
Skip

Reviewer #3

View Reviews
Paper ID
701

Paper Title
TreeTracker Join: Killing Two Birds With One Stone

Track Name
Research -> September 2023

Questions
1. Overall Rating
Weak Reject

2. Relevant for PVLDB
Yes

3. Are there specific revisions that could raise your overall rating?
No

5. Paper Summary. In one solid paragraph, describe what is being proposed and in what context, and briefly
justify your overall recommendation.
This paper studies how to smartly implement the Yannakakis algorithm for acyclic joins by integrating the join and
semi-join into a single physical operator. It also shows that the theoretical optimality of Yannakakis is preserved.
Moreover, it runs experiments to demonstrate its practical performance.

6. Three (or more) strong points about the paper. Please be precise and explicit; clearly explain the value
and nature of the contribution.
S1. The problem is a very interesting and well motivated problem.
S2. It involves some interesting ideas about how to merge the bottom-up semi-join phase along the join tree and
then a top-down retrieve join phase.
S3. This paper also shows strong theoretical guarantees on the method.

7. Three (or more) weak points about the paper. Please clearly indicate whether the paper has any
mistakes, missing related work, or results that cannot be considered a contribution; write it so that the
authors can understand what is seen as negative.
W1. The whole presentation requires significant improvement, which in some sense prevents readers from verifying
the correctness of details, and appreciating the technical contribution. Please see 13.

W2. There are many works on this topic, such as semi-join methods and filter methods. But in the experimental
study, this paper also compares their method with the baseline which uses hash join. It is unclear how the method
proposed compares with other existing methods. Please also compare with the following work:
https://browse.arxiv.org/pdf/2307.15255.pdf

W3. Section 2 is to motivate the TTJ operator, but there is no other improvement we can get from binary join,
which may not be a good example to . Computing the nest-loop already takes O(n^2) time, and the semi-join can
be computed at the same time for free. But it is unclear how this will bring any benefit to multiway acyclic joins.

In algorithm 2.1, it is unclear to me about the ng (short for no-good list). As the input relation T does not contain
duplicate tuples, every tuple t in T is distinct. Then, the if-condition at line 4 is always not satisfied, since no same

Conference Management Toolkit - View review https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Re...

1 of 6 10/16/23, 11:48 PM

https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Reviews/701#mainContentContainer
https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Reviews/701#mainContentContainer
https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Reviews/701#mainContentContainer
https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Reviews/701#mainContentContainer

tuple has been added to ng before. Moreover, in the main text, it says that “If t is known to not join with any s in S,
the inner loop is skipped”. It does not make sense for this example, since all tuples t are distinct. How to know
whether t can be joined with any s in S in advance for the binary join?

W4. W4. It claims that their reset-and-remove strategy can lead to an algorithm with O(n+r) data complexity. But
this seems just a simple upward semi-join phase + join on the fly. The 3-way join example T(x), S(x,y,z) B(z) and
4-way join example T(x), S(x,y,z), B(z), R(y,z) are just two special, both of which just degenerate to semi-join
between S and remaining relations. In these degenerated cases, the number of dangling intermediate join results is
always bounded by |S|, and once an input tuple from S passes the filter, it can be outputted as the final join result.
They are not general enough to illustrate.

8. Novelty. Please give a high novelty rating to papers on new topics, opening new fields, or proposing truly
new ideas; give medium ratings to "delta" papers and those on well-known topics but still with some
valuable contribution. (Note: For SDS and EA&B papers, novelty does not need to be in the form of new
algorithms or models. Instead, novelty for SDS can be new understanding of issues related to data science
technologies in the real world. Novelty for EA&B can be new insights into the strengths and weaknesses of
existing methods or new ways to evaluate existing methods.)
With some new ideas

9. Significance
Improvement over existing work

10. Technical Depth and Quality of Content
Syntactically complete but with limited contribution

11. Experiments. (Reminder: EA&B papers should have a higher bar for experiments.)
OK, but certain claims are not covered by the experiments

12. Presentation
Sub-standard: would require heavy rewrite

13. Detailed Evaluation (Contribution, Pros/Cons, Errors). Please number each point and provide as
constructive feedback as possible.
The notion of join query, acyclicity and all other definitions related to the join tree are not clearly, formally and
precisely defined. For example:

A join tree is a tree where the nodes represent relations => A join tree is a tree where there is a one-to-one
correspondence between relations and nodes

What does sort mean? Intuitively, it is a function that sort tuples in a relation in some ordering. But here, it is used
for extracting attributes from a relation, which is quite counterintuitive.

The data complexity assumes the size of a query is a constant, not just a fixed parameter.

In relational algebra, the antijoin is well defined. Why does it introduce some other notations to denote R - (R semi-
join S).

The structure in Section 3 is very messy. I suggest separating the background for conjunctive queries (acyclicity)
and complexity measurement as the problem definition, then go to different notions in join tree, the left-deep query
plan and its connection with join tree. All implementations regarding iterators can be moved to experiment.

There are many orderings defined but some of which are very confusing and unnecessary. For example, the join
ordering on the join tree can be simplified as any top-to-down and left-to-right traversal of the join tree. Also,
“W.l.o.g., we assume relations are labeled top-down in the same fashion as join operators R1 through Rk” In Figure

Conference Management Toolkit - View review https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Re...

2 of 6 10/16/23, 11:48 PM

Reviewer #4

2 (a), all relations are labeled top-down Rk through R1. It is unclear which is the correct ordering for relations.

What is the difference between Ju and Ju^*? I suppose one should be the projection of join results onto attributes
that appear in any relations with index larger than u, and the other should be the result computed by the left-deep
tree. From the current description, there seems to be no difference.

What does this mean? “For a tuple 𝑡 of 𝑅(𝑎, 𝑏), we use an unnamed perspective (e.g., 𝑅(1, 2)) to represent 𝑡 [3].”
tuple t has value 1 in attribute a and 2 in attribute b?

How to parse the following sentence? “TTJ assumes for a given relation 𝑅𝑖 in PQ, its parent 𝑅𝑗 in TQ is to the left
of 𝑅𝑖 , i.e., 𝑗 > 𝑖.” In Figure 2, for relation R2 in PQ and its parent in TQ is R3. What does it mean that R3 is to the
left of R2?

It is unclear what the two inputs and three outputs for the TTJ join operator. Algorithm 5.1 is hard to parse.
Couldyou use plain language to explain the input, output, and steps of the procedure? The usage of class, void,
open, get Next(), next, open() are very messy. It is helpful for readers to focus on the algorithmic idea here and go
into all these low-level details in the experiment section.

Questions
1. Overall Rating
Weak Reject

2. Relevant for PVLDB
Yes

3. Are there specific revisions that could raise your overall rating?
Yes

5. Paper Summary. In one solid paragraph, describe what is being proposed and in what context, and briefly
justify your overall recommendation.

The paper presents addresses the efficient execution of conjunctive queries using a variant of the hash join. The
idea is to propagate
information about non-matching rows immediately when this is detected. The paper carefully proofs the
correctness of the algorithm and
its optimility w.r.t. to the data complexity. The experiments show the potential improvements compared to using
hash joins. However,
the paper does not compare against other related methods, e.g. using Bloom filters or simijoin reduction. Being
limited to conjunctive queries
the practival relevance of the work remains unclear.

6. Three (or more) strong points about the paper. Please be precise and explicit; clearly explain the value
and nature of the contribution.

S1: The correctness and optimality of the algorithm is analyzed at great detail which also helps to explain the
algorithm of the TreeTrackerJoin.
S2: The experimental results show the potential of this operator in improving query performance.

7. Three (or more) weak points about the paper. Please clearly indicate whether the paper has any
mistakes, missing related work, or results that cannot be considered a contribution; write it so that the

Conference Management Toolkit - View review https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Re...

3 of 6 10/16/23, 11:48 PM

authors can understand what is seen as negative.

W1: The paper focuses on conjunctive queries without discussing how the ideas could be applied to a more
comprehensive set of relational operators, e.g. outerjoins, group-by or sorting. This limits the practical relevance of
the paper.
W2: Modern query engines use vectorized query processing to exploit the capabilties of modern hardware while
the algoritm seems limited to a row-level iterator model of evaluation.
It would be interesting to understand how this limitation would affect the performance analysis of the paper.
W3: I would appreciate an analysis if and how communicating the "non-good" tuples contributes to the
performance numbers, i.e. can we quantify the performance improvements relative to the detected non-matching
rows?
W4: I wonder to what extent the TreeTrackerJoin could contribute to robust query processing, i.e. would sub-
optimial plans still have close to optimal performance?
W5: Related to W4, I would appreciate an experimental analysis to other related efforts (mentioned in the paper),
e.g. use of bloom filters, systems using the Yannakakis algoithms or worst-case optimal joins.

8. Novelty. Please give a high novelty rating to papers on new topics, opening new fields, or proposing truly
new ideas; give medium ratings to "delta" papers and those on well-known topics but still with some
valuable contribution. (Note: For SDS and EA&B papers, novelty does not need to be in the form of new
algorithms or models. Instead, novelty for SDS can be new understanding of issues related to data science
technologies in the real world. Novelty for EA&B can be new insights into the strengths and weaknesses of
existing methods or new ways to evaluate existing methods.)
With some new ideas

9. Significance
Improvement over existing work

10. Technical Depth and Quality of Content
Solid work

11. Experiments. (Reminder: EA&B papers should have a higher bar for experiments.)
OK, but certain claims are not covered by the experiments

12. Presentation
Reasonable: improvements needed

13. Detailed Evaluation (Contribution, Pros/Cons, Errors). Please number each point and provide as
constructive feedback as possible.

D1: Keeping track of the "non-good" tuples can add significant memory overhead - in the worst case most rows of
a table are tracked. An experimental analysis of this aspect would improve the paper.
D2: In section 2, it would be good to mention the names of the operators for semijoin and antijoin when their
symbols are used first.
D3: The paper would benefit from careful proof-reading of the language. Especially articles are missing in various
cases. Some examples are:
- page 3: an article is missing in "TTJ modifies in-memory hash table"
- page 3: an article is missing in "the algorithm has to read input relations"
- an article is missing in "while deciding [the] oder for TTJ ... [18] with [the] TTK cost model"
etc.
- page 4: please fix the typo: "pseudocode" should be "pseudo code"
- page 4: the subject is missing in "when refer to method generically"
etc.

Conference Management Toolkit - View review https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Re...

4 of 6 10/16/23, 11:48 PM

Reviewer #5

Questions
1. Overall Rating
Reject

2. Relevant for PVLDB
Yes

3. Are there specific revisions that could raise your overall rating?
No

5. Paper Summary. In one solid paragraph, describe what is being proposed and in what context, and briefly
justify your overall recommendation.
This paper addresses the classic problem of relational k-way joins and general conjunctive (SPJ) queries. The
authors present the TreeTrackerJoin which builds on top of a hash-join approach. In principle the idea is to detect
and remove dangling tuples during the execution of the join instead of before as previous work does.

The paper conducts an extensive analysis, both practical and theoretical, to investigate the setting of TTJ, e.g.,
under which query plan is optimal.

Despite addressing an important problem with clear practical impact, I cannot recommend this work for
publication.

6. Three (or more) strong points about the paper. Please be precise and explicit; clearly explain the value
and nature of the contribution.
(S1) Important problem

(S2) Extensive analysis, both theoretical and practical

7. Three (or more) weak points about the paper. Please clearly indicate whether the paper has any
mistakes, missing related work, or results that cannot be considered a contribution; write it so that the
authors can understand what is seen as negative.
(W1) Contribution and novelty

(W2) Presentation and writing need significant improvement

(W3) Lack related work

(W4) Experimental analysis

8. Novelty. Please give a high novelty rating to papers on new topics, opening new fields, or proposing truly
new ideas; give medium ratings to "delta" papers and those on well-known topics but still with some
valuable contribution. (Note: For SDS and EA&B papers, novelty does not need to be in the form of new
algorithms or models. Instead, novelty for SDS can be new understanding of issues related to data science
technologies in the real world. Novelty for EA&B can be new insights into the strengths and weaknesses of
existing methods or new ways to evaluate existing methods.)
Novelty unclear

9. Significance
Improvement over existing work

10. Technical Depth and Quality of Content
Syntactically complete but with limited contribution

Conference Management Toolkit - View review https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Re...

5 of 6 10/16/23, 11:48 PM

11. Experiments. (Reminder: EA&B papers should have a higher bar for experiments.)
Obscure, not really sure what is going on and what the experiments show

12. Presentation
Sub-standard: would require heavy rewrite

13. Detailed Evaluation (Contribution, Pros/Cons, Errors). Please number each point and provide as
constructive feedback as possible.
(1) My first concern about this work is related to its contributions and novelty; to be honest degree of both is
unclear.
Essentially, TTJ builds on top of a straightforward hash-join which is extended with a deleteTR function to remove
the dangling rows during the join process. The authors claim that the latter is a novel aspect but there is no
extensive discussion of the related work to further inform the reader on it.

(2) As mentioned above, the related work is not extensively discussed. In fact, there is no related work section in
the paper and therefore it's hard for the reader to position the paper in the existing literature and identify the
competitive methods.

(3) The presentation and the writing need significant improvement.
- The paper is packed with technical details. Essentially, the methodology is presented very technically; even the
pseudocode resembles actual code.
- The paper is packed with theorems and lemmas (15 in total). I understand the importance of the theoretical
analysis but would be possible to move some of these in an appendix or at least discuss them in a less formal
way.
- The notation introduced in Section 3 is hard to follow; a table summarising it would have very helpful.

(4) The experimental analysis also needs significant improvement.
- First of all, the authors consider only hash join (HJ) as a competitor to their TTJ.
- Very few experiments were included in the analysis using only two benchmarks JOB and TPC-H. How about real
data?
Also, there are parameters which affect the performance of each solution, e.g., the number of join operators in the
query plan, their selectivity, the cardinality of the inputs etc. Synthetic dataset were these parameters are
controlled would provide a better insight for the performance gains of the proposed TTJ.

Conference Management Toolkit - View review https://cmt3.research.microsoft.com/PVLDBv17_2024/Submission/Re...

6 of 6 10/16/23, 11:48 PM

