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ABSTRACT

Many important query processing methods proactively use semi-
joins or semijoin-like filters to delete dangling tuples, i.e., tuples
that do not appear in the final query result. Semijoin methods can
achieve formal optimality but have high upfront cost in practice.
Filter methods reduce the cost but lose the optimality guarantee.

We propose a new join algorithm, TreeTracker Join (TTJ), that
achieves the data complexity optimality for acyclic conjunctive
queries (ACQs) without semijoins or semijoin-like filters. T TJ lever-
ages join failure events, where a tuple from one of the relations of
a binary join operator fails to match any tuples from the other re-
lation. TTJ starts join evaluation immediately and when join fails,
TTJ identifies the tuple as dangling and prevents it from further
consideration in the execution of the query. The design of TTJ ex-
ploits the connection between query evaluation and constraint sat-
isfaction problem (CSP) by treating a join tree of an ACQ as a con-
straint network and the query evaluation as a CSP search problem.
TTJ is a direct extension of a CSP algorithm, TreeTracker, that
embodies two search techniques backjumping and no-good. We es-
tablish that join tree and plan can be constructed from each other
in order to incorporate the search techniques into physical opera-
tors in the iterator form. We compare T TJ with hash-join, a clas-
sic semijoin method: Yannakakis’s algorithm, and two contempo-
rary filter methods: Predicate Transfer and Lookahead Information
Passing. Favorable empirical results are developed using standard
query benchmarks: JOB, TPC-H, and SSB.

CCS CONCEPTS

« Information systems — Join algorithms.

KEYWORDS

optimal join algorithm, join operator, acyclic conjunctive queries,
join ordering, sideway information passing
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1 INTRODUCTION

Removing dangling tuples, tuples that do not contribute to the fi-
nal output of a query [26], has been central in improving both
formal and practical join query execution speed [9, 13, 18, 22, 23,
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25, 30, 33, 36, 43, 45, 49, 53, 55, 57, 67-69, 71]. However, a trade-
off exists as the cost of dangling tuples removal may offset the
join performance improvement. Yannakakis’s algorithm (YA) is a
representative of semijoin methods [13, 18, 57, 67-69] for acyclic
conjunctive queries (ACQs) evaluation. YA executes a sequence
of semijoins called full reducer (Fq) as a preprocessing step and
removes the dangling tuples from the input relations completely
before join evaluation [13, 67]. As a result, YA provides optimal
data complexity guarantee. However, in practice, using semijoins
introduces high upfront costs [29, 57, 62]. On the other hand, filter
methods [22, 23, 25, 30, 32, 33, 36, 45, 49, 53, 55, 71] usually trade
off optimal data complexity gurantee for reduction of dangling tu-
ple removal cost by replacing semijoins with semijoin-like filter
structures, e.g., Bloom filters [15] and removing dangling tuples
by proactively checking base relations against filters. Efficient fil-
ter implementation allows these methods to work well in practice.
Both semijoin and filter methods are eager approaches because
they preemptively remove dangling tuples, aiming to prevent pos-
sible join failures (events where a tuple from one of the relations of
a binary join operator fails to match any tuples from the other re-
lation) from happening. Those methods rely on the efficient amor-
tization of the upfront cost, incurred by dangling tuple removal,
over the resulting join time reduction. If few dangling tuples exist,
the upfront cost of the methods cannot be sufficiently amortized
and the cost of dangling tuple reduction is more likely to outweigh
its benefits. In an extreme case where no dangling tuples exist in
the input relations, dangling tuple removal operations induce ex-
tra costs with no benefits. Common existing mitigations of this
problem rely on heuristics such as disabling the filters based on se-
lectivity estimation of the underlying relations [22, 25, 55], which
require workload-specific assessment on the trade-off between the
execution cost and the potential speed improvement.

TreeTracker Join (TTJ) is the first join algorithm that lever-
ages join failure events to remove dangling tuples with minimal
overhead while maintaining the optimal data complexity for ACQs.
TTJ is a lazy approach. The signature feature of TTJ is to start
join evaluation immediately without any preprocessing and per-
form two additional operations only on join failure: (1) identify-
ing which tuple from which relation (guilty relation) causes a join
failure at another relation (detection relation), and (2) subsequently
removing the tuple from the guilty relation. The goal of TTJ is
to remove a sufficient number of dangling tuples in the minimal
amount of time to achieve a satisfactory level of join time reduc-
tion. Comparing with YA, TTJ does not aim to remove all dangling
tuples, but the optimal guarantee still holds.

Fundamentally, T T J exploits the equivalence between constraint
satisfaction problem (CSP) and conjunctive query processing [16,
39] by treating query evaluation as a search problem. The intuition
is that join tree 7q, the graph representation of ACQ, can be inter-
preted from CSP perspective as a constraint network. For example,
consider a binary join between A(x, y) and B(y, z), which is acyclic
and its 7gq is A — B. Interpreting 7q as a constraint network, we
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view both A and B as variables. Tuples in each relation are pos-
sible assignments to each variable. Our goal is to find all possible
assignments to A and B such that constraint A.y = B.y is satis-
fied. 7q, when viewed as a constraint network, can be evaluated
using search techniques such as backjumping and no-good, which
are commonly-used in both database [6, 19, 34] and Al commu-
nities [10, 21, 27]. TTJ is a direct extension of a CSP algorithm,
TreeTracker [10], that embodies the aforementioned two search
techniques. We show 7 and query plan can be easily constructed
from each other. Thus, the aforementioned search techniques can
be integrated into a query plan. In this paper, we directly encode
the two search techniques into physical operators in iterator inter-
face [26], utilizing the form of sideways information passing (SIP).
To help understand how TTJ works, we illustrate the CSP view of
query evaluation, and the unique features of T TJ using Example 1.

ExamprLE 1. Consider a join of 4 relations T(x), S(x, y, z), B(z),
and R(y, z) with the database instance shown in Figure 1. All four
plots show how the same two dangling tuples from the database
instance are identified and removed by different algorithms.

(a) presents how evaluating a 7¢g can be viewed as solving a CSP
by recursively assigning variables one by one until all variables are
successfully assigned. The evaluation starts to assign T with a tu-
ple from its instance T (red) and then moves on to S (moment M;).
Since S(red, 1, 2) agrees with T (red) on attribute x, S(red, 1, 2) can
be assigned to S. This assignment is the same as obtaining a join
result (red, 1,2) for T<S. The process continues to B and assigns
B with B(2). R(3,2) cannot be assigned to R given all the previous
assignments because (y,z) = (3,2) in R(3,2) but (y,z) = (1,2)
in S(red, 1,2). Since no other tuples from R can be assigned, the
search process has to backtrack to B to try a different value given
the existing assignments on T and S. Since no other tuples from
B can be assigned, the search backtracks to S at M. The same be-
havior repeats at S and the process further backtracks to T at Ms.
Then, T is assigned with the next tuple T (blue) and the process
continues. When all variables are successfully assigned, we obtain
one solution to the CSP by joining all the current assignments to

Anon.

T
poeed:
blue
x|yl 2z
L e
blue] 3 | 2

(c) (d)

Figure 1: Illustration of the identification and removal of two dangling tuples by different algorithms: (a) join evaluation
viewed as solving a CSP; (b) TTJ using CSP search techniques (backjumping and no-good) on the join tree 74; (c) Yannakakis’s
algorithm (YA); and (d) TTJ packed into physical operators on a left-deep query plan. We explain the details in Example 1. M; are
execution moments referenced throughout the paper.

the variables. The solution to the CSP is exactly a join result to the
query. The search process for the next solution continues until all
the solutions to the CSP are found.

(b) shows how TTJ improves the solving process in (a) with
the two search techniques and removes two dangling tuples. The
process (My) is identical to (a) until it fails to assign a tuple to R.
Unlike (a) where the process backtracks to the previously assigned
variable B, TTJ directly backjumps to S (Ms), the parent of Rin 7.
Relations skipped due to backjumping are called backjumped rela-
tions, e.g., B. Once the search backjumps to S, the current assign-
ment to S is marked as no-good, i.e., S(red, 1, 2) is a dangling tuple.
TTJ removes S(red, 1, 2) from the instance of S and the removed
tuple will not be considered again for future assignments. Since no
other tuples from S can be assigned, backjump happens again (M)
and T (red) is removed.

(c) highlights how YA removes the same dangling tuplesas TTJ
in a different way. YA executes the full reducer Fg, a sequence of
semijoins, before join starts: At M7, S = SP<R and S(red, 1,2) is
removed. Then, at Mg, T ><S’ and T(red) is removed. Unlike TTJ
that removes dangling tuples while performing join, YA removes
all dangling tuples before join starts.

(d) illustrates the same join process as (b) on a left-deep query
plan using demand-driven pipelining with operators implemented
in iterator interface consisting of open() and getNext (). The eval-
uation starts with recursive open() calls on the join operators and
builds hash tables on S, B, and R. To obtain the first query result,
the join process first calls pa;’s getNext (), which calls its left child
>z’s getNext (), and such pattern repeats until the left most rela-
tion T’s getNext() is called and returns T(red) (Mo). 3 probes
into Hs, the hash table on S, and finds a matching tuple S(red, 1, 2).
The joined result (red, 1,2) is returned to »az. Then, the match-
ing tuple B(2) from Hpg joins with (red, 1,2) and the joined re-
sult (red, 1,2) is returned to 1. Probing into hash tables to find
a matching tuple is the same as assigning a tuple to a variable in
CSP. No tuples from Hp, join with (red, 1, 2) (Mj); hence, join fails
at R and R is the detection relation. Thus, T TJ performs backjump-
ing making additional method calls to reset the evaluation flow to
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S, the guilty relation, because S is the parent of R in 7. Subse-
quently, S(red, 1, 2) is removed from Hs (M), which is logically
equivalent to removing the tuple from the instance of S. Since no
tuples from S join with T(red), T TJ backjumps to T and implicitly
removes T(red) by adding it to a no-good list ng (M;2). The no-
good list will be used in future steps to filter out dangling tuples
from T.

The rest of the paper fills the missing details from Example 1
such as how to construct 7 from a query plan (and vice versa),
how TTJ packs backjumping and no-good techniques into a phys-
ical operator in the form of SIP, and formally show the correctness
and optimality guarantee of TTJ. In summary, this paper makes
the following contributions:

(1) We use CSP search techniques to design a lazy join algo-
rithm TTJ that removes dangling tuples if they cause join
failures (§ 3).

(2) We propose an algorithm to construct join tree from query
plan, and vice versa (§ 3.1).

(3) We formally show TTJ works correctly and runs optimally
in data complexity for ACQ (§ 4).

(4) We deduce a general condition called clean state that en-
ables optimal evaluation of ACQ while permitting the ex-
istence of dangling tuples (§ 4).

(5) We conduct extensive experiments to compare TTJ with
four baseline algorithms on three benchmarks and perform
detailed analysis to understand the features of TTJ (§ 5).

2 PRELIMINARIES

We review related background on acyclic conjunctive query evalu-
ation, formulate the problem, and summarize the notation used in
this paper .

2.1 Acyclic Conjunctive Query Evaluation
We consider a relational database consisting of k relations under

bag semantics. A full conjunctive query (CQ) is a natural join of k
relations:

Q(a) = Ry(a1)™Ry(az) ... xR (ay) (1)

For eachrelation R; (a;), a; is a tuple of variables called attributes.

We define attr(R;) = a;. Q is full because a includes all the at-
tributes appearing in the relations, i.e., attr(Q) = Uﬁ:l attr(Ry).

Query graph. The literature contains a number of different graph
representations of Q. The most common choice is hypergraph [28,
46]. To better emphasize the connection between CSP and query
evaluation, we use an equivalent [21] alternative, query graph [17]
(also known as join graph [66]}, dual constraint graph [21], or com-
plete intersection graph [42]). The query graph of Q is a graph where
there is a bijection between nodes in the graph and relations in
the query. Two nodes v1, v2 are adjacent if their corresponding re-
lations Ry, Ry satisfy attr(Ry) N atir(Ry) # 0. For clarity, we use
the relations to label the nodes in the query graph.

Join Tree. Q is acyclic if its query graph contains a spanning
tree called join tree 7q, which satisfies the connectedness property
[11, 21]: for each pair of distinct nodes R;, R; in the tree and for
every common attribute a between R; and Rj, every relation on

!Join graph is defined in CSP and database theory with a slightly different definition: a
spanning subgraph of query graph that satisfies the connectedness property [21, 42].
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the path between R; and R; contains a. For the rest of the paper,
we assume Q is a full acyclic CQ (ACQ). For ACQ, one can find
a maximum-weight spanning tree from the query graph, where
the weight of an edge (R;, R;j) is |attr(R;) N attr(R;)|. Such tree
is guaranteed to be a join tree [42]. A rooted join tree is a join tree
converted into a directed tree with one of the nodes chosen to be
the root. We assume 7g is a rooted join tree.

Query Plan. Physical evaluation of ACQ is commonly done us-
ing query plan. A query plan is a binary tree, where each internal
node is a join operator i, and each leaf node is a scan operator
(we use table scan by default) associated with one of the relations
Ri(a;) in Query (1). The plan is a left-deep query plan, or left-deep
plan, if the right child of every join operator is a leaf node [51]. For
example, ((T>S)>B)R in Figure 2 (c) is a left-deep plan. In the
paper, we focus on the left-deep plan and expand to the other plan
shape in [2]. As a shorthand [64], we represent a left-deep plan,
labeled from bottom to top, (...((RgMRg_1)™Rk_5)...)™R; as
[Res Ri_1,. .., Ri].

ExampLE 2. Consider an ACQ

Q(x,w,z) = T(x)=S(x,y, z)=<B(z)<R(y, z) (2)

Figure 2 illustrates query graph, join tree, and query plan of Q. 7o
in (b) is obtained from the query graph in (a) by removing edge
(B,R). B and R satisfy the connectedness property because S, the
only relation on the path between B and R, also shares their com-
mon attribute z. From CSP perspective, removing edge (B, R) from
the query graph does not impact the query result because the con-
straint B.z = R.z is enforced via an alternate path B — S — R, i.e,,
Bz=SzASz=Rz

(c) Query Plan

(a) Query Graph

Figure 2: (a) query graph, (b) join tree , and (c) query plan

(b) Join Tree

of Q in Example 2. Ry, ..., Ry show the relation numbering
and g, 9, 3, M4 denote the join operator numbering. >4
represents the table scan operator associated with the left-
most relation R4, which is T in this example.

Complexity measurement. We assume a standard RAM complex-
ity model [5]. Following the convention of research in the formal
study of conjunctive query processing [4, 38, 59], we use data com-
plexity (big-O notation) as the measure of TTJ theoretical perfor-
mance, which assumes that the size of a query, k, is a constant,
but data size n varies [8]. We also determine T TJ performance in
combined complexity [63] (big-O notation), which considers both
k and n as variables. Under data complexity, the lower bound of
any join algorithm is Q(n+r) [59] (r is the output size) because the
algorithm has to read input relations and produce join output. A
join algorithm is optimal if its performance upper bound matches
the aforementioned lower bound.
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Physical Operators. Operators in the query plan of Q are physi-
cal operators, commonly implemented in an iterator interface [26]
consisting of open(), getNext(), and close(). open() prepares
resources (e.g., necessary data structures) for the computation of
the operator; getNext() performs the computation and returns
the next tuple in the result; and close() cleans up the used re-
sources. In this paper, evaluation of a query plan is done using
demand-driven pipelining (or pipelining): it first calls open() of
each operator and then keeps calling getNext() of the root join
operator of the plan, which further recursively calls getNext () of
the rest of the operators, until no more tuples are returned [56].

2.2 Problem Definition

With the above background, we are ready to define the problem
that TTJ tries to solve.

Problem. Givenan ACQ Q, we want to evaluate aleft-deep query
plan of Q consisting of physical join operators implemented in it-
erator interface using demand-drive pipelining with formal opti-
mality guarantee and practical efficiency.

2.3 Baselines

We compare TTJ with in-memory hash-join (HJ), one classic semi-
join method: Yannakakis’s algorithm (YA), and two representative
filter methods: Lookahead Information Passing (LIP) and Predicate
Transfer (PT). We introduce each of them in order.

HJ evaluates Q using pipelining on a left-deep plan with in-
memory hash-join operators [30]. In open(), each hash-join op-
erator builds a hash table H from its right child Ripper. In get
Next(), a tuple t from the left child of the join operator, Royzer,
probes into H to find a set of joinable tuples denoted as Matching-
Tuples. getNext() returns the join between ¢ and the first tuple
from MatchingTuples. The join between ¢ and the rest of the tuples
will be returned in the subsequent getNext () calls.

YA [67] is an optimal join algorithm for ACQ. The algorithm
consists of two phases: a full reducer phase and a join phase. In the
full reducer phase, YA makes two passes over 7q. The first pass,
called reducing semijoin program [13] HF g, traverses the join tree
bottom-up and applies Ry <R where R, is a parent relation and
Rc is one of its children. The possibly reduced Ry, further semijoins
with its other children. The resulting relations after HFg are de-
noted as R]. For example, in Figure 1 (c), two semijoins §" = SP<R
and T’ = T P<S’ are part of the bottom-up pass. In the second pass,
the algorithm traverses 7g top-down applying R, i><R1’O 2. The fully
reduced relations are denoted as R; for i € [k] 3 and they are free
of dangling tuples. In the join phase, YA makes the third pass of
Tq to produces the join output by again traversing 7q bottom-up
and performing pairwise joins.

LIP [25, 70, 71] leverages a set of Bloom filters to evaluate star
schema queries consisting of a fact table and dimension tables. In
open(), LIP computes filters from Ripper of each join operator and
passes those filters downwards along the left-deep plan to the fact
table, which is the left-most relation of the plan. In getNext() of
the left-most table scan operator, LIP checks the tuples from the

2R, ‘><R;, if R, is a leaf node because leaf nodes are not reduced in the first pass.
3[k] is a shorthand for 1, .. ., k

Anon.

fact table against the filters and propagates those pass the check
upwards along the plan.

PT [66] is the state-of-the-art filter method that generalizes the
idea of LIP to queries not limited to star schema queries. Similar
to YA, PT divides query evaluation into two phases. First, in pred-
icate transfer phase, PT passes filters over the predicate transfer
graph, a directed acyclic graph built from the query graph, of a
query in two directions: forward and backward, which is similar to
the first two passes over 7g in YA. Relations are gradually reduced
as filters are being passed. Once the predicate transfer phase is
done, the join phase begins where the reduced relations are joined.

2.4 Notation

Table 1: Summary of common notation

Notation Definition

Q a full acyclic CQ

k number of relations in Q

n maximum size of the input relations in Q

r query output size

Ta rooted join tree. See Figure 2 (b).

Pa a left-deep query plan using TTJ (§ 3)

Ri for i € [k] relations in Pg. Left-most relation is Ry. See

Figure 2 (c).

a; for i € [k]

join operators in Pg. > is the root operator.
»d is the table scan operator of Ry. See
Figure 2 (c).

[Re, Rie—1, ..., R1]

aquery plan (... ((Rg>Rg_1)™Rk_3) ...)™Ry

Ju

join of relations Ry, Ry _q,..., Ry

t[a] = 74 (t) for tuple ¢, attribute a, and

t[a] o
projection JT
ja(R,S) attr(R) N attr(S)
R(3,2) tuple (3,2) € R
jav(t, R, S) join-attribute value t[attr(R) N attr(S)]
Rinner right child of »q;
Router left child of q;
Hg (or Hj) hash table built from R (or associated with ;)
MatchingTuples the list of tuples with the same jao in a hash
table
ng no-good list, a filter in TTJ scan
R physical aspects of R, i.e., a bag of tuples R

contains

We summarize the notation used in the paper in Table 1. We

omit standard relational algebra notation in the table, e.g., antijoin
< and semijoin <. We further define some terminologies used
throughout the paper. We call a relation internal if it appears as an
internal node [20, 52] in 7q. For relations corresponding to non-
root internal nodes of 7g, we call them internal® relations. Simi-
larly, a leaf relation means the relation appears as a leaf node in
7q- The root relation is defined accordingly. Depending on context,
we adapt the following language: If a tuple produced from 41,
the Router of ™;, cannot join with any tuples from R;, the Rinner
of »; (dead-end in CSP [21]), we call it a join fails at »;, a join fail-
ure happens at ;, or join fails at R;. In such case, R; is called the
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(red, 1,2) 11

Join Failure

p><y. deleteDT(R)
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| ; qu

1
2[><] <g. deleteDT(R) 2 éq cetecton 2
(red,1,2) ’ R(y, z) jav_| MatchingTuples R(y, Z) R(y7 Z)
3 (3,2) (3,2) 3 3
(red) A B(2) o Traiemroone N (blue)f B(2)
M, 2 (2) quilty relation quilty detection relation
9 T(z) S(z,y, 2) T(z) S(z,y,2) T () elaionS (2, Y, 2)
jav | MatchingTuples jav | MatchingTuples ng @ jav | MatchingTuples
red | (red,1,2) My | red | ==fredriy— (red) red
blue | (blue,3,2) blue | (blue, 3,2) My, blue | (blue, 3,2)
(a) (b) (c)

Figure 3: (a) Join fails at ;. (b) A series of deleteDT(R) is called, which leads to the removal of S(red, 1,2) from hash table Hs.

(c) Join further fails at »3, which puts T(red) to ng.

detection relation (dead-end variable in CSP [21]). ; is called the
detection operator. We call the join operator the removal operator if
its Ripner is the parent of the detection relation for a join failure in
Tq- Such Rinner is the guilty relation (culprit variable in CSP [21]).
For example, for the join failure happens at »¢; in Figure 1 (d), the
detection relation is R and the detection operator is >;. S is the
guilty relation and 3 is the removal operator.

3 TREETRACKER JOIN OPERATORS

Algorithms 3.1 and 3.2 show the formal definition of TTJ. Algo-
rithm 3.1 defines each join operator in a left-deep plan. Algorithm 3.2
defines TTJ scan, which replaces the normal left-most table scan
operator; the rest of the table scan operators in the plan remains
unchanged. We use P to denote the left-deep plan using TTJ. We
are now ready to work out Example 1 in full details to highlight the
salient features of TTJ mentioned in § 1. We expand Figure 1 (d)
into Figure 3. All line numbers reference Algorithm 3.1 by default
unless noted otherwise.

The following three examples show the execution moments in
the first getNext () call after open() of the pipelining evaluation
that leads to the removal of two dangling tuples. Example 3 shows
that TTJ does not schedule any semijoins or semijoin-like filters
before query evaluation. The evaluation flow is identical to HJ
when no join failure happens.

ExampLE 3 (Mo in Figures 1 and 3). After plan evaluation begins,
the recursive getNext () calls start with 1 and end with T’s TTJ
scan operator (Line 4 Algorithm 3.2), which returns T(red). The
jav (x : red) is used to look up Hs (Line 15). Since T(red) joins
with S(red, 1, 2), the resulting tuple (red, 1, 2) is further propagated
to 2, which probes into Hp and finds B(2) joinable. The join result
(red, 1,2) is further passed to »4;.

Example 4 shows how the backjumping idea from CSP (specif-
ically, graph-based backjumping [21]) shown in Example 1 is inte-
grated into physical operators in Pq. To do so, we enhance the
iterator interface with one more method deleteDT() and imple-
ments backjumping as a series of deleteDT() calls * from the de-
tection operator to the removal operator corresponding to a join

4We omit argument to deleteDT() when reference it generically.

failure. deleteDT (), under the form of SIP, sends the reference of
the detection relation from the detection operator to the removal
operator in a fashion that is not explicitly indicated by the plan.

ExampLE 4 (Mo and M in Figures 1 and 3). Since (red, 1,2) can-
not join with any tuples from Hp, the goal of TTJ is to backjump to
the guilty relation S and remove the last returned tuple, S(red, 1, 2),
from Hs. To do so, y.deleteDT(R) is called from Line 20 first.
Since ™2’s Rinner, B, is not the parent of R in 7g (Line 23), Line 27
is called, e.g., >43.deleteDT(R). In »3’s deleteDT (), since S is the
parent of R (Line 23), Line 24 is executed: S(red, 1, 2) is removed
from Hs.

Example 4 shows that removing tuples from internal® relations
is implemented as removing the tuples from their index represen-
tations. Example 5 illustrates another CSP technique, no-good list
(ng), that TTJ incorporates to filter out dangling tuples from the
left-most relation Ry.

EXAMPLE 5 (M2 in Figures 1 and 3). Removal of S(red, 1, 2) causes
T(red) to become dangling. TTJ adds it to ng, effectively remov-
ing it from T. After removing S(red, 1, 2), getNext () of 3 is called
(Line 29). Since MatchingTuples is now empty and royzer = T(red),
Line 15 is executed. No tuples from S joins with T(red). Thus, T.d
eleteDT(S) is called (Line 20) and Algorithm 3.2 Line 10 adds jav
(x : red) to ng. Once ng is non-empty, it will work like a filter to
prevent future dangling tuples with the same jav from returning
to »a3. getNext () of T is called (Algorithm 3.2 Line 11). The next
tuple T(blue) then probes into ng (Algorithm 3.2 Line 6). Since T
has only one child S, jav (x : blue) is computed and it is not in ng.
Thus T (blue) is safe to further propagate upwards towards 3.

5

3.1 Construction of Query Plan or Join Tree

TTJ operates on a left-deep query plan, which represents the join
order of the input relations of the query. In addition, TTJ requires
a Tq to find the parent of the detection relation, i.e., the guilty
relation, for a join failure. Thus, if either the plan or the 7q is miss-
ing, we need to construct it from the other one. A constraint ex-
ists for such construction to ensure TTJ can function correctly.

5No tuples are removed from the leaf relations because they cannot be guilty relations,
i.e., by leaf definition, they are not parent of any relations in 7g.
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Algorithm 3.1: TTJ Join Operator Algorithm 3.2: TTJ Table Scan Operator for Ry
Purpose: An iterator returns, one at a time, the join result Purpose: Table scan operator for R that returns tuples
of Royter and Rinner. not in ng.
Output: A tuple ¢t € Royter™Rinner 1 TTJScan
1 TTJOperator 2 void open()
2 void open() 3 L Initialize ng to an empty set
// Touter references a tuple from Royrer
Tuple getNext
// MatchingTuples references a set of tuples from * P g () .
R; that are joinable with rous ° while (t - Rk'neXt()) # nil do
3 Initialize royzer, MatchingTuples to nil ¢ if jao(t, Re, Ri) ¢ ng for all children R; of Ry. in
’ Tq th
4 Rinner-open() ; Laretlel:n "
5 Build hash table H: Insert each tuple, ripner, from
Rinner into H using the join attribute value(s), 8 return nil
jav(rinner, Router, Rinner) as the key 9 Tuple deleteDT(Detection Relation R)
6 | Router-open() // Ri is the guilty relation; ¢ contributes to the
7 Tuple getNext() tuple that caused the join failure at R
8 if MatchingTuples # nil A MatchingTuples # () then 10 Insert jao(t, Ry, R) into ng
// If there are more matching tuples left, return 11 return getNext ()
the join of rouzer and the next matching tuple -
9 if (aMatchingTuple «— MatchingTuples.next ()
) # nil then Since deleteDT() always sends a reference of the detection rela-
10 return the join of royzer and tion downwards along the plan, when the plan is missing, we need
aMatching Tuple to construct a plan such that the guilty relation must sit below the
/7 No matching tuples are left. Get a new rogrer detection relation. For the same reason, when 7g is missing, we
1 Fouter  Router-getNext() need to construct a 7g such that for any detection relation in a
12 if royrer = nil then return nil plan, exactly one of the relations below it must be its parent in the
outer — . . .
by ) tree. In this section we formalize the constraint and describe how
13 if r?“ter = nil th.en Touter <~ Router getNext() to properly construct a 7g or a plan given the other input.
14 while royzer # nil do Given a left-deep query plan, Definition 1 defines the aforemen-
// Find tuples from Rjpner joinable with royzer . .
MatchineTupl tioned constraint on the 7g.
15 atchingTuples «—
H.get(jav(router Routers Rinner)) Definition 1 (join tree assumption). Suppose Pq = Ry, Rk_1,
16 if MatchingTuples # nil then .,R1]. TTJ assumes Tq satisfies the following property: for a
17 aMatchingTuple < MatchingTuples.next () given relation R; in Pg, its parent in 7g is one of the relations
18 return the join of royzer and Ri,Rk_1, - - -, Ris1. The root of 7 is the left-most relation Ry.
aMatchingTuple ) o )
1 ExampLE 6. Consider P in Figure 2 (c), B is labeled as Ry. TTJ
e € se// Toin failure identified: start the expects that B’s parent in 7 has to be either R3 or R4. As shown
backjumping to the guilty relation, parent in Figure 2 (b), B’s parent is S, which corresponds to R3. Thus, 7g
of R in T in (b) satisfies the assumption.
20 Fouter  Router-deleteDT (Rinner) The next lemma states that we can easily construct a required
L = Tq from any left-deep query plan that does not have cross-product.
21 return nil
. TJ le deleteDT(Detection Relation R) LemmA 3.1. For any left-deep plan without cross-product for acyclic
’s pifR is the parent of R in T, then queries, there exists a Tq satisfies the join tree assumption (Defini-
inner Q .
// Rinner is the guilty relation; join failure was tion 1)'
;:Zn:;:z:i:tf lb:C::sseevt::t j:llln b:rjre:e;“‘t‘;” We defer the construction step and proof to [2]. The key idea
% ang tg ) ? o ) Y cron R is as follows: We construct 7g following the order of relations in
and cannot joln wl any tuples from .
i Remove aMatehineTunle from Matchine Tuples Pq from left to right. Suppose Ry, ...,Rjs1 are already added to
AN glup glup 7q. For R}, we want to find a relation R; that is already in 7¢q such
an
N else that attr(R j)m(U§=j+1 attr(Ry)) C attr(R;). Left-deep query plan
// Has not reached the guilty relation for R; without cross-product for acyclic queries guarantees such R; exists.
backjumping continues We add R in Tq through an edge (R;, R;).
26 Matching Tuples «— nil ExampLE 7. Suppose Po = [R3(x,y), R2(x,y, 2), R1(y, 2)]. The
— left-most relation R3(x,y) has to be the root of 7. For the next
27 Fouter < Router.deleteDT(R) Y Q
28 if royrer = nil then return nil relation Ry (x, y, z), since only Rs is in 7g and attr(Rz) Nattr(R3) C
29 | return getNext()
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attr(Rs3), we add edge (R3, R2). Now, both R3 and R; are in 7 and
union of their attributes is {x,y,z}. Since attr(Ry) N {x,y,z} C
attr(Rz), we add edge (Rz, R1). The final 7g is R3 — Rz — Rj.

ExampLE 8. Consider a cyclic query, Pq = [R3(a,b),R2(b,¢),
Ri(c,a)], the classic triangle query. Let us try to construct 7q.
R3(a, b) is the root. Ry(b,c) connects R3. attr(R3) U attr(Rz) =
{a,b,c}.But, attr(Ry) N{a,b,c} ¢ attr(Ry) and attr(Ry)N{a,b,c}
¢ attr(Rs). Ry cannot be placed in 7 to satisfy the connectedness
property while keeping 7¢ being a tree.

ExampPLE 9. Pq = [T(x),R(y, z), B(z), S(x, y, z)] contains a cross-
product due to T(x), R(y, z). We cannot construct 7q because 7g
is a subgraph of the query graph and the query graph does not
contain (T, R) edge.

Definition 1 can be interpreted as a join order assumption, which
defines the constraint on the plan.

COROLLARY 3.2 (JOIN ORDER VIEW OF DEFINITION 1). Given a
Tq. TTJ assumes the order of relations in a left-deep query plan
satisfies the following property: for a node R; and its child R; in Tq,
R; is beforeRj inPq, i.e, Pg=1[...,Ri,...,Rj,...].

Construction of Pg is straightforward: performing a top-down
pass (not necessarily from left to right) of 7.

ExampLE 10. For 7q in Figure 2 (b) with T as the root, both SDé? =
[T,S,B,R] and Pé = [T, S, R, B] are valid plans for TTJ.

3.2 Additional Practical Considerations

To use TTJ in production environment, additional considerations
are required beyond the algorithm itself. In [2], we further discuss
(1) TTJ cost modeling to determine both 7g and Pg; (2) using
TTJ with buhsy plan, including the construction of a buhsy plan
from a 7g and a formal analysis of TTJ performance; and (3) an
extended TTJ for cyclic queries with a formal runtime analysis.

4 CORRECTNESS AND OPTIMALITY OF TTJ

We prove the correctness and the optimality gurantee of TTJ in
this section. Due to the space limit, we present the correctness the-
orem without the proof and focus on the proof of optimality. The
omitted lemmas and proofs are in [2].

THEOREM 4.1 (CORRECTNESS OF T TJ). Evaluating an ACQ of k
relations using Pgq, which consists of k —1 instances of Algorithm 3.1
as the join operators and 1 instance of TTJ scan (Algorithm 3.2) for
the left-most relation Ry, computes the correct query result.

The runtime analysis of evaluating Pq is done in two steps.
First, we propose a general condition for any left-deep plan with-
out cross-product for ACQ called clean state. Clean state specifies
what tuples can be left in the input relations without breaching the
O(n+r) evaluation time guarantee. In contrast to the common be-
lief that input relations have to be free of dangling tuples to enable
O(n + r) evaluation, clean state permits the existence of dangling
tuples. Clean state provides a formal explanation on one reason
why YA may have large dangling tuple removal costs — it spends
efforts to remove more than necessary tuples. Second, we show
Pq reaches the clean state and the work done by TTJ between
the beginning of the query evaluation and reaching the clean state

SIGMOD 25, xxxx xx—xX, 2025, XXXX, XX

(cleaning cost) is no more than the work done after reaching the
clean state. The former takes O(n) and the latter takes O(n +r).

Definition 2 (clean state). For a left-deep plan without cross-
product for ACQ, we denote the contents of R; that satisfy the fol-
lowing conditions by R;:

(i) R; = R; for all the leaf relations R; of 7Q;

(i) (R;><J5 ) B< Ry = 0 for internal® relations R; and their
child relations R,; and

(iii) Rg P< Ry = 0 for the root of 7@, Ry and its children Ry,.
The plan reaches clean state if the contents of all R; equal R;.

LEMMA 4.2. When the left-deep plan without cross-product for
ACQ is in clean state, Ry is fully reduced and free of dangling tuples.

THEOREM 4.3 (CLEAN STATE IMPLIES OPTIMAL EVALUATION).
Once the left-deep plan without cross-product is in clean state, any in-
termediate results generated from the plan evaluation will contribute
to the final join result and the plan can be evaluated optimally.

Comparison with full reducer and reducing semijoin program. Re-
lations that are free from dangling tuples are in clean state. Thus,
relations after Fq are in clean state. Relations after HFg are in
clean state as well. Leaf relations after HF g satisfy Condition (i) (by
definition of HFg) and the root relation after HFg satisfies Con-
dition (iii) (by Lemma 4.2 and Lemma 4 of [13]). For an internal®
relation R;, it satisfies R; < IEu = (, which implies the satisfaction
of Condition (ii). However, the state of relations after HFg or Fg
is stricter than what is required by clean state, i.e., more than nec-
essary tuples are removed for optimal evaluation. Tuples of R; that
are not joinable with J,; will be removed by both Fq and HFq if
such tuples are not joinable with tuples from any child relation of
R;. But, those dangling tuples are allowed to present in clean state.

ExampLE 11. Consider a Tg R3(x) — Ra(x,y) — Ri(y) with
the following database instance: R3(4), R2(4,6), R2(3,5), R2(3,7),
Ry(4,7), and Ry (7). Clean state only requires the removal of one
tuple Ry (4, 6). HF g removes two tuples Rz(4,6) and R2(3,5). Fg
removes three tuples: Rz(4, 6), R2(3,5), and Ry(3, 7).

LEMMA 4.4. When TTJ finishes execution, Pq is in clean state.
LEMMA 4.5. TTJ evaluates Pg in O(n+r) once it is in clean state.

Next, we prove the optimality guarantee of TTJ by bounding
the cleaning cost. The key idea is to leverage the fact that whenever
a dangling tuple is detected, some tuple has to be removed and
there can be at most kn tuples removed. The cost to remove each
tuple is O(1) under data complexity.

THEOREM 4.6 (DATA COMPLEXITY OPTIMALITY OF T 1J). Eval-
uating an ACQ of k relations using Pgq, which consists of k — 1
instances of Algorithm 3.1 as the join operators and 1 instance of
TTJ scan (Algorithm 3.2) for the left-most relation Ry, has runtime
O(n+r), meeting the optimality bound for ACQ in data complexity.

Proor. By Lemma 4.4, the execution of a plan is in clean state
when TTJ execution finishes. The amount of work that makes Pq
clean, i.e., cleaning cost, is fixed despite the distribution of dangling
tuples in the relations. Suppose the execution is in clean state after
computing the first join result.
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To bound the cleaning cost, we bound the cost of getting the
first join result. Cleaning cost of TTJ includes the following com-
ponents: (1) the cost of open(), which is O(kn); (2) the cost of
getNext(); and (3) the cost of deleteDT(), which is bounded by
the cost of getNext () as well.

The total cost of getNext() is bounded by the total number
of loops (starting at Line 14). Within the loop, hash table lookup
(Line 15) is O(1). The total number of loops equals the total num-
ber of times that royer is assigned with a value. royrer assignment
happens on Lines 11, 13, 20, and 27. Line 13 is called when get
Next () is recursively called from »4; to start computing the first
join result, which in total happens k times. Afterwards, whenever
Touter becomes nil, execution terminates by returning nil (Lines 12,
21, and 28) and Line 13 never gets called.

Each time deleteDT() is called from Line 20, exactly one tuple
is removed. Thus, royzer is assigned O(kn) times on Line 20. After
a call to deleteDT() made in the ith operator (i € [k — 2]) from
Line 20, deleteDT() can be recursively called at most k — i times
from Line 27. The number of deleteDT() calls with k — i recursive
calls is at most n because each relation has size n and each initi-
ation of deleteDT() removes a tuple. Thus, the total number of
assignment to royrer from Line 27 is < Zi.:lz(k —i)-n=0(kK%n).

If deleteDT() is never called during the computation of the first
join result, Line 11 is not called. Line 11 can only be called from
Line 29 when Line 23 is evaluated to true; any getNext() calls
(Line 29) from recursive deleteDT () calls triggered by Line 20 will
not call Line 11 because MatchingTuples is set to nil on Line 26.
Thus, the number of calls on Line 11 equals to the number of del
eteDT() calls from Line 20, which is O(kn).

Summing everything together, cleaning cost is O(k?n). Since
Pq is clean after computing the first join result, with Lemma 4.5,
the result follows. O

The combined complexity of TTJ is O(k?n + kr), which can
be further reduced to O(nklogk + kr) by imposing an additional
constraint on Pq. We defer the details to [2].

5 EVALUATION

We compare the performance of TTJ with the baselines (§ 5.3),
introduce three parameters that impact T T J performance, and an-
alyze them through control studies (§ 5.4). We further examine the
space consumption of ng and the robustness of TTJ (§ 5.4).

5.1 Algorithms and Implementation

We compare T TJ with the baselines (§ 2.3) in an apples-to-apples
fashion, where we implement all these methods within the same
query engine built from scratch in Java. The engine architecture
is similar to the architecture of recent federated database systems
[12, 54]. The engine optimizes each algorithm using the same DP
procedure [26] with an algorithm-specific cost model®. Due to the
space limit, we defer the details of the cost models to [2]. The en-
gine connects two data sources: PostgreSQL 13, which provides
the estimation to the terms in the cost models, and DuckDB [50],
which serves as the storage manager. All data are stored on disk.

S All cost models estimate the sum of intermediate result sizes

Anon.

We detail the implementation of ng here. Suppose Ry has m
children Sy, ..., Sp. Physically, ng is implemented as a hash table
(Si, t;) where ¢; is a set containing jav(t, R, S;) for dangling tuple
t from Ry detected by S;.

We provide additional implementation details of the baselines
that are not described in § 2.3. To implement YA, we introduce
a k-ary physical operator full reducer operator that executes Fg.
The fully reduced relations, which already reside in memory, are
then evaluated by HJ. PT is implemented similarly to YA with
a k-ary operator for the predicate transfer phase. PT originally
works on the predicate transfer graph, which contains redundant
edges compared with 7g. Redundant edges may lead to additional
unnecessary passes of Bloom filters that may negatively impact
PT performance 7. Thus, we show the results of PT on Tg. We
use the blocked Bloom filter [48] implementation from [31].

5.2 Experimental Setup

Workload. We use three workloads: Join Ordering Benchmark (JOB)
[40], TPC-H [58] (scale factor = 1), and Star Schema Benchmark
(SSB) [47] (scale factor = 1). We focus on ACQs in the benchmarks,
i.e., we omit cyclic queries, single-relation queries, and queries with
correlated subqueries. All 113 JOB queries, 13 TPC-H queries, and
all 13 SSB queries meet the criteria.

Environment. For all our experiments, we use a single machine
with one AMD Ryzen 9 5900X 12-Core Processor @ 3.7Hz CPU
and 64 GB of RAM. We only use one logical core. We set the size of
the JVM heap to 20 GB. All the data structures are stored on JVM
heap. Benchmarks are orchestrated by JMH [1], which includes 5
warmup forks and 10 measurement forks for each query and algo-
rithm. Each fork contains 3 warmup and 5 measurement iterations.

5.3 Comparison with Existing Algorithms

5.3.1 Query Performance. Figure 4 compares the execution time
of TTJ, YA, and PT against HJ on JOB queries. Of all 113 queries,
TTJ runs faster than HJ on 112 (99%) of them. The maximum
speedup is 6.8% (6.c) and the minimum speedup is 1x (6f). On av-
erage (geometric mean), TTJ is 1.8% faster than HJ. YA is faster
than HJ on 47 (42%) queries. The maximum, average, and mini-
mum speedup is 11.3% (5a), 1%, 0.3x (6f), respectively. PT is faster
than HJ on 67 (59%) queries. The maximum, average, and minimum
speedup is 11.5% (5a), 1.1X, 0.3X (15b), respectively. From the ag-
gregate statistics we can see that (1) TTJ has more steady speedup
than YA and PT on the entire workload: TTJ has higher aver-
age and minimum speedup than the other two algorithms; (2) YA
and PT can outperform TTJ in special cases such as 5a, which
returns empty results. 5a is favorable for YA and PT because the
query evaluation terminates earlier than TTJ: The first semijoin
movie_companies P<company_type in the bottom-up pass com-
pletely removes all the tuples in movie_companies, which subse-
quently terminates the whole query evaluaiton. In contrast, the
two relations appear as the second and the fourth relation in Pg,
which makes TTJ perform more join computations than YA and

"We conducted an empirical study by comparing PT on the predicate transfer graph
with the same PT on 7g to verify our conclusion. Result shows PT on 7g outper-
forms PT on the predicate transfer graph by 1x [2].
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PT before it terminates. This exemplifies the importance of join
order for TTJ, which we further study in § 5.4.5.

Figure 5 shows the comparison result on TPC-H. TTJ has the
maximum speedup 2.4X on Q8, the largest query with k = 8 in TPC-
H. 2.4X is also the largest speedup among the three algorithms.
Similar to its performance pattern on JOB queries, T TJ has steady
speedup over the benchmarked TPC-H queries with average 1.2x
compared with 0.69% from YA and 0.84x from PT. We further
study a few interesting TPC-H queries in § 5.3.2.

For star schema queries, all algorithms share the identical 7¢
and plan, where the fact table is R; and the dimension tables are
the children of Ry ordered from left to right. Figure 6 illustrates
TTJ has the largest speedup, 3.2X on average, for all SSB queries
and LIP comes in second with average of 2.8X. After eliminating
the impact of join order and join tree, the performance difference
between TTJ and LIP shows that lazily building and probing ng
works better than proactively building and probing a set of Bloom
filters. Probing Bloom filters at Ry in LIP can be viewed as per-
forming a bottom-up pass of 7q. Compared with LIP, YA and PT
perform an additional top-down pass of 7. The potential benefit
of the top-down pass performed by YA or PT can be very small be-
cause the fact table is fully or nearly fully reduced after the bottom-
up pass [13] and the dangling tuples in the dimension tables will
not or unlikely be matched during join evaluation. A possible per-
formance gain from the top-down pass is from dimension table size
reduction, which can speed up hash table operations. Both YA (av-
erage 1.2X) and PT (average 1.4X) are slower than LIP, indicating
that the cost of performing the top-down pass of 7q outweighs the
potential benefit due to dimension table size reduction. PT comes
the third and runs faster than YA because Bloom filter probe is
faster than semijoin hash table probe.

5.3.2  Trade-off between join time and removing dangling tuple time.
All the join algorithms we studied strategically allocate runtime
between performing joins and removing dangling tuples. On one

SSB queries

end of the spectrum, HJ spends all of its runtime performing joins.
On the other end of the spectrum, YA, PT, and LIP spend most
of its runtime removing dangling tuples. PT spends less than YA
due to the efficiency of Bloom filters. LIP further reduces dangling
tuple removal time on star schema queries by eliminating the top-
down pass of 7g. Due to the laziness nature of TTJ, it aims to stay
closer to the HJ side by spending less of its runtime on removing
dangling tuples and more time on computing joins. Figure 7 illus-
trates the patterns by showing the runtime breakdown on TPC-H
queries 8. The figure shows that each algorithm’s overall perfor-
mance largely depends on its dominate time, i.e., join time for TTJ
and dangling tuple removal time for YA and PT.

YA and PT are performant when the full reducer can be exe-
cuted quickly. Consider Q7: A fragment of YA join tree is a chain
orders — lineitem — supplier — nation. The first semijoin
supplier ><nation already removes more than 90% of tuples from
supplier because |nation| = 1. The largely reduced supplier speeds
up the subsequent semijoin lineitem P<supplier and starts a chain
reaction on the remaining semijoins. As a result, YA removes close
to 100% of the tuples of the input relations (Figure 8) in a small
amount of time (Figure 7). PT shares the same join tree as YA and
has a similar behavior. On the flip side, YA and PT face challenges
when the full reducer executes slowly. A typical example is star
schema queries. Figure 9 shows the fraction of input relations tu-
ples removed on SSB. From the figure we see that YA and PT re-
move almost identical number of dangling tuples as LIP but have
much lower speedup (Figure 6). This shows that the top-down pass
of 7g that YA and PT perform on star schema queries not only
incurs additional execution cost but also can hardly reduce dimen-
sion table size.

TTJ performs better when its join time is smaller than the dan-
gling tuple removal time of YA and PT. Join time is usually small

8Due to the space limit, we defer the runtime breakdown of LIP on SSB to [2], which
illustrates LIP spends less time on dangling tuple removal than YA and PT but more
than TTJ.
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if a large number of dangling tuples can be removed. Thus, intu-
itively, TTJ is good if the small amount of dangling tuple removal
time spent by TTJ can remove a huge number of dangling tuples.
In Q8, a typical example that TTJ greatly outperforms YA and
PT, TTJ removes 91% of the dangling tuples removed by YA or
PT, while using only 22% of YA’s and 27% of PT’s dangling tuple
removal time. However, the quantity of dangling tuples removed
alone is not a decisive factor on explaining the performance of TTJ.
For example, in Q15, TTJ spends a neglible amount of time re-
moving the same number of dangling tuples as YA and PT (99%
of input tuples) but unlike Q8, the join time is not significantly re-
duced. As a result, TTJ does not considerably outperform YA and
PT. Such observation indicates that the quality of dangling tuples
removed also matters. A dangling tuple has high quality if remov-
ing it can substantially reduce the join time. Directly measuring
dangling tuple quality is non-trivial; instead, we use two parame-
ters to measure the effectiveness of the actions to remove certain
groups of dangling tuples. The more effectiveness the actions are,
the higher quality the removed dangling tuples have.

Duplicate ratio a. ng contains all the unique javs of the dangling
tuples in Ry. The action taken by TTJ related to ng contains two
steps: (1) If Ry is the guilty relation, jav is computed and put into
ng; (2) Future tuples from Ry are filtered out if their jav appear
in ng. We focus on the filtering step of the action. To measure its
effectivness, we can divide the dangling tuples of R into two sets:
Set A contains dangling tuples that can be filtered out by ng and set
B contains the rest of the dangling tuples. We define a = %,
which is the fraction of tuples in the dangling tuples of Ry that can
be filtered out by ng. The larger « is, the more dangling tuples can
be filtered out by ng. For example, 99% of the tuples in lineitem (R
of Q8) is dangling. Its « is 96%.

Modified Semijoin Selectivity 6. On detecting dangling tuples,
deleteDT() is called. If the guilty relation is an internal® rela-
tion, a tuple is removed from its hash table. We denote the action
of removing dangling tuples from the hash tables as rm. O mea-
sures the fraction of tuples from an internal® relation R that will
no longer participate join once the dangling tuples from all of its
child relations are removed. The larger 0, is, the more effective rm
is. For example, in Q8, customer has the highest 6 6.6%. We provide
the formal definition of 6 in [2] and give an example in § 5.4.2.

With the concept of quality, we can say that TTJ is fast when it
can remove a large number of high quality dangling tuples within
a small amount of dangling tuple removal time. We introduce a
third parameter, backjumping distance, which determines how fast
a dangling tuple can be removed.

Backjumping distance b;j. When join fails, TTJ backjumps to
the guilty relation via deleteDT() calls. We call the action bj. b;;
denotes the number of relations between the detection relation R;
(excluding) and the guilty relation R; (including) for a join failure.
The larger b;; is, the quicker the dangling tuple from the guilty
relation can be removed. Join time is also reduced because back-
jumped relations (relations appear between the detection and the
guilty relations in Pgq) will no longer be probed until a new join
result is produced by the guilty relaiton. In Q8, the largest b;; is 4.
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5.4 Detailed Analysis of TTJ

We perform control studies on the parameters introduced in § 5.3.2
to measure the effectivness of the corresponding TTJ actions.

Result Summary. Query and database instance can lead to a large
number of high quality dangling tuple removal if (1) duplicate ratio
a > 50% (§ 5.4.1); (2) modified semijoin selectivity 0 > 2% (§ 5.4.2).
Backjumping is more effective when b;; > 4 (k > 5). Furthermore,
we show that: (1) no-good list takes small spaces on the benchmark
workloads (§ 5.4.4); (2) join order has a large impact on T TJ perfor-
mance, but even with a suboptimal join order, TTJ can still match
or outperform HJ.

5.4.1 Impact of a. Consider the following query

Q = T(a, b)=R(a)=S(b) 3)

T is the root of 7q and Pq = [T,R,S]. Let all tuples in T be
dangling due to S, i.e., TP<R =T and TP<S = 0. |A|+|B| = |T| and
|A| = «|T|. Column T.a and R.a contain the numbers from 1 to |T]|.
For T.b, we first put | B| unique values; then, we append additional
|A| values that are sampled from the unique values uniformly at
random. We fill in S.b with values that are not in T.b. We shuffle
all the rows of all the relations at the end. All three relations have
equal size of 10 million tuples.

Result Analysis. Figure 10 shows the fraction of ng build and
probe time over the overall runtime with different «. The left-most
bar shows that ng operations take 8% of runtime when ¢ = 0%,
i.e., all dangling tuples in T have unique javs. The fraction stays
between 8% and 10% when a < 50%. Once a > 50%, the fraction
starts a steady drop. The right-most bar (& = 100% °) has 2% frac-
tion and the lowest execution time overall. In general, the larger a,
the less time ng operations takes, and the better TTJ performs.

54.2 Impactof § . Condier the following micro-benchmark query:

R(a, c)»aU(c, e)>V(c,d)T(d, g)=<W(d, f) 4)

Pq = [RU,V,T,W]. 7q starts R as the root and has a chain
R — U — V.Both T and W are children of V. R has two tu-
ples (1,2),(1,4). U has tuples (2,1),(2,2),...,(2,0|U)), (3,0|U| +
1),...,(3,|U|-1), (4, 4), where 0 is defined below. V has two tuples
(2,3),(4,4). T has two tuples (3,1),(4,1). W has one tuple (4,5).
The query result set is {(1,4,4,4,1,5)}.

We define 6 on U as 6y = |(Ul><R)|l;<|(Vl><V)|. Vis V in clean
state. In words, 0 is the fraction of tuples in U that are joinable
with R and joinable with the dangling tuples from V. We com-
pare TTJ?J with TTJP/+™ TTJJ only enables bj and disables
ng and rm. TTJPI+™M enables bj and rm, which removes the dan-
gling tuples from the hash tables in addition to backjumping. We
fix |U| = 1 million.

Result Analysis. Figure 11 shows that (1) the larger 0 is, the more
beneficial removing dangling tuples from the hash tables becomes;
(2) in our implementation, it is always beneficial to remove dan-
gling tuples from the hash tables: When 6 = 0% 1, removing dan-
gling tuples will not reduce subsequent join computations, but in
such case, TTJY/*"™ and TT Y/ still have matching performance.

9Technically, a = 99.9% because |B| > 1, i.e., there has to be at least one tuple in B
so that tuples in A can be filtered out by ng.

10Technically, 6 > 0% because in our micro-benchmark, U at least has (2, 1) and 6
is at least one over 1 million.
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HJ on HJ order on all 113 JOB queries

To explain the performance difference, first consider TTIY , where
it does not remove dangling tuples. The evaluation starts with U(2, 1)

and does not fail until W(d, f). Then, deleteDT() resets the eval-

uation flow to V. V(2, 3) is not removed. No more matching tuples

is left from V given jav (c : 2). deleteDT() further sets the eval-
uation flow to U and moves on to U(2,2), which is joinable with
R(1,2). Since V(2,3) still presents, the join result (1,2,2,3) will
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eventually try W and fail again. deleteDT() brings the evaluation
flow back to V. Since no more tuples are joinable with U(2, 2), de
leteDT() resets the flow back to U. Then, U(2, 3) is returned. The
same process repeats 0|U| times in total. In TTJ?/*" evaluation,
V(2,3) is deleted when deleteDT() first resets the evaluation flow
to V. The evaluation will finish much earlier because U(2, 2) will be
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removed immediately once it probes into V, and the same happens
toU(2,3),...,U(2,0|U]).

5.4.3
ing action of TTJ (TTJ?/). Consider the following query (for sim-
plicity, we replace » with comma between relations):

Impact of b;j. For this study, we only enable the backjump-

Q =Ri(a1,...,ar),Ra(az, a3), ..., Ry (ag_y, ag). Rr(ag)  (5)
The database instance is as follows: Ry (ay, ..., ay) has two tu-
ples (1,2,3,...,k — 1,k) and (1,3,4,5,...,k,k + 1). Ri(aj, aj) has
n — 1 copies of (i, j) and a tuple (i + 1, j + 1). Ri. (ag) has one tuple
(k + 1). Query (5) has only one join result (1, 3,4,5,...,k +1).
We run TTJ% on two Tq: 75 is a chain shape: Ry — Ry —
- — Ry. 73 is a star shape: Ry is the root and the rest of the rela-

tions are its children ordered from left to right. We denote TTJbI
on7, as TTJY andon ‘Té“ as TTJPJ" TTJPJ™ has the character-
istic that every guilty relation S is immediately before the detection
relation R for any join failure, ie., b;; = 1. TTJY" has only one
join failure, which happens when the tuple (k — 1, k) of Ry._; joins
with Ry. After the join failure, TTJY" resets the execution flow
to Ry and starts to compute the final join result. Thus, b;j = k — 1.
TTJbI™ produces (n — 2) Z’;;()S(n - 1)/ = O(kn*) more dangling
intermediate results than TTJ%/" [2]. We fix n = 10 and vary k.

Result Analysis. Figure 12 shows that the performance between
TTJPI and TTII begins to diverge when k = 6 (b;j = 5) where
TTIb" produces 6560 more dangling tuples than TTJY" does. Af-
ter that, we see the execution time of TTJ?/~ grows exponentially
whereas TTJ?/" grows logrithmically. The result indicates that the
backjumping distance impacts the number of dangling tuples that
can be avoided by TTJ, thereby affecting TTJ performance.

Table 2: Number of jaus stored in ng. In parenthesis, we list
memory percentage consumption taken by ng with respect
to total query evaluation memory consumption

Bench. ‘ min ‘ max ‘ avg.
JOB 12 (0%) | 4051176 (6%) | 908226 (0.3%)
TPC-H | 24 (0%) | 1470901 (4.2%) | 176716 (0.6% )
SSB | 2041 (0%) | 201343 (1.9%) | 65223 (0.4% )

5.4.4  Space Consumption of ng. Table 2 shows the space taken by
ng on the benchmark queries. Despite of the relatively large ng
size, the memory footprint is negligible, e.g., at most 6% of total
memory consumption. The main reason is that ng only stores javs
(a few integers), which are tiny compared with other memory con-
sumption, e.g., loading relations into memory.

5.4.5 Robustness against Poor Plans. In this experiment, we study
whether TTJ performance is robust against poor plans. We com-
pare three setups: (1) TTJ on HJ order (we call it TTJ®); (2) TTJ
on TTJ order; and (3) HJ on HJ order. We consider HJ order as
a poor plan because the order is not specific optimized for TTJ.
Figure 13 shows that compared with TTJ, the number of queries
that TTJ? outperforms HJ is smaller (105 vs. 112) and the aver-
age speedup goes down (1.1X vs. 1.8%). This result shows that in
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general, optimizing T TJ specifically can lead to much larger per-
formance gain compared with treating TTJ as HJ. Nevertheless,
TTJ still matches or outperforms HJ on HJ order.

6 DISCUSSION AND RELATED WORK

We organize the related work in four categories. (1) CSP. The equiv-
alence between CQ evaluation and CSP is established by [16, 39].
TreeTracker in [10] solves a CSP for one solution without prepro-
cessing the CSP. TTJ extends TreeTracker into query evaluation
by (a) returning all possible solutions; (b) blending the ideas from
TreeTracker into physical operators in a query plan. (2) Semijoin re-
duction. An intensive research has been done on using semijoin to
improve query evaluation speed [13, 14, 18, 37, 41, 60, 61,67]. TTJ
achieves a similar effect (clean state) as performing semijoin reduc-
tion without explicitly using semijoins. (3) SIP deleteDT() of TTJ
takes the form of SIP [9, 22, 23, 25, 30, 32, 33, 36, 43, 45, 49, 53, 55,
70, 71]. TTJ is different from the prior approaches in one or more
of the following aspects: (a) TTJ does not introduce any prepro-
cessing steps; (b) T TJ does not use Bloom filters, bitmaps, or semi-
joins; and (c) TTJ provides optimality guarantee. (4) Worst-Case
Optimal Join (WCOJ) algorithms. A related line of work is to im-
plement WCOJ algorithms efficiently [3, 7, 24, 35, 44, 64, 65]. TTJ
is orthogonal to such direction as TTJ focuses on ACQ evaluation
(§ 2.2). We designed an extended T TJ [2] that works for cyclic CQ
evaluation. Comparing to WCO]J algorithms, which commonly use
multi-way join operators, the extended T TJ uses binary physical
operators in iterator interface.

7 LIMITATIONS AND FUTURE WORK

We propose the first join algorithm that incorporates backjump-
ing and no-good into query evaluation. Gaps remain when con-
sider TTJ with additional requirements from both practical and
theoretical aspects, which we discuss next. Practical aspects. (1) We
focus on estimating the logical cost in our cost model for TTJ. Fu-
ture extension to the model can include physical cost coefficients
such as ng probing cost, hash table probing cost, and tuple deletion
cost, and so on; (2) we present T TJ using the tuple-based iterator
interface. Extending T TJ to work with vectorization has one chal-
lenge: Batch processing introduces an additional trade-off because
it reduces the number of recursion calls, but potentially loses the
opportunity for detecting and deleting dangling tuples; (3) TTJ
assumes demand-driven pipelining and requires additional exten-
sion to work with asychronous processing; and (4) TTJ uses ng
only on the left-most relation Ri. Whether using ng on the other
relations requires further assessment on the ng probing cost versus
the potential additional dangling tuple removal. Theoretical aspects.
(1) The combined complexity of TTJ can be improved because it
has an additional log k term compared with the complexity of YA;
(2) the extended TTJ for cyclic queries does not have the same
complexity as WCQ]J algorithms do, which requires further explo-
ration.
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