
• The join algorithm has to output result Ω 𝑙𝑟 (data complexity: Ω(𝑟))

• This the cost of concatenating tuples from 𝑙 relations to form the final join result set

• Yannakakis algorithm amazingly matches the lower bound for acyclic 
CQs with data complexity O𝑂(𝑛 + 𝑟)



Yannakakis Algorithm

• Given acyclic conjunctive query represented by a join tree
• Two Phases
• Apply a full reducer based on join tree

• Semi-join reduction sweep from leaves to root
• Semi-join reduction sweep from root to leaves

• Use the join tree as the query plan and compute the joins bottom up



Database TheoryExample 𝑨𝟏 𝑨𝟐
1 20
1 10

𝑅$

𝑨𝟏 𝑨𝟐 𝑨𝟑
1 10 100
1 20 100

𝑅!

𝑨𝟐
10
20

𝑅# 𝑨𝟏 𝑨𝟐 𝑨𝟒
1 10 1000
1 20 1000
1 20 2000

𝑅"

𝑄 = 𝑅+ 𝐴+, 𝐴- ⋈ 𝑅- 𝐴+, 𝐴-, 𝐴3 ⋈ 𝑅3 𝐴- ⋈ 𝑅4 𝐴+, 𝐴-, 𝐴4

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)

Slides of this example are from DATA Lab@Northeastern University 



Database TheoryExample 𝑨𝟏 𝑨𝟐
1 20
1 10

𝑅$

𝑨𝟏 𝑨𝟐 𝑨𝟑
1 10 100
1 20 100

𝑅!

𝑨𝟐
10
20

𝑅# 𝑨𝟏 𝑨𝟐 𝑨𝟒
1 10 1000
1 20 1000
1 20 2000

𝑅"

𝑄 = 𝑅+ 𝐴+, 𝐴- ⋈ 𝑅- 𝐴+, 𝐴-, 𝐴3 ⋈ 𝑅3 𝐴- ⋈ 𝑅4 𝐴+, 𝐴-, 𝐴4

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)
3. Join bottom-up

𝑅! = 𝑅# ⋈ 𝑅!
𝑅! = 𝑅" ⋈ 𝑅!
𝑅$ = 𝑅$ ⋈ 𝑅!

Slides of this example are from DATA Lab@Northeastern University 



Yannakakis Algorithm Property

• Key Property
• No intermediate join result size can be larger than the final result size
• i.e., each join step can never shrink intermediate result size 

• Why?
• Semi-join reduction removes dangling tuples between pair-wise relations
• Is it sufficient? No! 
• We need connectedness condition from join tree to ensure all dangling tuples 

are removed by semi-join reductions



Importance of connectedness condition

• Suppose we have a database instance of 
{𝑁 “𝑁𝑎𝑣𝑦”, 13 , 𝑈 “𝑁𝑎𝑣𝑦” , 𝐸 “𝑁𝑎𝑣𝑦”, 17 }
• Final join result: ∅

𝑁 𝐶, 𝐴

𝑈 𝐶 𝐸 𝐶, 𝐴

𝑈 𝐶

𝑁 𝐶, 𝐴 𝐸 𝐶, 𝐴

N ⋉ 𝑈,𝑁 ⋉ E, U ⋉ N, E ⋉ 𝑁
𝑈 = ∅,𝑁 = ∅, 𝐸 = ∅

N ⋉ 𝑈, 𝐸 ⋉ U, U ⋉ N, 𝑈 ⋉ 𝐸
𝑈 = “𝑁𝑎𝑣𝑦” , 𝑁 = “𝑁𝑎𝑣𝑦”, 13 , 𝐸 = { “𝑁𝑎𝑣𝑦”, 17 }



Yannakakis Algorithm Complexity

• Semi-join sweeps take O𝑂(𝑛)
• Recall 𝑅 ⋉ S = πxyyz { 𝑅 ⋈ 𝑆
• With sort-merge join, we can compute 𝑅 ⋉ S in 𝑂(𝑛 log 𝑛) = O𝑂(n)
• There are 2𝑙 − 2 pair-wise semi-join operation, O𝑂 2l − 2 n = O𝑂(n) in 

data complexity
• All intermediate results are of size 𝑂(𝑟) b/c key property
• Each join step has 𝑂 𝑛 + 𝑟 input and 𝑂(𝑟) output, which can be 

computed in  O𝑂 𝑛 + 𝑟 by sort-merge join (𝑙 join steps but ignored in 
data complexity)
• In total, Yannakakis Algorithm takes O𝑂 𝑛 + 𝑟



Zeyuan Hu
May 3rd, 2021

Worst-Case Optimal Join Algorithm



Recap 

• Three properties for acyclic query
1. It has a join tree, or
2. It has a full reducer, or
3. Its hypergraph is acyclic

• How to construct a full reducer from a join tree
• Modify GYO algorithm to construct join tree
• Yannakakis algorithm can run in O𝑂 𝑛 + 𝑟 for acyclic CQ



CQs with Cycles

• 3-path: 𝑄07 = 𝑅. 𝐴., 𝐴/ ⋈ 𝑅/ 𝐴/, 𝐴0 ⋈ 𝑅0 𝐴0, 𝐴1
• 3-cycle: 𝑄08 = 𝑅.(𝐴., 𝐴/) ⋈ 𝑅/(𝐴/, 𝐴0) ⋈ 𝑅0(𝐴0, 𝐴.)

𝑄07

𝐴.
𝐴/

𝐴/ 𝐴0

𝐴0 𝐴1

𝑄08

𝐴. 𝐴/

𝐴0

𝐴/

𝐴0

𝐴.

Slides of this example are from DATA Lab@Northeastern University 



What’s Wrong with Cyclic CQ

• Essentially, we cannot find an acyclic query graph that meets 
connectedness condition
• à intermediate results size can be larger than the final result size
• à key property of Yannakakis Algorithm falls through

• Example
• 3-path: 𝑄3~ = 𝑅+(𝐴+, 𝐴-) ⋈ 𝑅-(𝐴-, 𝐴3) ⋈ 𝑅3(𝐴3, 𝐴4)
• 3-cycle: 𝑄3� = 𝑅+(𝐴+, 𝐴-) ⋈ 𝑅-(𝐴-, 𝐴3) ⋈ 𝑅3(𝐴3, 𝐴+)



What’s Wrong with Cyclic CQ (cont’)

• 3-path: 𝑄07 = 𝑅.(𝐴., 𝐴/) ⋈ 𝑅/(𝐴/, 𝐴0) ⋈ 𝑅0(𝐴0, 𝐴1)
• 3-cycle: 𝑄08 = 𝑅.(𝐴., 𝐴/) ⋈ 𝑅/(𝐴/, 𝐴0) ⋈ 𝑅0(𝐴0, 𝐴.)
• Already semi-join-reduced input

𝑨𝟏 𝑨𝟐
1 1

2 1

… …

n 1

𝑨𝟐 𝑨𝟑
1 1

1 2

… …

1 n

𝑨𝟑 *

1 1

2 2

… …

n n

𝑅$ 𝑅% 𝑅&

𝑅$

𝑅%

Query Graph

𝑅&

Slides of this example are from DATA Lab@Northeastern University 



What’s Wrong with Cyclic CQ (cont’)

• 3-path: 𝑄07 = 𝑅.(𝐴., 𝐴/) ⋈ 𝑅/(𝐴/, 𝐴0) ⋈ 𝑅0(𝐴0, 𝐴1)
• 3-cycle: 𝑄08 = 𝑅.(𝐴., 𝐴/) ⋈ 𝑅/(𝐴/, 𝐴0) ⋈ 𝑅0(𝐴0, 𝐴.)
• Already semi-join-reduced input
• 𝑅. ⋈ 𝑅/ produces 𝑛/ intermediate results
• Final output size: 𝑛- for 𝑄3~, but only 𝑛 for 𝑄3�

𝑨𝟏 𝑨𝟐
1 1

2 1

… …

n 1

𝑨𝟐 𝑨𝟑
1 1

1 2

… …

1 n

𝑨𝟑 *

1 1

2 2

… …

n n

𝑅$ 𝑅% 𝑅&

𝑅$

𝑅%

Query Graph

𝑅&

Slides of this example are from DATA Lab@Northeastern University 



What’s Wrong with Cyclic CQ (cont’)

• Both queries have acyclic query graph
• In the right tree, 𝐴. violates connectedness condition

• 𝑄07 ’s query graph is a join tree

𝑅$

𝑅%

Query Graph

𝑅&

𝑅.(𝐴., 𝐴/)

𝑅/(𝐴/, 𝐴0)

𝑅0(𝐴0, 𝐴1)𝑄07 𝑄08

𝑅.(𝐴., 𝐴/)

𝑅/(𝐴/, 𝐴0)

𝑅0(𝐴0, 𝐴.)



Solutions for Cyclic CQ?

• Maybe we just need an algorithm that targets at Cyclic CQ?
• A result that is from ’18 by Ngo et al shows that �O 𝑛 + 𝑟 is 

unattainable for full CQ based on well-accepted complexity-theoretic 
assumptions (e.g., P != NP)



What Can Be Done?

• Two main ideas
• Worst-case Optimal Join Algorithms (WCOJA)
• Tree decompositions

• Tree decompositions
• Break down a cyclic CQ into query fragments called “bags”
• Evaluate each query fragment using WCOJA and materialize the result
• Connect bag results as a join tree and evaluate the whole query using 

Yannakakis algorithm

• We will focus on WCOJA



Theory of Computation Revisit

• Query evaluation problem is known to be NP-Complete
• No algorithm exists to evaluate any possible query correctly and runs in 

polynomial time
• Not a death sentence yet!
• NP-Complete à algorithm cannot have all three properties

• General purpose. The algorithm accommodates all possible inputs of the computational 
problem

• Correct. For every input, the algorithm correctly solves the problem.
• Fast. For every input, the algorithm runs in polynomial time.

• Choose one to compromise – General Purpose à Yannakakis
Algorithm
• WCOJA chooses different to compromise - Fast



Query Evaluation Problem

• Given 
• a full CQ of the form 𝑞 = 𝑅+ 𝐴+ ⋈ 𝑅- 𝐴- ⋈ … ⋈ 𝑅� 𝐴� where 𝐴� is the 

attribute set of relation 𝑅�, 𝑗 ∈ [𝑚]
• a database instance 𝐼 on the schema {𝑅+, … , 𝑅�}

• Query evaluation problem is to compute 𝑞 𝐼
• 𝑞 𝐼 = a set of tuples 𝒕 over attribute set ⋃�∈ � 𝐴� s.t. projection of 𝒕 onto 

the attributes 𝐴� belongs to 𝑅�, for each 𝑗 ∈ [𝑚]
• Join output result size cardinality: 𝑟
• 𝑟 is database instance dependent

• Yannakakis Algorithm reaches O𝑂 𝑛 + 𝑟



Optimal Worst-case Join Evaluation Problem

• An easier problem than query evaluation problem 
• Instead of O𝑂 𝑛 + 𝑟 , hope to find a polynomial algorithm that can run 
O𝑂 𝑛 + 𝑟9:
• 𝑟�� = maximum possibly output size for the given size of the relations in 𝑞

• Let �𝑁 = {𝑁., … , 𝑁;} and let 𝐼( �𝑁) be the set of database instances 
with 𝑅<= = 𝑁< for 𝑗 ∈ [𝑚]. Then, 𝑟9: = =∈=( ?@)

AB7|𝑞 𝐼 |
• i.e., supremum (maximum) of all possible 𝑟 over 𝐼( �𝑁) 

• Even database instance has the same size, the distribution of data can 
be different and thus we can get different join output size



AGM Bound

• Example:
• 𝑄 𝑎, 𝑏, 𝑐 ← 𝑅 𝑎, 𝑏 , 𝑆 𝑏, 𝑐 , 𝑇(𝑎, 𝑐)

• How large is 𝑟9:?
• Given the sizes of 𝑅 , 𝑆 , and |𝑇|, what is the largest possible query result 

size 𝑟?

• Solved by Aterias, Grohe, and Marx in ‘08
• We’ll introduce intuition here



AGM Bound Intuition

• Given 𝑄 𝑎, 𝑏, 𝑐 ← 𝑅 𝑎, 𝑏 , 𝑆 𝑏, 𝑐 , 𝑇(𝑎, 𝑐) and 𝑅 = 𝑆 = 𝑇 = 𝑁, 
what is the bound on the query result size? 
• One bound is 𝑂 𝑁0 because we have three-way join and each tuple 

can be part of final join result. Thus, we have a cartesian product.
• Can we do better? Yes! 𝑂 𝑁/

• Observe that join of any two relations is an upper bound on 𝑟
• Because we have a triangle query, third relation imposes additional constraint 

on intermediate relation, which can at best not eliminate any tuples from 
intermediate relation.
• 𝑅 𝑎, 𝑏 ⋈ 𝑆 𝑏, 𝑐 already gives tuples with attributes (𝑎, 𝑏, 𝑐), introduce 𝑇

can remove tuples   



AGM Bound Intuition (cont’)

• For 𝑄 𝑎, 𝑏, 𝑐 ← 𝑅 𝑎, 𝑏 , 𝑆 𝑏, 𝑐 , 𝑇(𝑎, 𝑐), AGM bound gives 𝑂 𝑁..D

• How? By generalizing the observation we have for 𝑄 using fractional 
edge cover
• Edge cover: a set of edges s.t. each vertex in graph 𝐺 is an end of at 

least one edge
• AGM formulate a linear programming problem based on edge cover 

of hypergraph of 𝑄. Solving such problem leads to the bound. 



WCOJA (under graph model)

• We’ll describe WCOJA in the context of graph model using graph 
pattern matching query (i.e., subgraph query)
• A match is a mapping from variables to constants such that when the 

mapping is applied to the given pattern, the result is, roughly 
speaking, contained within the original graph (i.e., subgraph).
• Focus on triangle query
• 𝑄 𝑎, 𝑏, 𝑐 ← 𝑅 𝑎, 𝑏 , 𝑆 𝑏, 𝑐 , 𝑇(𝑎, 𝑐)
• In Cypher syntax

• match (a)-[:TO]->(b)-[:TO]->(c)-[:TO]->(a) return distinct a, b, c



Relational View of Subgraph Queries

• We have seen in Cypher that subgraph query = multi-way join query
• Suppose we use 𝐸𝑑𝑔𝑒𝑠 relation to store the input graph 𝐺
• 𝐸𝑑𝑔𝑒𝑠 relation contains every directed edges in 𝐺

• Query to find all directed triangles in 𝐺
• 𝑄 𝑎+, 𝑎-, 𝑎3 ← 𝐸𝑑𝑔𝑒𝑠 𝑎+, 𝑎- , 𝐸𝑑𝑔𝑒𝑠 𝑎-, 𝑎3 , 𝐸𝑑𝑔𝑒𝑠(𝑎3, 𝑎+)



Evaluate Triangle Query: Traditional Approach

• Traditional Approach
• Treat subgraph query as relational query
• Evaluate the query using a sequence of binary joins
• “Edge-at-a-time” approach

• We have seen because of break of connectedness condition, 
intermediate results can be greater than final result
• From acyclicity, you might sense some connection between query 

representation and query processing algorithm
• Join tree (loosely, query graph) à pair-wise binary joins (Yannakakis)
• Hypergraph à vertex-at-a-time approach



Generic Join (GJ) as a WCOJA

GJ consists of the following three high-level ingredients
• Global Attribute Ordering
• GJ first orders the attributes. For example, we assume the orders 𝑎+,… , 𝑎�

• Extension Indices
• Prefix 𝑗-tuple = any fixed values of the first 𝑗 < 𝑚 attributes

• For each 𝑅% and j-tuple 𝑝 only some values for attribute 𝑎&'$ exist in 𝑅%
• Extension index 𝐸𝑥𝑡�� map each j-tuple 𝑝 to values of 𝑎��+ matching 𝑝 in 𝑅�

• 𝐸𝑥𝑡&%: 𝑝 = 𝑎$, … , 𝑎& → {𝑎&'$}
• Each relation has its own extension index
• Such index needs to have some certain properties to enable GJ reaching P𝑂 𝑛 + 𝑟()



Generic Join (GJ) as a WCOJA (cont’)

• Prefix Extension Stages
• GJ iteratively computes intermediate results 𝑃+,… , 𝑃�

• 𝑃& = result of 𝑄 when each relation is restricted to the first 𝑗 attributes in the global order
• GJ starts from the singleton relation 𝑃� with no attributes
• 𝑃� is the final join result for 𝑄
• GJ determines 𝑃��+ from 𝑃� using the extension indices

• For each j-tuple 𝑝 ∈ 𝑃&, GJ first intersects 𝐸𝑥𝑡&% of each relation 𝑅% containing 𝑎&'$
• The result of intersection is added to 𝑃&'$
• Intersection is performed from the smallest 𝐸𝑥𝑡&% to ensure algorithm runtime bound



Generic Join (GJ) Pseudocode



Example

• 𝑄 𝑎., 𝑎/, 𝑎0 ← 𝑅. 𝑎., 𝑎/ , 𝑅/ 𝑎/, 𝑎0 , 𝑅0 𝑎0, 𝑎.
• 𝑅., 𝑅/, 𝑅0 are all 𝐸𝑑𝑔𝑒𝑠 relation
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Example

• The global attribute ordering is 𝑎., 𝑎/, 𝑎0
• GJ starts with 𝑃U = {𝜀}
• GJ next computes 𝑃.
• There is only one tuple in 𝑃�, which is empty
• Only 𝑅+ and 𝑅3 contain 𝑎+

• 𝐸𝑥𝑡*$ = 1,2,3,4,5,6,7
• 𝐸𝑥𝑡*# = 1,6,7,8,9,10,11
• 𝐸𝑥𝑡*$ ∩ 𝐸𝑥𝑡*# = 1,6,7

• 𝜀 × 1,6,7 = 1 , 6 , 7
• 𝑃+ = ∪ 1 , 6 , 7 = 1 , 6 , 7
• No more tuple left in 𝑃�, done with 𝑃+

𝑄 𝑎!, 𝑎", 𝑎# ← 𝑅! 𝑎!, 𝑎" , 𝑅" 𝑎", 𝑎# , 𝑅# 𝑎#, 𝑎!
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Example

• 𝑃. = { 1 , 6 , (7)}
• GJ next computes 𝑃/
• 𝑅. and 𝑅/ contain 𝑎/
• Start with 1

• 𝐸𝑥𝑡$$ = 6
• 𝐸𝑥𝑡$! = 1,2,3,4,5,6,7
• 𝐸𝑥𝑡$$ ∩ 𝐸𝑥𝑡$! = 6

• (1) × 6 = (1,6)
• 𝑃- = ∪ 1,6 = (1,6)
• More tuple left in 𝑃+, continue

𝑄 𝑎!, 𝑎", 𝑎# ← 𝑅! 𝑎!, 𝑎" , 𝑅" 𝑎", 𝑎# , 𝑅# 𝑎#, 𝑎!
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Example

• 𝑃. = { 1 , 6 , (7)}
• GJ next computes 𝑃/
• 𝑅. and 𝑅/ contain 𝑎/
• Next, 6

• 𝐸𝑥𝑡$$ = 7,8,9,10,11
• 𝐸𝑥𝑡$! = 1,2,3,4,5,6,7
• 𝐸𝑥𝑡$$ ∩ 𝐸𝑥𝑡$! = 7

• (6) × 7 = (6,7)
• 𝑃- = (1,6) ∪ 6,7 = 1,6 , (6,7)
• More tuple left in 𝑃+, continue

𝑄 𝑎!, 𝑎", 𝑎# ← 𝑅! 𝑎!, 𝑎" , 𝑅" 𝑎", 𝑎# , 𝑅# 𝑎#, 𝑎!
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Example

𝑄 𝑎!, 𝑎", 𝑎# ← 𝑅! 𝑎!, 𝑎" , 𝑅" 𝑎", 𝑎# , 𝑅# 𝑎#, 𝑎!

1

2

3

4

5

6

7

8

9

10

11

• 𝑃. = { 1 , 6 , (7)}
• GJ next computes 𝑃/
• 𝑅. and 𝑅/ contain 𝑎/
• Next, 7

• 𝐸𝑥𝑡$$ = 1
• 𝐸𝑥𝑡$! = 1,2,3,4,5,6,7
• 𝐸𝑥𝑡$$ ∩ 𝐸𝑥𝑡$! = 1

• (7) × 1 = (7,1)
• 𝑃- = 1,6 , (6,7) ∪ 7,1 = 1,6 , 6,7 , (7,1)
• No more tuple left in 𝑃+, done with 𝑃-



Example

𝑄 𝑎!, 𝑎", 𝑎# ← 𝑅! 𝑎!, 𝑎" , 𝑅" 𝑎", 𝑎# , 𝑅# 𝑎#, 𝑎!
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• 𝑃/ = { 1,6 , 6,7 , (7,1)}
• GJ next computes 𝑃0
• 𝑅/ and 𝑅0 contain 𝑎0
• First, 1,6

• 𝐸𝑥𝑡!! = 7,8,9,10,11
• 𝐸𝑥𝑡!# = 7
• 𝐸𝑥𝑡!! ∩ 𝐸𝑥𝑡!# = 7

• (7) × (1,6) = (1,6,7)
• 𝑃3 = ∪ 1,6,7 = 1,6,7
• More tuple left in 𝑃-, continue



Example

𝑄 𝑎!, 𝑎", 𝑎# ← 𝑅! 𝑎!, 𝑎" , 𝑅" 𝑎", 𝑎# , 𝑅# 𝑎#, 𝑎!
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• 𝑃/ = { 1,6 , 6,7 , (7,1)}
• GJ next computes 𝑃0
• 𝑅/ and 𝑅0 contain 𝑎0
• Next, 6,7

• 𝐸𝑥𝑡!! = 1
• 𝐸𝑥𝑡!# = 1,2,3,4,5
• 𝐸𝑥𝑡!! ∩ 𝐸𝑥𝑡!# = 1

• (1) × (6,7) = (6,7,1)
• 𝑃3 = (1,6,7) ∪ 6,7,1 = 1,6,7 , (6,7,1)
• More tuple left in 𝑃-, continue



Example

𝑄 𝑎!, 𝑎", 𝑎# ← 𝑅! 𝑎!, 𝑎" , 𝑅" 𝑎", 𝑎# , 𝑅# 𝑎#, 𝑎!
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• 𝑃/ = { 1,6 , 6,7 , (7,1)}
• GJ next computes 𝑃0
• 𝑅/ and 𝑅0 contain 𝑎0
• Next, 7,1

• 𝐸𝑥𝑡!! = 6
• 𝐸𝑥𝑡!# = 6
• 𝐸𝑥𝑡!! ∩ 𝐸𝑥𝑡!# = 6

• (6) × (7,1) = (7,1,6)
• 𝑃3 = 1,6,7 , (6,7,1) ∪ 7,1,6 = 1,6,7 , 6,7,1 , (7,1,6)
• No more tuple left in 𝑃-, done with 𝑃3



Final Remarks

• In our example, since each attribute in the ordering is contained in 
two relations, ⋂𝐸𝑥𝑡<

a from the smallest doesn’t apply but be aware

• Interested in time complexity proof (non-trivial), see “Skew strikes 
back: New developments in the theory of join algorithms” by Ngo 
et.al in 2014


