Conjunctive Query Processing
 [A Formal Model for Theoretical Focus]

Zeyuan Hu
April 28 ${ }^{\text {th }}, 2021$

Motivation for the Model

- Given a query on k relations, each of n rows (i.e., a k-way join), naively
- Processing time: $O\left(n^{k}\right)$
- Size of the output, also, $O\left(n^{k}\right)$
- If basic complexity models are our guide, even simple queries should be infeasible (e.g. $n=1,000,000$ and $k=5$)

What happens in practice?

- Joins are often with high reduction factor (i.e., low selectivity)
- Example: $R \bowtie S$ on the the primary key p of R
- Assume the selectivity for p is $\frac{1}{n}$ (i.e., there is 1 output result for each primary key of R)
- Output size estimation is no longer $O\left(n^{2}\right)$ but $O(n)\left(\frac{1}{n} \times n^{2}\right)$
- Relational queries usually work subject to good optimization choices
- \rightarrow can still be slow
- \rightarrow can be volatile in their performance

Conjunctive Queries (CQ)

- A subset of relational algebra
- Goals of studying CQ
- Enable theoretical study of the algorithmically hard part of queries
- Help explain (and thus help resolve) peculiar system behavior
- Develop new algorithms and hopefully impact practice

Full Conjunctive Query

- In Relational Algebra
- Natural join of l relations with $O(n)$ tuples each, no projection
- $Q\left(A_{1}, A_{2}, A_{3}, A_{4}\right)=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
- In Datalog
- $Q\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \leftarrow R_{1}\left(A_{1}, A_{2}\right), R_{2}\left(A_{1}, A_{2}, A_{3}\right), R_{3}\left(A_{2}\right), R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
- In SQL, full CQ = SELECT ... FROM ... WHERE statement
- WHERE contains only equalities
- No projection

Full Conjunctive Query

Other parameters:

- Query size: $O(l)$ (e.g., $l=4$ for above query)
- Join output result size cardinality: r

With Tight Focus on the Computational Challenge

- Main concern: come up algorithms that can evaluate query fast
- Query evaluation problem is known to be NP-Complete
- No algorithm exists to evaluate any possible query correctly and runs in polynomial time
- Not a death sentence yet!
- NP-Complete \rightarrow algorithm cannot have all three properties
- General purpose. The algorithm accommodates all possible inputs of the computational problem
- Correct. For every input, the algorithm correctly solves the problem.
- Fast. For every input, the algorithm runs in polynomial time.
- Choose one to compromise - General Purpose

A Critical Special Case: Acyclic Conjunctive Query

- CQs into fall two classes
- Acyclic CQ
- Cyclic CQ
- A polynomial algorithm exists to evaluate acyclic CQ
- Yannakakis Algorithm - a three-pass algorithm
- $O(\max (r, k n))$ where r is the size of the output, $k n$ is the size of the input

Acyclicity

- A query is acyclic iff it has at least one of these properties

1. a join tree
2. a full reducer
3. An acyclic hypergraph*

* Historically, query acyclicity was independently defined with different notations. They are shown to be equivalent.

Running example

$$
Q\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \leftarrow R_{1}\left(A_{1}, A_{2}\right), R_{2}\left(A_{1}, A_{2}, A_{3}\right), R_{3}\left(A_{2}\right), R_{4}\left(A_{1}, A_{2}, A_{4}\right)
$$

- Goal: show Q is acyclic through three properties above

Property 1: query has a join tree

- Join tree = acyclic query graph + connectedness condition
- query graph - introduced and leveraged for DP-based query opt.
- Relations are nodes
- Edges are joins
- Connectedness condition:
- Def 1: For each attribute A, the nodes containing A form a connected subtree
- Def 2: For each pair of nodes R and S that have common attributes, the following conditions hold:
- R and S are connected
- All variables common to R and S occur on the unique path from R to S

Example

- Suppose we have a database that contains $U(C), N(C, A), E(C, A)$

Join tree

Not a Join tree

- A query is acyclic if we can find a join tree
- can be done in linear time!

Example

- $Q\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \leftarrow R_{1}\left(A_{1}, A_{2}\right), R_{2}\left(A_{1}, A_{2}, A_{3}\right), R_{3}\left(A_{2}\right), R_{4}\left(A_{1}, A_{2}, A_{4}\right)$ is acyclic because we can find a join tree

Property 2: query has a full reducer

- A full reducer = a semi-join program that remove all dangling tuples in relations
- Semi-join program = a set of semi-join operations (i.e., semi-join reduction)
- Dangling tuples = tuples that are not part of final join result
- Example:
- $Q\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \leftarrow R_{1}\left(A_{1}, A_{2}\right), R_{2}\left(A_{1}, A_{2}, A_{3}\right), R_{3}\left(A_{2}\right), R_{4}\left(A_{1}, A_{2}, A_{4}\right)$ has a full reducer (and thus acyclic)
- $R_{2} \ltimes R_{4}, R_{2} \ltimes R_{3}, R_{1} \ltimes R_{2}, R_{2} \ltimes R_{1}, R_{3} \ltimes R_{2}, R_{4} \ltimes R_{2}$
- Full reducer doesn't depend on the actual data of each relation!
- How do you find a full reducer?

Find a full reducer - a two pass process

- $Q\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \leftarrow R_{1}\left(A_{1}, A_{2}\right), R_{2}\left(A_{1}, A_{2}, A_{3}\right), R_{3}\left(A_{2}\right)$, $R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
- Suppose we have a join tree of Q, we can construct a full reducer by
- Semi-join reduction sweep from leaves to root
- $R_{2} \ltimes R_{4}, R_{2} \ltimes R_{3}, R_{1} \ltimes R_{2}$
- Semi-join reduction sweep from root to leaves
- $R_{2} \ltimes R_{1}, R_{3} \ltimes R_{2}, R_{4} \ltimes R_{2}$
- Will this work?

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

R_{1}	A_{1}
	A_{2}
	2
	2
	1
	10

1. Bottom-up traversal (semi-joins)

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

1. Bottom-up traversal (semi-joins)

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

1. Bottom-up traversal (semi-joins)

R_{1}	A_{1}
1	A_{2}
	20
	1
	10

$R_{2} \ltimes R_{4}$

$\boldsymbol{A}_{\mathbf{1}}$	$\boldsymbol{A}_{\mathbf{2}}$
1	10
1	20
2	20

R_{4}	\boldsymbol{A}_{1}	\boldsymbol{A}_{2}	\boldsymbol{A}_{4}
1	10	1000	
1	20	1000	
	1	20	2000
	2	20	2000

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

1. Bottom-up traversal (semi-joins)

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

$R_{1} \ltimes R_{2}$

1. Bottom-up traversal (semi-joins)

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

R_{1}	A_{1}	A_{2}
1	20	

1. Bottom-up traversal (semi-joins)

Example

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

R_{1}	A_{1}	A_{2}
	1	20
	1	10

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)

Example

R_{1}	A_{1}
1	A_{2}
1	20
	10

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
110

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)

Yannakakis Algorithm

- Given acyclic conjunctive query represented by a join tree
- Two Phases
- Apply a full reducer based on join tree
- Semi-join reduction sweep from leaves to root
- Semi-join reduction sweep from root to leaves
- Use the join tree as the query plan and compute the joins bottom up

Example

R_{1}	A_{1}
1	A_{2}
1	20
	10

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
110

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)

Example

R_{1}	A_{1}
1	A_{2}
1	20
1	10

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
110

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)
3. Join bottom-up

$$
\begin{aligned}
& R_{2}=R_{3} \bowtie R_{2} \\
& R_{2}=R_{4} \bowtie R_{2} \\
& R_{1}=R_{1} \bowtie R_{2}
\end{aligned}
$$

Property 3: query has an acyclic hypergraph

- A hypergraph for a natural join
- Node = attribute in query
- Hyperedge = relation
- Example 1: Triangle Query

- $Q(A, B, C) \leftarrow R(A, B), S(B, C), T(C, A)$
- Relation $R(A, B)$ is represented by the hyperedge $\{A, B\}$

- Relation $S(B, C)$ is represented by the hyperedge $\{B, C\}$
- This hypergraph is actually a graph, since the hyperedges are each pairs of nodes
- Example2
- $Q(A, B, C, D, E, F) \leftarrow R(A, E, F), S(A, B, C), T(C, D, E), U(A, C, E)$

Hypergraph construction a legacy of "The Universal Relation" war.

- Universal Relation: A concept where all relation schema would be removed and all data merged into a single table.
- Plausibility: compute cross products as needed, and fill in implausible combinations with NULLs
- Potential benefit: Obtain certain optimal properties that might not be achievable without removing certain input from a developer.

Hypergraph definition (cont')

- To define acyclic hypergraph, we need the notion of an "ear" in a hypergraph
- A hyperedge H is an ear if there is some other hyperedge G in the same hypergraph such that every node of H is either:
- Found only in H, or
- Also found in G
- We shall say that G consumes H

Ear in Hypergraph Examples

Hyperedge $H=\{A, E, F\}$ is an ear

Find ears in this hypergraph

- $G=\{\mathrm{A}, \mathrm{C}, \mathrm{E}\}$
- Node F is unique to H; it appears in no other hyperedge
- The other two nodes of $H(A$ and $E)$ are also members of G
- What about $\{A, B, C\},\{C, D, E\}$?

Check Cyclicity of Hypergraph: GYO Algorithm

- GYO Algorithm = a sequence of ear reductions
- An ear reduction = the elimination of one ear from the hypergraph, along with any nodes that appear only in that ear
- A hypergraph is acyclic = the output of GYO algorithm is empty
- i.e., all hyperedges can be removed by ear reductions
- Properties
- An ear, if not eliminated at one step, remains an ear after another ear is eliminated
- Hyperedge that was not an ear, can become an ear after another hyperedge is eliminated

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$
- Next, we pick $\{A, B, C\}$ and eliminate it

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$
- Next, we pick $\{A, B, C\}$ and eliminate it

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$
- Next, we pick $\{A, B, C\}$ and eliminate it

- $\{A, C, E\}$ now becomes an ear and eliminate it

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$
- Next, we pick $\{A, B, C\}$ and eliminate it

- $\{A, C, E\}$ now becomes an ear and eliminate it

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$
- Next, we pick $\{A, B, C\}$ and eliminate it

- $\{A, C, E\}$ now becomes an ear and eliminate it
- $\{C, D, E\}$ is the only left ear and eliminate it

Example

- $\{A, E, F\},\{A, B, C\},\{C, D, E\}$ are ears
- Pick one and eliminate it
- Suppose we pick $\{A, E, F\}$
- Next, we pick $\{A, B, C\}$ and eliminate it
- $\{A, C, E\}$ now becomes an ear and eliminate it
- $\{C, D, E\}$ is the only left ear and eliminate it
- Original hypergraph is acyclic

Example 2

- Pick an ear to remove

Example 2

- Pick an ear to remove
- No ear to remove \rightarrow hypergraph is cyclic

Example 3

- $Q\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \leftarrow R_{1}\left(A_{1}, A_{2}\right), R_{2}\left(A_{1}, A_{2}, A_{3}\right), R_{3}\left(A_{2}\right)$, $R_{4}\left(A_{1}, A_{2}, A_{4}\right)$

Sequence of ear reductions

- $\left\{A_{2}\right\}$
- $\left\{A_{1}, A_{2}\right\}$
- $\left\{A_{1}, A_{2}, A_{3}\right\}$
- $\left\{A_{1}, A_{2}, A_{4}\right\}$
Q is acyclic

Recap

- We have seen three properties for acyclic query

1. It has a join tree, or
2. It has a full reducer, or
3. Its hypergraph is acyclic

- We see how to construct a full reducer from a join tree
- Question: how to find a join tree for a query, if it exists?

Find a Join Tree

- We can construct a join tree during GYO algorithm. In addition to ear reduction, we follow additional steps:
- Tree nodes = hyperedges
- The children of a tree node H are all those hyperedges consumed by H
- Example
- $R(A, B, C), S(B, F), T(B, C, D), G(C, D, E), H(D, E, G)$

Join Tree 1

- Start to eliminate $\{A, B, C\}$

- Since $\{B, C, D\}$ consumes $\{A, B, C\}$, $\{B, C, D\}$ is the parent of $\{A, B, C\}$

Join Tree 1

- Start to eliminate $\{A, B, C\}$
- Since $\{B, C, D\}$ consumes $\{A, B, C\}$, $\{B, C, D\}$ is the parent of $\{A, B, C\}$
- Next, remove $\{B, F\}$, which is also consumed by $\{B, C, D\}$

Join Tree 1

- Start to eliminate $\{A, B, C\}$
- Since $\{B, C, D\}$ consumes $\{A, B, C\}$, $\{B, C, D\}$ is the parent of $\{A, B, C\}$
- Next, remove $\{B, F\}$, which is also consumed by $\{B, C, D\}$
- Remove $\{B, C, D\}$, which is consumed by $\{C, D, E\}$

Join Tree 1

- Start to eliminate $\{A, B, C\}$
- Since $\{B, C, D\}$ consumes $\{A, B, C\}$, $\{B, C, D\}$ is the parent of $\{A, B, C\}$
- Next, remove $\{B, F\}$, which is also consumed by $\{B, C, D\}$
- Remove $\{B, C, D\}$, which is consumed by $\{C, D, E\}$

- Remove $\{D, E, G\}$, which is consumed by $\{C, D, E\}$

Join Tree 2

- Start to eliminate $\{D, E, G\}$

- Since $\{C, D, E\}$ consumes $\{D, E, G\}$, $\{C, D, E\}$ is the parent of $\{D, E, G\}$

Join Tree 2

- Start to eliminate $\{D, E, G\}$

- Since $\{C, D, E\}$ consumes $\{D, E, G\}$, $\{C, D, E\}$ is the parent of $\{D, E, G\}$
- Remove $\{C, D, E\}$, which is consumed by $\{B, C, D\}$

Join Tree 2

- Start to eliminate $\{D, E, G\}$
- Since $\{C, D, E\}$ consumes $\{D, E, G\}$, $\{C, D, E\}$ is the parent of $\{D, E, G\}$
- Remove $\{C, D, E\}$, which is consumed by $\{B, C, D\}$
- Remove $\{B, C, D\}$, which is consumed by $\{A, B, C\}$

Join Tree 2

- Start to eliminate $\{D, E, G\}$
- Since $\{C, D, E\}$ consumes $\{D, E, G\}$, $\{C, D, E\}$ is the parent of $\{D, E, G\}$
- Remove $\{C, D, E\}$, which is consumed by $\{B, C, D\}$
- Remove $\{B, C, D\}$, which is consumed by $\{A, B, C\}$
- Remove $\{A, B, C\}$ and $\{B, F\}$ sequentially

Complexity Notation

- Standard O and Ω notation for time and memory complexity in the RAM model of computation
- Use \tilde{O}-notation (soft-O)
- Abstracts away polylog factors in input size that clutter formulas
- $O\left(n^{f(l)}+(\log n)^{f(l)} \cdot r\right)$ becomes $\tilde{O}\left(n^{f(l)}+r\right)$

Data Complexity

- Complexity in query grows in two dimensions:
- size of query (i.e., number of relations in a multi-way join query)
- database size (i.e., number of rows contained in each relation of the query)
- Data complexity: the query is fixed (i.e., the size of the query expression itself l as a constant), and the complexity is expressed in terms of the size of database
- Suppose the query Q size $|Q|$ is l, then $O\left(f(l) \cdot n^{f(l)}+(\log n)^{f(l)} \cdot r\right)$ with $f()$ denote some arbitrary computable function can be simplified to $O\left(n^{f(l)}+(\log n)^{f(l)} \cdot r\right)$

Lower Bound for Any Join Algorithm

- Join output result size cardinality: r
- Query size l (i.e., number of relations in join query)
- $\Omega(n+r)$ data complexity to compute any query
- The join algorithm has to read entire input at least once $\Omega(l n)$ (data complexity: $\Omega(n)$)
- The join algorithm has to output result $\Omega(l r)$ (data complexity: $\Omega(r)$)
- This the cost of concatenating tuples from l relations to form the final join result set
- Yannakakis algorithm amazingly matches the lower bound for acyclic CQs with data complexity $\tilde{O}(n+r)$

Yannakakis Algorithm

- Given acyclic conjunctive query represented by a join tree
- Two Phases
- Apply a full reducer based on join tree
- Semi-join reduction sweep from leaves to root
- Semi-join reduction sweep from root to leaves
- Use the join tree as the query plan and compute the joins bottom up

Example

R_{1}	A_{1}
1	A_{2}
1	20
	10

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
110

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)

Example

R_{1}	A_{1}
1	A_{2}
1	20
1	10

$Q=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{1}, A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{2}\right) \bowtie R_{4}\left(A_{1}, A_{2}, A_{4}\right)$
110

1. Bottom-up traversal (semi-joins)
2. Top-down traversal (semi-joins)
3. Join bottom-up

$$
\begin{aligned}
& R_{2}=R_{3} \bowtie R_{2} \\
& R_{2}=R_{4} \bowtie R_{2} \\
& R_{1}=R_{1} \bowtie R_{2}
\end{aligned}
$$

Yannakakis Algorithm Property

- Key Property
- No intermediate join result size can be larger than the final result size
- i.e., each join step can never shrink intermediate result size
- Why?
- Semi-join reduction removes dangling tuples between pair-wise relations
- Is it sufficient? No!
- We need connectedness condition from join tree to ensure all dangling tuples are removed by semi-join reductions

Importance of connectedness condition

- Suppose we have a database instance of \{N("Navy", 13), U("Navy"), E("Navy",17)\}
- Final join result: \emptyset

Yannakakis Algorithm Complexity

- Semi-join sweeps take $\widetilde{O}(n)$
- Recall $R \ltimes \mathrm{~S}=\pi_{\operatorname{attr}(R)}(R \bowtie S)$
- With sort-merge join, we can compute $R \ltimes \mathrm{~S}$ in $O(n \log n)=\tilde{O}(\mathrm{n})$
- There are $2 l-2$ pair-wise semi-join operation, $\tilde{O}((2 l-2) \mathrm{n})=\tilde{O}(\mathrm{n})$ in data complexity
- All intermediate results are of size $O(r) \mathrm{b} / \mathrm{c}$ key property
- Each join step has $O(n+r)$ input and $O(r)$ output, which can be computed in $\tilde{O}(n+r)$ by sort-merge join (l join steps but ignored in data complexity)
- In total, Yannakakis Algorithm takes $\tilde{O}(n+r)$

Worst-Case Optimal Join Algorithm

Zeyuan Hu

May 3rd, 2021

Recap

- Three properties for acyclic query

1. It has a join tree, or
2. It has a full reducer, or
3. Its hypergraph is acyclic

- How to construct a full reducer from a join tree
- Modify GYO algorithm to construct join tree
- Yannakakis algorithm can run in $\tilde{O}(n+r)$ for acyclic CQ

CQs with Cycles

-3-path: $Q_{3 p}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{4}\right)$
-3-cycle: $Q_{3 c}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{1}\right)$

What's Wrong with Cyclic CQ

- Essentially, we cannot find an acyclic query graph that meets connectedness condition
- \rightarrow intermediate results size can be larger than the final result size
- \rightarrow key property of Yannakakis Algorithm falls through
- Example
- 3-path: $Q_{3 p}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{4}\right)$
- 3-cycle: $Q_{3 c}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{1}\right)$

What's Wrong with Cyclic CQ (cont')

-3-path: $Q_{3 p}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{4}\right)$
-3-cycle: $Q_{3 c}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{1}\right)$

- Already semi-join-reduced input

Query Graph

What's Wrong with Cyclic CQ (cont')

Query Graph

- 3-path: $Q_{3 p}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{4}\right)$
- 3-cycle: $Q_{3 c}=R_{1}\left(A_{1}, A_{2}\right) \bowtie R_{2}\left(A_{2}, A_{3}\right) \bowtie R_{3}\left(A_{3}, A_{1}\right)$
- Already semi-join-reduced input
- $R_{1} \bowtie R_{2}$ produces n^{2} intermediate results
- Final output size: n^{2} for $Q_{3 p}$, but only n for $Q_{3 c}$

What's Wrong with Cyclic CQ (cont')

Query Graph

- Both queries have acyclic query graph
- In the right tree, A_{1} violates connectedness condition

$Q_{3 p}$	$R_{3}\left(A_{3}, A_{4}\right)$
$R_{2}\left(A_{2}, A_{3}\right)$	
	$R_{1}\left(A_{1}, A_{2}\right)$

$Q_{3 c}$	$R_{3}\left(A_{3}, A_{1}\right)$
$R_{2}\left(A_{2}, A_{3}\right)$	
	$R_{1}\left(A_{1}, A_{2}\right)$

- $Q_{3 p}$'s query graph is a join tree

Solutions for Cyclic CQ?

- Maybe we just need an algorithm that targets at Cyclic CQ?
- A result that is from ' 18 by Ngo et al shows that $\widetilde{0}(n+r)$ is unattainable for full CQ based on well-accepted complexity-theoretic assumptions (e.g., P != NP)

What Can Be Done?

- Two main ideas
- Worst-case Optimal Join Algorithms (WCOJA)
- Tree decompositions
- Tree decompositions
- Break down a cyclic CQ into query fragments called "bags"
- Evaluate each query fragment using WCOJA and materialize the result
- Connect bag results as a join tree and evaluate the whole query using Yannakakis algorithm
- We will focus on WCOJA

Theory of Computation Revisit

- Query evaluation problem is known to be NP-Complete
- No algorithm exists to evaluate any possible query correctly and runs in polynomial time
- Not a death sentence yet!
- NP-Complete \rightarrow algorithm cannot have all three properties
- General purpose. The algorithm accommodates all possible inputs of the computational problem
- Correct. For every input, the algorithm correctly solves the problem.
- Fast. For every input, the algorithm runs in polynomial time.
- Choose one to compromise - General Purpose \rightarrow Yannakakis Algorithm
- WCOJA chooses different to compromise - Fast

Query Evaluation Problem

- Given
- a full CQ of the form $q=R_{1}\left(\overline{A_{1}}\right) \bowtie R_{2}\left(\overline{A_{2}}\right) \bowtie \ldots \bowtie R_{m}\left(\overline{A_{m}}\right)$ where $\overline{A_{j}}$ is the attribute set of relation $R_{j}, j \in[m]$
- a database instance I on the schema $\left\{R_{1}, \ldots, R_{m}\right\}$
- Query evaluation problem is to compute $q(I)$
- $q(I)=$ a set of tuples \boldsymbol{t} over attribute set $U_{j \in[m]} A_{j}$ s.t. projection of \boldsymbol{t} onto the attributes $\overline{A_{j}}$ belongs to R_{j}, for each $j \in[m]$
- Join output result size cardinality: r
- r is database instance dependent
- Yannakakis Algorithm reaches $\tilde{O}(n+r)$

Optimal Worst-case Join Evaluation Problem

- An easier problem than query evaluation problem
- Instead of $\tilde{O}(n+r)$, hope to find a polynomial algorithm that can run $\tilde{O}\left(n+r_{W C}\right)$
- $r_{W C}=$ maximum possibly output size for the given size of the relations in q
- Let $\bar{N}=\left\{N_{1}, \ldots, N_{m}\right\}$ and let $I(\bar{N})$ be the set of database instances with $\left|R_{j}^{I}\right|=N_{j}$ for $j \in[m]$. Then, $r_{W C}={ }_{I \in I(\bar{N})}^{\sup }|q(I)|$
- i.e., supremum (maximum) of all possible r over $I(\bar{N})$
- Even database instance has the same size, the distribution of data can be different and thus we can get different join output size

AGM Bound

- Example:
- $Q(a, b, c) \leftarrow R(a, b), S(b, c), T(a, c)$
- How large is $r_{W C}$?
- Given the sizes of $|R|,|S|$, and $|T|$, what is the largest possible query result size r ?
- Solved by Aterias, Grohe, and Marx in '08
- We'll introduce intuition here

AGM Bound Intuition

- Given $Q(a, b, c) \leftarrow R(a, b), S(b, c), T(a, c)$ and $|R|=|S|=|T|=N$, what is the bound on the query result size?
- One bound is $O\left(N^{3}\right)$ because we have three-way join and each tuple can be part of final join result. Thus, we have a cartesian product.
- Can we do better? Yes! $O\left(N^{2}\right)$
- Observe that join of any two relations is an upper bound on r
- Because we have a triangle query, third relation imposes additional constraint on intermediate relation, which can at best not eliminate any tuples from intermediate relation.
- $R(a, b) \bowtie S(b, c)$ already gives tuples with attributes (a, b, c), introduce T can remove tuples

AGM Bound Intuition (cont')

- For $Q(a, b, c) \leftarrow R(a, b), S(b, c), T(a, c)$, AGM bound gives $O\left(N^{1.5}\right)$
- How? By generalizing the observation we have for Q using fractional edge cover
- Edge cover: a set of edges s.t. each vertex in graph G is an end of at least one edge
- AGM formulate a linear programming problem based on edge cover of hypergraph of Q. Solving such problem leads to the bound.

WCOJA (under graph model)

- We'll describe WCOJA in the context of graph model using graph pattern matching query (i.e., subgraph query)
- A match is a mapping from variables to constants such that when the mapping is applied to the given pattern, the result is, roughly speaking, contained within the original graph (i.e., subgraph).
- Focus on triangle query
- $Q(a, b, c) \leftarrow R(a, b), S(b, c), T(a, c)$
- In Cypher syntax
- match (a)-[:TO]->(b)-[:TO]->(c)-[:TO]->(a) return distinct a, b, c

Relational View of Subgraph Queries

Edges	
Vi	Vj
A	B
D	B
B	C

- We have seen in Cypher that subgraph query = multi-way join query
- Suppose we use Edges relation to store the input graph G
- Edges relation contains every directed edges in G
- Query to find all directed triangles in G
- $Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow E d g e s\left(a_{1}, a_{2}\right)$, Edges $\left(a_{2}, a_{3}\right)$, Edges $\left(a_{3}, a_{1}\right)$

Evaluate Triangle Query: Traditional Approach

- Traditional Approach
- Treat subgraph query as relational query
- Evaluate the query using a sequence of binary joins
- "Edge-at-a-time" approach
- We have seen because of break of connectedness condition, intermediate results can be greater than final result
- From acyclicity, you might sense some connection between query representation and query processing algorithm
- Join tree (loosely, query graph) \rightarrow pair-wise binary joins (Yannakakis)
- Hypergraph \rightarrow vertex-at-a-time approach

Generic Join (GJ) as a WCOJA

GJ consists of the following three high-level ingredients

- Global Attribute Ordering
- GJ first orders the attributes. For example, we assume the orders a_{1}, \ldots, a_{m}
- Extension Indices
- Prefix j-tuple $=$ any fixed values of the first $j<m$ attributes
- For each R_{i} and j-tuple p only some values for attribute a_{j+1} exist in R_{i}
- Extension index Ext t_{j}^{i} map each j-tuple p to values of a_{j+1} matching p in R_{i}
- Ext $_{j}{ }^{i}:\left(p=\left(a_{1}, \ldots, a_{j}\right)\right) \rightarrow\left\{a_{j+1}\right\}$
- Each relation has its own extension index
- Such index needs to have some certain properties to enable GJ reaching $\tilde{O}\left(n+r_{W C}\right)$

Generic Join (GJ) as a WCOJA (cont')

- Prefix Extension Stages

- GJ iteratively computes intermediate results P_{1}, \ldots, P_{m}
- $P_{j}=$ result of Q when each relation is restricted to the first j attributes in the global order
- GJ starts from the singleton relation P_{0} with no attributes
- P_{m} is the final join result for Q
- GJ determines P_{j+1} from P_{j} using the extension indices
- For each j-tuple $p \in P_{j}$, GJ first intersects $E x t_{j}^{i}$ of each relation R_{i} containing a_{j+1}
- The result of intersection is added to P_{j+1}
- Intersection is performed from the smallest $E x t_{j}^{i}$ to ensure algorithm runtime bound

Generic Join (GJ) Pseudocode

$1 P_{0}=\{ \}$
2 for ($j=1$... m):
3
4 for ($p \in P_{j-1}$):
$5 \quad / / \cap$ below is performed starting from smallest $E x t_{j}^{i}(p)$
6

$$
e x t_{p}=\cap E x t_{j}^{i}(p)
$$

$$
P_{j}=P_{j} \cup e x t_{p}
$$

Example

- $Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow R_{1}\left(a_{1}, a_{2}\right), R_{2}\left(a_{2}, a_{3}\right), R_{3}\left(a_{3}, a_{1}\right)$
- R_{1}, R_{2}, R_{3} are all $E d g e s$ relation

Example

```
P
for ( }j=1...m)
    P
    for ( }p\in\mp@subsup{P}{j-1}{}\mathrm{ )
        // \cap below is performed starting from smallest Ext }\mp@subsup{}{j}{i}(p
        extp
        P
```

- The global attribute ordering is a_{1}, a_{2}, a_{3}

$$
Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow R_{1}\left(a_{1}, a_{2}\right), R_{2}\left(a_{2}, a_{3}\right), R_{3}\left(a_{3}, a_{1}\right)
$$

- GJ next computes $P_{1} \quad Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow R_{1}\left(a_{1}, a_{2}\right), R_{2}\left(a_{2}, a_{3}\right), R_{3}\left(a_{3}, a_{1}\right)$
- There is only one tuple in P_{0}, which is empty
- Only R_{1} and R_{3} contain a_{1}
- $E x t_{0}^{1}=\{1,2,3,4,5,6,7\}$
- $E x t_{0}^{3}=\{1,6,7,8,9,10,11\}$
- $E x t_{0}^{1} \cap E x t_{0}^{3}=\{1,6,7\}$
- $\varepsilon \times\{1,6,7\}=\{(1),(6),(7)\}$
- $P_{1}=\{\quad\} \cup\{(1),(6),(7)\}=\{(1),(6),(7)\}$
- No more tuple left in P_{0}, done with P_{1}

Example

- $P_{1}=\{(1),(6),(7)\}$

```
P
for ( }j=1...m)
    P
    for ( }p\in\mp@subsup{P}{j-1}{}\mathrm{ ):
        // \cap below is performed starting from smallest Ext }\mp@subsup{}{j}{i}(p
        ext p}=\capEx\mp@subsup{t}{j}{2}(p
        P
```

- GJ next computes P_{2}
- R_{1} and R_{2} contain a_{2}
- Start with (1)
- $E x t_{1}^{1}=\{6\}$
- $E x t_{1}^{2}=\{1,2,3,4,5,6,7\}$
- $E x t_{1}^{1} \cap E x t_{1}^{2}=\{6\}$
- (1) $\times\{6\}=\{(1,6)\}$
- $P_{2}=\{ \} \cup\{(1,6)\}=\{(1,6)\}$
- More tuple left in P_{1}, continue

$$
Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow R_{1}\left(a_{1}, a_{2}\right), R_{2}\left(a_{2}, a_{3}\right), R_{3}\left(a_{3}, a_{1}\right)
$$

Example

- $P_{1}=\{(1),(6),(7)\}$

```
P
for ( }j=1...m)\mathrm{ ;
    P
    for ( }p\in\mp@subsup{P}{j-1}{}\mathrm{ ):
        // \cap below is performed starting from smallest Ext }\mp@subsup{}{j}{i}(p
        ext p}=\capEx\mp@subsup{t}{j}{2}(p
        P
```

- GJ next computes P_{2}
- R_{1} and R_{2} contain a_{2}
- Next, (6)
- Ext $_{1}^{1}=\{7,8,9,10,11\}$
- $E x t_{1}^{2}=\{1,2,3,4,5,6,7\}$
- $E x t_{1}^{1} \cap E x t_{1}^{2}=\{7\}$
- (6) $\times\{7\}=\{(6,7)\}$
- $P_{2}=\{(1,6)\} \cup\{(6,7)\}=\{(1,6),(6,7)\}$
- More tuple left in P_{1}, continue

$$
Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow R_{1}\left(a_{1}, a_{2}\right), R_{2}\left(a_{2}, a_{3}\right), R_{3}\left(a_{3}, a_{1}\right)
$$

Example

- $P_{1}=\{(1),(6),(7)\}$

```
P}={
for ( }j=1...m)
    P
    for ( }p\in\mp@subsup{P}{j-1}{}\mathrm{ ):
        // \cap below is performed starting from smallest Ext }\mp@subsup{}{j}{i}(p
        ext p}=\capEx\mp@subsup{t}{j}{2}(p
        P
```

- GJ next computes P_{2}
- R_{1} and R_{2} contain a_{2}
- Next, (7)
- $E x t_{1}^{1}=\{1\}$
- $E x t_{1}^{2}=\{1,2,3,4,5,6,7\}$
- $E x t_{1}^{1} \cap E x t_{1}^{2}=\{1\}$
- (7) $\times\{1\}=\{(7,1)\}$
- $P_{2}=\{(1,6),(6,7)\} \cup\{(7,1)\}=\{(1,6),(6,7),(7,1)\}$
- No more tuple left in P_{1}, done with P_{2}

Example

- $P_{2}=\{(1,6),(6,7),(7,1)\}$

```
P
for ( }j=1...m)\mathrm{ :
    P}={
    for ( }p\in\mp@subsup{P}{j-1}{}\mathrm{ ):
        // \cap below is performed starting from smallest Ext }\mp@subsup{}{j}{i}(p
        ext p}=\capEx\mp@subsup{t}{j}{2}(p
        P
```

- GJ next computes P_{3}
- R_{2} and R_{3} contain a_{3}
- First, $(1,6)$
- $E x t_{2}^{2}=\{7,8,9,10,11\}$
- $E x t_{2}^{3}=\{7\}$
- $E x t_{2}^{2} \cap E x t_{2}^{3}=\{7\}$
- (7) $\times\{(1,6)\}=\{(1,6,7)\}$
- $P_{3}=\{\quad\} \cup\{(1,6,7)\}=\{(1,6,7)\}$
- More tuple left in P_{2}, continue

$$
Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow R_{1}\left(a_{1}, a_{2}\right), R_{2}\left(a_{2}, a_{3}\right), R_{3}\left(a_{3}, a_{1}\right)
$$

Example

- $P_{2}=\{(1,6),(6,7),(7,1)\}$

```
P}={
for ( }j=1...m)
    P
    for ( }p\in\mp@subsup{P}{j-1}{}\mathrm{ ):
        // \cap below is performed starting from smallest Ext }\mp@subsup{}{j}{i}(p
        ext p}=\capEx\mp@subsup{t}{j}{2}(p
        P
```

- GJ next computes P_{3}
- R_{2} and R_{3} contain a_{3}
- Next, $(6,7)$
- $E x t_{2}^{2}=\{1\}$
- $E x t_{2}^{3}=\{1,2,3,4,5\}$
- $E x t_{2}^{2} \cap E x t_{2}^{3}=\{1\}$
- (1) $\times\{(6,7)\}=\{(6,7,1)\}$
- $P_{3}=\{(1,6,7)\} \cup\{(6,7,1)\}=\{(1,6,7)$,
- More tuple left in P_{2}, continue

$$
Q\left(a_{1}, a_{2}, a_{3}\right) \leftarrow R_{1}\left(a_{1}, a_{2}\right), R_{2}\left(a_{2}, a_{3}\right), R_{3}\left(a_{3}, a_{1}\right)
$$

Example

```
P}={
for ( }j=1...m)\mathrm{ ;
    P
    for ( }p\in\mp@subsup{P}{j-1}{}\mathrm{ ):
        // \cap below is performed starting from smallest Ext }\mp@subsup{}{j}{i}(p
        ext p}=\capEx\mp@subsup{t}{j}{2}(p
        P
```

- GJ next computes P_{3}
- R_{2} and R_{3} contain a_{3}
- Next, $(7,1)$
- $E x t_{2}^{2}=\{6\}$
- $E x t_{2}^{3}=\{6\}$
- $E x t_{2}^{2} \cap E x t_{2}^{3}=\{6\}$
- (6) $\times\{(7,1)\}=\{(7,1,6)\}$
- $P_{3}=\{(1,6,7),(6,7,1)\} \cup\{(7,1,6)\}=\{(1,6,7),(6,7,1),(7,1,6)\}$
- No more tuple left in P_{2}, done with P_{3}

Final Remarks

- In our example, since each attribute in the ordering is contained in two relations, $\cap E x t_{j}^{i}$ from the smallest doesn't apply but be aware
- Interested in time complexity proof (non-trivial), see "Skew strikes back: New developments in the theory of join algorithms" by Ngo et.al in 2014

