
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TreeTracker Join: Turning the Tide When a Tuple Fails to Join
Anonymous Author(s)

ABSTRACT
Many important query processing methods proactively use semi-
joins or semijoin-like filters to delete dangling tuples, i.e., tuples
that do not appear in the final query result. Semijoin methods can
achieve formal optimality but have high upfront cost in practice.
Filter methods reduce the cost but lose the optimality guarantee.

We propose a new join algorithm, TreeTracker Join (TTJ), that
achieves the data complexity optimality for acyclic conjunctive
queries (ACQs)without semijoins or semijoin-like filters.TTJ lever-
ages join failure events, where a tuple from one of the relations of
a binary join operator fails to match any tuples from the other re-
lation. TTJ starts join evaluation immediately and when join fails,
TTJ identifies the tuple as dangling and prevents it from further
consideration in the execution of the query. The design of TTJ ex-
ploits the connection between query evaluation and constraint sat-
isfaction problem (CSP) by treating a join tree of an ACQ as a con-
straint network and the query evaluation as a CSP search problem.
TTJ is a direct extension of a CSP algorithm, TreeTracker, that
embodies two search techniques backjumping and no-good. We es-
tablish that join tree and plan can be constructed from each other
in order to incorporate the search techniques into physical opera-
tors in the iterator form. We compare TTJ with hash-join, a clas-
sic semijoin method: Yannakakis’s algorithm, and two contempo-
rary filter methods: Predicate Transfer and Lookahead Information
Passing. Favorable empirical results are developed using standard
query benchmarks: JOB, TPC-H, and SSB.

CCS CONCEPTS
• Information systems→ Join algorithms.

KEYWORDS
optimal join algorithm, join operator, acyclic conjunctive queries,
join ordering, sideway information passing
ACM Reference Format:
Anonymous Author(s). 2025. TreeTracker Join: Turning the Tide When a
Tuple Fails to Join. In In Proceedings of the 2025 International Conference
on Management of Data (SIGMOD ’25). ACM, New York, NY, USA, 14 pages.
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
Removing dangling tuples, tuples that do not contribute to the fi-
nal output of a query [26], has been central in improving both
formal and practical join query execution speed [9, 13, 18, 22, 23,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx
© 2025 Association for Computing Machinery.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX…$15.00
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

25, 30, 33, 36, 43, 45, 49, 53, 55, 57, 67–69, 71]. However, a trade-
off exists as the cost of dangling tuples removal may offset the
join performance improvement. Yannakakis’s algorithm (YA) is a
representative of semijoin methods [13, 18, 57, 67–69] for acyclic
conjunctive queries (ACQs) evaluation. YA executes a sequence
of semijoins called full reducer (𝐹Q) as a preprocessing step and
removes the dangling tuples from the input relations completely
before join evaluation [13, 67]. As a result, YA provides optimal
data complexity guarantee. However, in practice, using semijoins
introduces high upfront costs [29, 57, 62]. On the other hand, filter
methods [22, 23, 25, 30, 32, 33, 36, 45, 49, 53, 55, 71] usually trade
off optimal data complexity gurantee for reduction of dangling tu-
ple removal cost by replacing semijoins with semijoin-like filter
structures, e.g., Bloom filters [15] and removing dangling tuples
by proactively checking base relations against filters. Efficient fil-
ter implementation allows these methods to work well in practice.
Both semijoin and filter methods are eager approaches because
they preemptively remove dangling tuples, aiming to prevent pos-
sible join failures (events where a tuple from one of the relations of
a binary join operator fails to match any tuples from the other re-
lation) from happening. Those methods rely on the efficient amor-
tization of the upfront cost, incurred by dangling tuple removal,
over the resulting join time reduction. If few dangling tuples exist,
the upfront cost of the methods cannot be sufficiently amortized
and the cost of dangling tuple reduction is more likely to outweigh
its benefits. In an extreme case where no dangling tuples exist in
the input relations, dangling tuple removal operations induce ex-
tra costs with no benefits. Common existing mitigations of this
problem rely on heuristics such as disabling the filters based on se-
lectivity estimation of the underlying relations [22, 25, 55], which
require workload-specific assessment on the trade-off between the
execution cost and the potential speed improvement.

TreeTracker Join (TTJ) is the first join algorithm that lever-
ages join failure events to remove dangling tuples with minimal
overheadwhile maintaining the optimal data complexity for ACQs.
TTJ is a lazy approach. The signature feature of TTJ is to start
join evaluation immediately without any preprocessing and per-
form two additional operations only on join failure: (1) identify-
ing which tuple from which relation (guilty relation) causes a join
failure at another relation (detection relation), and (2) subsequently
removing the tuple from the guilty relation. The goal of TTJ is
to remove a sufficient number of dangling tuples in the minimal
amount of time to achieve a satisfactory level of join time reduc-
tion. ComparingwithYA,TTJ does not aim to remove all dangling
tuples, but the optimal guarantee still holds.

Fundamentally,TTJ exploits the equivalence between constraint
satisfaction problem (CSP) and conjunctive query processing [16,
39] by treating query evaluation as a search problem.The intuition
is that join tree TQ , the graph representation of ACQ, can be inter-
preted from CSP perspective as a constraint network. For example,
consider a binary join between𝐴(𝑥,𝑦) and 𝐵(𝑦, 𝑧), which is acyclic
and its TQ is 𝐴 − 𝐵. Interpreting TQ as a constraint network, we

1

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

0

(a) (b)

1

2

3

(d)

0

(c)
Figure 1: Illustration of the identification and removal of two dangling tuples by different algorithms: (a) join evaluation
viewed as solving a CSP; (b) TTJ using CSP search techniques (backjumping and no-good) on the join tree TQ ; (c) Yannakakis’s
algorithm (YA); and (d) TTJ packed into physical operators on a left-deep query plan. We explain the details in Example 1. 𝑀𝑖 are
execution moments referenced throughout the paper.

view both 𝐴 and 𝐵 as variables. Tuples in each relation are pos-
sible assignments to each variable. Our goal is to find all possible
assignments to 𝐴 and 𝐵 such that constraint 𝐴.𝑦 = 𝐵.𝑦 is satis-
fied. TQ , when viewed as a constraint network, can be evaluated
using search techniques such as backjumping and no-good, which
are commonly-used in both database [6, 19, 34] and AI commu-
nities [10, 21, 27]. TTJ is a direct extension of a CSP algorithm,
TreeTracker [10], that embodies the aforementioned two search
techniques. We show TQ and query plan can be easily constructed
from each other. Thus, the aforementioned search techniques can
be integrated into a query plan. In this paper, we directly encode
the two search techniques into physical operators in iterator inter-
face [26], utilizing the form of sideways information passing (SIP).
To help understand how TTJ works, we illustrate the CSP view of
query evaluation, and the unique features of TTJ using Example 1.

Example 1. Consider a join of 4 relations 𝑇 (𝑥), 𝑆 (𝑥,𝑦, 𝑧), 𝐵(𝑧),
and 𝑅(𝑦, 𝑧) with the database instance shown in Figure 1. All four
plots show how the same two dangling tuples from the database
instance are identified and removed by different algorithms.

(a) presents how evaluating a TQ can be viewed as solving a CSP
by recursively assigning variables one by one until all variables are
successfully assigned. The evaluation starts to assign 𝑇 with a tu-
ple from its instance𝑇 (𝑟𝑒𝑑) and then moves on to 𝑆 (moment𝑀1).
Since 𝑆 (𝑟𝑒𝑑, 1, 2) agrees with𝑇 (𝑟𝑒𝑑) on attribute 𝑥 , 𝑆 (𝑟𝑒𝑑, 1, 2) can
be assigned to 𝑆 . This assignment is the same as obtaining a join
result (𝑟𝑒𝑑, 1, 2) for 𝑇Z𝑆 . The process continues to 𝐵 and assigns
𝐵 with 𝐵(2). 𝑅(3, 2) cannot be assigned to 𝑅 given all the previous
assignments because (𝑦, 𝑧) = (3, 2) in 𝑅(3, 2) but (𝑦, 𝑧) = (1, 2)
in 𝑆 (𝑟𝑒𝑑, 1, 2). Since no other tuples from 𝑅 can be assigned, the
search process has to backtrack to 𝐵 to try a different value given
the existing assignments on 𝑇 and 𝑆 . Since no other tuples from
𝐵 can be assigned, the search backtracks to 𝑆 at 𝑀2. The same be-
havior repeats at 𝑆 and the process further backtracks to 𝑇 at 𝑀3.
Then, 𝑇 is assigned with the next tuple 𝑇 (𝑏𝑙𝑢𝑒) and the process
continues. When all variables are successfully assigned, we obtain
one solution to the CSP by joining all the current assignments to

the variables. The solution to the CSP is exactly a join result to the
query. The search process for the next solution continues until all
the solutions to the CSP are found.

(b) shows how TTJ improves the solving process in (a) with
the two search techniques and removes two dangling tuples. The
process (𝑀4) is identical to (a) until it fails to assign a tuple to 𝑅.
Unlike (a) where the process backtracks to the previously assigned
variable 𝐵, TTJ directly backjumps to 𝑆 (𝑀5), the parent of 𝑅 in TQ .
Relations skipped due to backjumping are called backjumped rela-
tions, e.g., 𝐵. Once the search backjumps to 𝑆 , the current assign-
ment to 𝑆 is marked as no-good, i.e., 𝑆 (𝑟𝑒𝑑, 1, 2) is a dangling tuple.
TTJ removes 𝑆 (𝑟𝑒𝑑, 1, 2) from the instance of 𝑆 and the removed
tuple will not be considered again for future assignments. Since no
other tuples from 𝑆 can be assigned, backjump happens again (𝑀6)
and 𝑇 (𝑟𝑒𝑑) is removed.

(c) highlights how YA removes the same dangling tuples as TTJ
in a different way. YA executes the full reducer 𝐹Q , a sequence of
semijoins, before join starts: At 𝑀7, 𝑆 ′ = 𝑆 ><𝑅 and 𝑆 (𝑟𝑒𝑑, 1, 2) is
removed. Then, at 𝑀8, 𝑇 ><𝑆 ′ and 𝑇 (𝑟𝑒𝑑) is removed. Unlike TTJ
that removes dangling tuples while performing join, YA removes
all dangling tuples before join starts.

(d) illustrates the same join process as (b) on a left-deep query
plan using demand-driven pipelining with operators implemented
in iterator interface consisting of open() and getNext(). The eval-
uation starts with recursive open() calls on the join operators and
builds hash tables on 𝑆 , 𝐵, and 𝑅. To obtain the first query result,
the join process first calls Z1’s getNext(), which calls its left child
Z2’s getNext(), and such pattern repeats until the left most rela-
tion 𝑇 ’s getNext() is called and returns 𝑇 (𝑟𝑒𝑑) (𝑀9). Z3 probes
intoH𝑆 , the hash table on 𝑆 , and finds a matching tuple 𝑆 (𝑟𝑒𝑑, 1, 2).
The joined result (𝑟𝑒𝑑, 1, 2) is returned to Z2. Then, the match-
ing tuple 𝐵(2) from H𝐵 joins with (𝑟𝑒𝑑, 1, 2) and the joined re-
sult (𝑟𝑒𝑑, 1, 2) is returned to Z1. Probing into hash tables to find
a matching tuple is the same as assigning a tuple to a variable in
CSP. No tuples fromH𝑅 join with (𝑟𝑒𝑑, 1, 2) (𝑀10); hence, join fails
at 𝑅 and 𝑅 is the detection relation.Thus, TTJ performs backjump-
ing making additional method calls to reset the evaluation flow to

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TreeTracker Join: Turning the Tide When a Tuple Fails to Join SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

𝑆 , the guilty relation, because 𝑆 is the parent of 𝑅 in TQ . Subse-
quently, 𝑆 (𝑟𝑒𝑑, 1, 2) is removed from H𝑆 (𝑀11), which is logically
equivalent to removing the tuple from the instance of 𝑆 . Since no
tuples from 𝑆 join with𝑇 (𝑟𝑒𝑑), TTJ backjumps to𝑇 and implicitly
removes 𝑇 (𝑟𝑒𝑑) by adding it to a no-good list 𝑛𝑔 (𝑀12). The no-
good list will be used in future steps to filter out dangling tuples
from 𝑇 .

The rest of the paper fills the missing details from Example 1
such as how to construct TQ from a query plan (and vice versa),
how TTJ packs backjumping and no-good techniques into a phys-
ical operator in the form of SIP, and formally show the correctness
and optimality guarantee of TTJ. In summary, this paper makes
the following contributions:

(1) We use CSP search techniques to design a lazy join algo-
rithm TTJ that removes dangling tuples if they cause join
failures (§ 3).

(2) We propose an algorithm to construct join tree from query
plan, and vice versa (§ 3.1).

(3) We formally showTTJworks correctly and runs optimally
in data complexity for ACQ (§ 4).

(4) We deduce a general condition called clean state that en-
ables optimal evaluation of ACQ while permitting the ex-
istence of dangling tuples (§ 4).

(5) We conduct extensive experiments to compare TTJ with
four baseline algorithms on three benchmarks and perform
detailed analysis to understand the features of TTJ (§ 5).

2 PRELIMINARIES
We review related background on acyclic conjunctive query evalu-
ation, formulate the problem, and summarize the notation used in
this paper .

2.1 Acyclic ConjunctiveQuery Evaluation
We consider a relational database consisting of 𝑘 relations under
bag semantics. A full conjunctive query (CQ) is a natural join of 𝑘
relations:

Q(𝒂) = 𝑅1 (𝒂1)Z𝑅2 (𝒂2)Z . . .Z𝑅𝑘 (𝒂𝒌) (1)
For each relation𝑅𝑖 (𝒂𝒊), 𝒂𝒊 is a tuple of variables called attributes.

We define 𝑎𝑡𝑡𝑟 (𝑅𝑖) = 𝒂𝒊 . Q is full because 𝒂 includes all the at-
tributes appearing in the relations, i.e., 𝑎𝑡𝑡𝑟 (Q) = ⋃𝑘

𝑢=1 𝑎𝑡𝑡𝑟 (𝑅𝑢).
Query graph.The literature contains a number of different graph

representations of Q. The most common choice is hypergraph [28,
46]. To better emphasize the connection between CSP and query
evaluation, we use an equivalent [21] alternative, query graph [17]
(also known as join graph [66]1, dual constraint graph [21], or com-
plete intersection graph [42]).The query graph ofQ is a graphwhere
there is a bijection between nodes in the graph and relations in
the query. Two nodes 𝑣1, 𝑣2 are adjacent if their corresponding re-
lations 𝑅1, 𝑅2 satisfy 𝑎𝑡𝑡𝑟 (𝑅1) ∩ 𝑎𝑡𝑡𝑟 (𝑅2) ≠ ∅. For clarity, we use
the relations to label the nodes in the query graph.

Join Tree. Q is acyclic if its query graph contains a spanning
tree called join tree TQ , which satisfies the connectedness property
[11, 21]: for each pair of distinct nodes 𝑅𝑖 , 𝑅 𝑗 in the tree and for
every common attribute 𝑎 between 𝑅𝑖 and 𝑅 𝑗 , every relation on
1Join graph is defined in CSP and database theory with a slightly different definition: a
spanning subgraph of query graph that satisfies the connectedness property [21, 42].

the path between 𝑅𝑖 and 𝑅 𝑗 contains 𝑎. For the rest of the paper,
we assume Q is a full acyclic CQ (ACQ). For ACQ, one can find
a maximum-weight spanning tree from the query graph, where
the weight of an edge (𝑅𝑖 , 𝑅 𝑗) is |𝑎𝑡𝑡𝑟 (𝑅𝑖) ∩ 𝑎𝑡𝑡𝑟 (𝑅 𝑗) |. Such tree
is guaranteed to be a join tree [42]. A rooted join tree is a join tree
converted into a directed tree with one of the nodes chosen to be
the root. We assume TQ is a rooted join tree.

Query Plan. Physical evaluation of ACQ is commonly done us-
ing query plan. A query plan is a binary tree, where each internal
node is a join operator Z, and each leaf node is a scan operator
(we use table scan by default) associated with one of the relations
𝑅𝑖 (𝒂𝒊) in Query (1). The plan is a left-deep query plan, or left-deep
plan, if the right child of every join operator is a leaf node [51]. For
example, ((𝑇Z𝑆)Z𝐵)Z𝑅 in Figure 2 (c) is a left-deep plan. In the
paper, we focus on the left-deep plan and expand to the other plan
shape in [2]. As a shorthand [64], we represent a left-deep plan,
labeled from bottom to top, (. . . ((𝑅𝑘Z𝑅𝑘−1)Z𝑅𝑘−2) . . .)Z𝑅1 as
[𝑅𝑘 , 𝑅𝑘−1, . . . , 𝑅1].

Example 2. Consider an ACQ
Q(𝑥,𝑤, 𝑧) = 𝑇 (𝑥)Z𝑆 (𝑥,𝑦, 𝑧)Z𝐵(𝑧)Z𝑅(𝑦, 𝑧) (2)

Figure 2 illustrates query graph, join tree, and query plan of Q. TQ
in (b) is obtained from the query graph in (a) by removing edge
(𝐵, 𝑅). 𝐵 and 𝑅 satisfy the connectedness property because 𝑆 , the
only relation on the path between 𝐵 and 𝑅, also shares their com-
mon attribute 𝑧. From CSP perspective, removing edge (𝐵, 𝑅) from
the query graph does not impact the query result because the con-
straint 𝐵.𝑧 = 𝑅.𝑧 is enforced via an alternate path 𝐵 − 𝑆 − 𝑅, i.e.,
𝐵.𝑧 = 𝑆.𝑧 ∧ 𝑆.𝑧 = 𝑅.𝑧.

1

2

3

x

(a) Query Graph (b) Join Tree

x

xyz

yzz

x

xyz

yzz

yz

z

z

x

z yz

(c) Query Plan

Figure 2: (a) query graph, (b) join tree , and (c) query plan
of Q in Example 2. 𝑅1, . . . , 𝑅4 show the relation numbering
and Z1,Z2,Z3,Z4 denote the join operator numbering. Z4
represents the table scan operator associated with the left-
most relation 𝑅4, which is 𝑇 in this example.

Complexity measurement.We assume a standard RAM complex-
ity model [5]. Following the convention of research in the formal
study of conjunctive query processing [4, 38, 59], we use data com-
plexity (big-O notation) as the measure of TTJ theoretical perfor-
mance, which assumes that the size of a query, 𝑘 , is a constant,
but data size 𝑛 varies [8]. We also determine TTJ performance in
combined complexity [63] (big-𝑂 notation), which considers both
𝑘 and 𝑛 as variables. Under data complexity, the lower bound of
any join algorithm is Ω(𝑛+𝑟) [59] (𝑟 is the output size) because the
algorithm has to read input relations and produce join output. A
join algorithm is optimal if its performance upper bound matches
the aforementioned lower bound.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Physical Operators. Operators in the query plan of Q are physi-
cal operators, commonly implemented in an iterator interface [26]
consisting of open(), getNext(), and close(). open() prepares
resources (e.g., necessary data structures) for the computation of
the operator; getNext() performs the computation and returns
the next tuple in the result; and close() cleans up the used re-
sources. In this paper, evaluation of a query plan is done using
demand-driven pipelining (or pipelining): it first calls open() of
each operator and then keeps calling getNext() of the root join
operator of the plan, which further recursively calls getNext() of
the rest of the operators, until no more tuples are returned [56].

2.2 Problem Definition
With the above background, we are ready to define the problem
that TTJ tries to solve.

Problem. Given anACQQ, wewant to evaluate a left-deep query
plan of Q consisting of physical join operators implemented in it-
erator interface using demand-drive pipelining with formal opti-
mality guarantee and practical efficiency.

2.3 Baselines
We compareTTJwith in-memory hash-join (HJ), one classic semi-
join method: Yannakakis’s algorithm (YA), and two representative
filter methods: Lookahead Information Passing (LIP) and Predicate
Transfer (PT). We introduce each of them in order.

HJ evaluates Q using pipelining on a left-deep plan with in-
memory hash-join operators [30]. In open(), each hash-join op-
erator builds a hash table H from its right child 𝑅𝑖𝑛𝑛𝑒𝑟 . In get
Next(), a tuple 𝑡 from the left child of the join operator, 𝑅𝑜𝑢𝑡𝑒𝑟 ,
probes intoH to find a set of joinable tuples denoted as Matching-
Tuples. getNext() returns the join between 𝑡 and the first tuple
fromMatchingTuples. The join between 𝑡 and the rest of the tuples
will be returned in the subsequent getNext() calls.

YA [67] is an optimal join algorithm for ACQ. The algorithm
consists of two phases: a full reducer phase and a join phase. In the
full reducer phase, YA makes two passes over TQ . The first pass,
called reducing semijoin program [13] 𝐻𝐹Q , traverses the join tree
bottom-up and applies 𝑅𝑝 ><𝑅𝑐 where 𝑅𝑝 is a parent relation and
𝑅𝑐 is one of its children. The possibly reduced 𝑅𝑝 further semijoins
with its other children. The resulting relations after 𝐻𝐹Q are de-
noted as 𝑅′𝑖 . For example, in Figure 1 (c), two semijoins 𝑆 ′ = 𝑆 ><𝑅
and𝑇 ′ = 𝑇 ><𝑆 ′ are part of the bottom-up pass. In the second pass,
the algorithm traverses TQ top-down applying 𝑅′𝑐 ><𝑅′𝑝 2. The fully
reduced relations are denoted as 𝑅∗𝑖 for 𝑖 ∈ [𝑘] 3 and they are free
of dangling tuples. In the join phase, YA makes the third pass of
TQ to produces the join output by again traversing TQ bottom-up
and performing pairwise joins.

LIP [25, 70, 71] leverages a set of Bloom filters to evaluate star
schema queries consisting of a fact table and dimension tables. In
open(), LIP computes filters from 𝑅𝑖𝑛𝑛𝑒𝑟 of each join operator and
passes those filters downwards along the left-deep plan to the fact
table, which is the left-most relation of the plan. In getNext() of
the left-most table scan operator, LIP checks the tuples from the

2𝑅𝑐 ><𝑅′𝑝 if 𝑅𝑐 is a leaf node because leaf nodes are not reduced in the first pass.
3 [𝑘] is a shorthand for 1, . . . , 𝑘

fact table against the filters and propagates those pass the check
upwards along the plan.

PT [66] is the state-of-the-art filter method that generalizes the
idea of LIP to queries not limited to star schema queries. Similar
to YA, PT divides query evaluation into two phases. First, in pred-
icate transfer phase, PT passes filters over the predicate transfer
graph, a directed acyclic graph built from the query graph, of a
query in two directions: forward and backward, which is similar to
the first two passes over TQ in YA. Relations are gradually reduced
as filters are being passed. Once the predicate transfer phase is
done, the join phase begins where the reduced relations are joined.

2.4 Notation
Table 1: Summary of common notation

Notation Definition
Q a full acyclic CQ
𝑘 number of relations in Q
𝑛 maximum size of the input relations in Q
𝑟 query output size
TQ rooted join tree. See Figure 2 (b).
PQ a left-deep query plan using TTJ (§ 3)

𝑅𝑖 for 𝑖 ∈ [𝑘]
relations in PQ . Left-most relation is 𝑅𝑘 . See
Figure 2 (c).

Z𝑖 for 𝑖 ∈ [𝑘]
join operators in PQ . Z1 is the root operator.
Z𝑘 is the table scan operator of 𝑅𝑘 . See
Figure 2 (c).

[𝑅𝑘 , 𝑅𝑘−1, . . . , 𝑅1] a query plan (. . . ((𝑅𝑘Z𝑅𝑘−1)Z𝑅𝑘−2) . . .)Z𝑅1
𝐽 ∗𝑢 join of relations 𝑅𝑘 , 𝑅𝑘−1, . . . , 𝑅𝑢

𝑡 [𝑎] 𝑡 [𝑎] = 𝜋𝑎 (𝑡) for tuple 𝑡 , attribute 𝑎, and
projection 𝜋

𝑗𝑎(𝑅, 𝑆) 𝑎𝑡𝑡𝑟 (𝑅) ∩ 𝑎𝑡𝑡𝑟 (𝑆)
𝑅(3, 2) tuple (3, 2) ∈ 𝑅
𝑗𝑎𝑣 (𝑡, 𝑅, 𝑆) join-attribute value 𝑡 [𝑎𝑡𝑡𝑟 (𝑅) ∩ 𝑎𝑡𝑡𝑟 (𝑆)]
𝑅𝑖𝑛𝑛𝑒𝑟 right child of Z𝑖
𝑅𝑜𝑢𝑡𝑒𝑟 left child of Z𝑖
H𝑅 (orH𝑖) hash table built from 𝑅 (or associated with Z𝑖)

MatchingTuples
the list of tuples with the same 𝑗𝑎𝑣 in a hash
table

𝑛𝑔 no-good list, a filter in TTJ scan

R
physical aspects of 𝑅, i.e., a bag of tuples 𝑅
contains

We summarize the notation used in the paper in Table 1. We
omit standard relational algebra notation in the table, e.g., antijoin
>< and semijoin ><. We further define some terminologies used
throughout the paper. We call a relation internal if it appears as an
internal node [20, 52] in TQ . For relations corresponding to non-
root internal nodes of TQ , we call them internal◦ relations. Simi-
larly, a leaf relation means the relation appears as a leaf node in
TQ . The root relation is defined accordingly. Depending on context,
we adapt the following language: If a tuple produced from Z𝑖+1,
the 𝑅𝑜𝑢𝑡𝑒𝑟 of Z𝑖 , cannot join with any tuples from 𝑅𝑖 , the 𝑅𝑖𝑛𝑛𝑒𝑟
of Z𝑖 (dead-end in CSP [21]), we call it a join fails at Z𝑖 , a join fail-
ure happens at Z𝑖 , or join fails at 𝑅𝑖 . In such case, 𝑅𝑖 is called the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TreeTracker Join: Turning the Tide When a Tuple Fails to Join SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3

2

1

3

2

1

detection
relation

(a) (b)

Join Failure

3

2

1

(c)

MatchingTuples

MatchingTuples

2

MatchingTuples

MatchingTuples MatchingTuples

guilty relation detection relationguilty
relation

Figure 3: (a) Join fails at Z1. (b) A series of deleteDT(R) is called, which leads to the removal of 𝑆 (𝑟𝑒𝑑, 1, 2) from hash tableH𝑆 .
(c) Join further fails at Z3, which puts 𝑇 (𝑟𝑒𝑑) to 𝑛𝑔.

detection relation (dead-end variable in CSP [21]). Z𝑖 is called the
detection operator. We call the join operator the removal operator if
its 𝑅𝑖𝑛𝑛𝑒𝑟 is the parent of the detection relation for a join failure in
TQ . Such 𝑅𝑖𝑛𝑛𝑒𝑟 is the guilty relation (culprit variable in CSP [21]).
For example, for the join failure happens at Z1 in Figure 1 (d), the
detection relation is 𝑅 and the detection operator is Z1. 𝑆 is the
guilty relation and Z3 is the removal operator.

3 TREETRACKER JOIN OPERATORS
Algorithms 3.1 and 3.2 show the formal definition of TTJ. Algo-
rithm 3.1 defines each join operator in a left-deep plan. Algorithm 3.2
defines TTJ scan, which replaces the normal left-most table scan
operator; the rest of the table scan operators in the plan remains
unchanged.We usePQ to denote the left-deep plan using TTJ. We
are now ready to work out Example 1 in full details to highlight the
salient features of TTJ mentioned in § 1. We expand Figure 1 (d)
into Figure 3. All line numbers reference Algorithm 3.1 by default
unless noted otherwise.

The following three examples show the execution moments in
the first getNext() call after open() of the pipelining evaluation
that leads to the removal of two dangling tuples. Example 3 shows
that TTJ does not schedule any semijoins or semijoin-like filters
before query evaluation. The evaluation flow is identical to HJ
when no join failure happens.

Example 3 (𝑀9 in Figures 1 and 3). After plan evaluation begins,
the recursive getNext() calls start with Z1 and end with𝑇 ’s TTJ
scan operator (Line 4 Algorithm 3.2), which returns 𝑇 (𝑟𝑒𝑑). The
𝑗𝑎𝑣 (𝑥 : 𝑟𝑒𝑑) is used to look up H𝑆 (Line 15). Since 𝑇 (𝑟𝑒𝑑) joins
with 𝑆 (𝑟𝑒𝑑, 1, 2), the resulting tuple (𝑟𝑒𝑑, 1, 2) is further propagated
toZ2, which probes intoH𝐵 and finds𝐵(2) joinable.The join result
(𝑟𝑒𝑑, 1, 2) is further passed to Z1.

Example 4 shows how the backjumping idea from CSP (specif-
ically, graph-based backjumping [21]) shown in Example 1 is inte-
grated into physical operators in PQ . To do so, we enhance the
iterator interface with one more method deleteDT() and imple-
ments backjumping as a series of deleteDT() calls 4 from the de-
tection operator to the removal operator corresponding to a join

4We omit argument to deleteDT() when reference it generically.

failure. deleteDT(), under the form of SIP, sends the reference of
the detection relation from the detection operator to the removal
operator in a fashion that is not explicitly indicated by the plan.

Example 4 (𝑀10 and𝑀11 in Figures 1 and 3). Since (𝑟𝑒𝑑, 1, 2) can-
not joinwith any tuples fromH𝑅 , the goal ofTTJ is to backjump to
the guilty relation 𝑆 and remove the last returned tuple, 𝑆 (𝑟𝑒𝑑, 1, 2),
from H𝑆 . To do so, Z2.deleteDT(R) is called from Line 20 first.
Since Z2’s 𝑅𝑖𝑛𝑛𝑒𝑟 , 𝐵, is not the parent of 𝑅 in TQ (Line 23), Line 27
is called, e.g., Z3.deleteDT(R). In Z3’s deleteDT(), since 𝑆 is the
parent of 𝑅 (Line 23), Line 24 is executed: 𝑆 (𝑟𝑒𝑑, 1, 2) is removed
fromH𝑆 .

Example 4 shows that removing tuples from internal◦ relations
5 is implemented as removing the tuples from their index represen-
tations. Example 5 illustrates another CSP technique, no-good list
(𝑛𝑔), that TTJ incorporates to filter out dangling tuples from the
left-most relation 𝑅𝑘 .

Example 5 (𝑀12 in Figures 1 and 3). Removal of 𝑆 (𝑟𝑒𝑑, 1, 2) causes
𝑇 (𝑟𝑒𝑑) to become dangling. TTJ adds it to 𝑛𝑔, effectively remov-
ing it from𝑇 . After removing 𝑆 (𝑟𝑒𝑑, 1, 2), getNext() ofZ3 is called
(Line 29). SinceMatchingTuples is now empty and 𝑟𝑜𝑢𝑡𝑒𝑟 = 𝑇 (𝑟𝑒𝑑),
Line 15 is executed. No tuples from 𝑆 joins with 𝑇 (𝑟𝑒𝑑). Thus, 𝑇 .d
eleteDT(S) is called (Line 20) and Algorithm 3.2 Line 10 adds 𝑗𝑎𝑣
(𝑥 : 𝑟𝑒𝑑) to 𝑛𝑔. Once 𝑛𝑔 is non-empty, it will work like a filter to
prevent future dangling tuples with the same 𝑗𝑎𝑣 from returning
to Z3. getNext() of 𝑇 is called (Algorithm 3.2 Line 11). The next
tuple 𝑇 (𝑏𝑙𝑢𝑒) then probes into 𝑛𝑔 (Algorithm 3.2 Line 6). Since 𝑇
has only one child 𝑆 , 𝑗𝑎𝑣 (𝑥 : 𝑏𝑙𝑢𝑒) is computed and it is not in 𝑛𝑔.
Thus 𝑇 (𝑏𝑙𝑢𝑒) is safe to further propagate upwards towards Z3.

3.1 Construction ofQuery Plan or Join Tree
TTJ operates on a left-deep query plan, which represents the join
order of the input relations of the query. In addition, TTJ requires
a TQ to find the parent of the detection relation, i.e., the guilty
relation, for a join failure. Thus, if either the plan or the TQ is miss-
ing, we need to construct it from the other one. A constraint ex-
ists for such construction to ensure TTJ can function correctly.

5No tuples are removed from the leaf relations because they cannot be guilty relations,
i.e., by leaf definition, they are not parent of any relations in TQ .

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 3.1: TTJ Join Operator
Purpose: An iterator returns, one at a time, the join result

of 𝑅𝑜𝑢𝑡𝑒𝑟 and 𝑅𝑖𝑛𝑛𝑒𝑟 .
Output: A tuple 𝑡 ∈ 𝑅𝑜𝑢𝑡𝑒𝑟Z𝑅𝑖𝑛𝑛𝑒𝑟

1 TTJOperator
2 void open()

// 𝑟𝑜𝑢𝑡𝑒𝑟 references a tuple from 𝑅𝑜𝑢𝑡𝑒𝑟

// MatchingTuples references a set of tuples from

𝑅𝑖𝑛𝑛𝑒𝑟 that are joinable with 𝑟𝑜𝑢𝑡𝑒𝑟

3 Initialize 𝑟𝑜𝑢𝑡𝑒𝑟 ,MatchingTuples to 𝑛𝑖𝑙
4 𝑅𝑖𝑛𝑛𝑒𝑟 .open()
5 Build hash tableH : Insert each tuple, 𝑟𝑖𝑛𝑛𝑒𝑟 , from

𝑅𝑖𝑛𝑛𝑒𝑟 intoH using the join attribute value(s),
𝑗𝑎𝑣 (𝑟𝑖𝑛𝑛𝑒𝑟 , 𝑅𝑜𝑢𝑡𝑒𝑟 , 𝑅𝑖𝑛𝑛𝑒𝑟) as the key

6 𝑅𝑜𝑢𝑡𝑒𝑟 .open()
7 Tuple getNext()
8 if MatchingTuples ≠ 𝑛𝑖𝑙 ∧MatchingTuples ≠ ∅ then

// If there are more matching tuples left, return

the join of 𝑟𝑜𝑢𝑡𝑒𝑟 and the next matching tuple

9 if (aMatchingTuple← MatchingTuples.next()
) ≠ 𝑛𝑖𝑙 then

10 return the join of 𝑟𝑜𝑢𝑡𝑒𝑟 and
aMatchingTuple

// No matching tuples are left. Get a new 𝑟𝑜𝑢𝑡𝑒𝑟

11 𝑟𝑜𝑢𝑡𝑒𝑟 ← 𝑅𝑜𝑢𝑡𝑒𝑟 .getNext()
12 if 𝑟𝑜𝑢𝑡𝑒𝑟 = 𝑛𝑖𝑙 then return 𝑛𝑖𝑙

13 if 𝑟𝑜𝑢𝑡𝑒𝑟 = 𝑛𝑖𝑙 then 𝑟𝑜𝑢𝑡𝑒𝑟 ← 𝑅𝑜𝑢𝑡𝑒𝑟 .getNext()
14 while 𝑟𝑜𝑢𝑡𝑒𝑟 ≠ 𝑛𝑖𝑙 do

// Find tuples from 𝑅𝑖𝑛𝑛𝑒𝑟 joinable with 𝑟𝑜𝑢𝑡𝑒𝑟

15 MatchingTuples←
H .get(𝑗𝑎𝑣 (𝑟𝑜𝑢𝑡𝑒𝑟 , 𝑅𝑜𝑢𝑡𝑒𝑟 , 𝑅𝑖𝑛𝑛𝑒𝑟))

16 if MatchingTuples ≠ 𝑛𝑖𝑙 then
17 aMatchingTuple← MatchingTuples.next()
18 return the join of 𝑟𝑜𝑢𝑡𝑒𝑟 and

aMatchingTuple
19 else

// Join failure identified; start the

backjumping to the guilty relation, parent

of 𝑅𝑖𝑛𝑛𝑒𝑟 in TQ
20 𝑟𝑜𝑢𝑡𝑒𝑟 ← 𝑅𝑜𝑢𝑡𝑒𝑟 .deleteDT(𝑅𝑖𝑛𝑛𝑒𝑟)

21 return 𝑛𝑖𝑙

22 Tuple deleteDT(Detection Relation 𝑅)
23 if 𝑅𝑖𝑛𝑛𝑒𝑟 is the parent of 𝑅 in TQ then

// 𝑅𝑖𝑛𝑛𝑒𝑟 is the guilty relation; join failure was

identified at 𝑅 because the join between 𝑟𝑜𝑢𝑡𝑒𝑟

and aMatchingTuple was eventually returned to

𝑅 and cannot join with any tuples from 𝑅

24 Remove aMatchingTuple from MatchingTuples
andH

25 else
// Has not reached the guilty relation for 𝑅;

backjumping continues

26 MatchingTuples← 𝑛𝑖𝑙

27 𝑟𝑜𝑢𝑡𝑒𝑟 ← 𝑅𝑜𝑢𝑡𝑒𝑟 .deleteDT(𝑅)
28 if 𝑟𝑜𝑢𝑡𝑒𝑟 = 𝑛𝑖𝑙 then return 𝑛𝑖𝑙

29 return getNext()

Algorithm 3.2: TTJ Table Scan Operator for 𝑅𝑘
Purpose: Table scan operator for 𝑅𝑘 that returns tuples

not in 𝑛𝑔.
1 TTJScan
2 void open()
3 Initialize 𝑛𝑔 to an empty set
4 Tuple getNext()
5 while (𝑡 ← 𝑅𝑘 .next()) ≠ 𝑛𝑖𝑙 do
6 if 𝑗𝑎𝑣 (𝑡, 𝑅𝑘 , 𝑅𝑖) ∉ 𝑛𝑔 for all children 𝑅𝑖 of 𝑅𝑘 in

TQ then
7 return 𝑡

8 return 𝑛𝑖𝑙

9 Tuple deleteDT(Detection Relation 𝑅)
// 𝑅𝑘 is the guilty relation; 𝑡 contributes to the

tuple that caused the join failure at 𝑅

10 Insert 𝑗𝑎𝑣 (𝑡, 𝑅𝑘 , 𝑅) into 𝑛𝑔
11 return getNext()

Since deleteDT() always sends a reference of the detection rela-
tion downwards along the plan, when the plan is missing, we need
to construct a plan such that the guilty relation must sit below the
detection relation. For the same reason, when TQ is missing, we
need to construct a TQ such that for any detection relation in a
plan, exactly one of the relations below it must be its parent in the
tree. In this section we formalize the constraint and describe how
to properly construct a TQ or a plan given the other input.

Given a left-deep query plan, Definition 1 defines the aforemen-
tioned constraint on the TQ .

Definition 1 (join tree assumption). Suppose PQ = [𝑅𝑘 , 𝑅𝑘−1,
. . . , 𝑅1]. TTJ assumes TQ satisfies the following property: for a
given relation 𝑅𝑖 in PQ , its parent in TQ is one of the relations
𝑅𝑘 , 𝑅𝑘−1, . . . , 𝑅𝑖+1. The root of TQ is the left-most relation 𝑅𝑘 .

Example 6. Consider PQ in Figure 2 (c), 𝐵 is labeled as 𝑅2. TTJ
expects that 𝐵’s parent in TQ has to be either 𝑅3 or 𝑅4. As shown
in Figure 2 (b), 𝐵’s parent is 𝑆 , which corresponds to 𝑅3. Thus, TQ
in (b) satisfies the assumption.

The next lemma states that we can easily construct a required
TQ from any left-deep query plan that does not have cross-product.

Lemma 3.1. For any left-deep planwithout cross-product for acyclic
queries, there exists a TQ satisfies the join tree assumption (Defini-
tion 1).

We defer the construction step and proof to [2]. The key idea
is as follows: We construct TQ following the order of relations in
PQ from left to right. Suppose 𝑅𝑘 , . . . , 𝑅 𝑗+1 are already added to
TQ . For 𝑅 𝑗 , we want to find a relation 𝑅𝑖 that is already in TQ such
that𝑎𝑡𝑡𝑟 (𝑅 𝑗)∩(

⋃𝑘
𝑢=𝑗+1 𝑎𝑡𝑡𝑟 (𝑅𝑢)) ⊆ 𝑎𝑡𝑡𝑟 (𝑅𝑖). Left-deep query plan

without cross-product for acyclic queries guarantees such 𝑅𝑖 exists.
We add 𝑅 𝑗 in TQ through an edge (𝑅𝑖 , 𝑅 𝑗).

Example 7. Suppose PQ = [𝑅3 (𝑥,𝑦), 𝑅2 (𝑥,𝑦, 𝑧), 𝑅1 (𝑦, 𝑧)]. The
left-most relation 𝑅3 (𝑥,𝑦) has to be the root of TQ . For the next
relation 𝑅2 (𝑥,𝑦, 𝑧), since only 𝑅3 is in TQ and 𝑎𝑡𝑡𝑟 (𝑅2)∩𝑎𝑡𝑡𝑟 (𝑅3) ⊆

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

TreeTracker Join: Turning the Tide When a Tuple Fails to Join SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

𝑎𝑡𝑡𝑟 (𝑅3), we add edge (𝑅3, 𝑅2). Now, both 𝑅3 and 𝑅2 are in TQ and
union of their attributes is {𝑥,𝑦, 𝑧}. Since 𝑎𝑡𝑡𝑟 (𝑅1) ∩ {𝑥,𝑦, 𝑧} ⊆
𝑎𝑡𝑡𝑟 (𝑅2), we add edge (𝑅2, 𝑅1). The final TQ is 𝑅3 → 𝑅2 → 𝑅1.

Example 8. Consider a cyclic query, PQ = [𝑅3 (𝑎, 𝑏), 𝑅2 (𝑏, 𝑐),
𝑅1 (𝑐, 𝑎)], the classic triangle query. Let us try to construct TQ .
𝑅3 (𝑎,𝑏) is the root. 𝑅2 (𝑏, 𝑐) connects 𝑅3. 𝑎𝑡𝑡𝑟 (𝑅3) ∪ 𝑎𝑡𝑡𝑟 (𝑅2) =
{𝑎, 𝑏, 𝑐}. But, 𝑎𝑡𝑡𝑟 (𝑅1) ∩ {𝑎,𝑏, 𝑐} ⊈ 𝑎𝑡𝑡𝑟 (𝑅2) and 𝑎𝑡𝑡𝑟 (𝑅1) ∩ {𝑎, 𝑏, 𝑐}
⊈ 𝑎𝑡𝑡𝑟 (𝑅3). 𝑅1 cannot be placed in TQ to satisfy the connectedness
property while keeping TQ being a tree.

Example 9. PQ = [𝑇 (𝑥), 𝑅(𝑦, 𝑧), 𝐵(𝑧), 𝑆 (𝑥,𝑦, 𝑧)] contains a cross-
product due to 𝑇 (𝑥), 𝑅(𝑦, 𝑧). We cannot construct TQ because TQ
is a subgraph of the query graph and the query graph does not
contain (𝑇, 𝑅) edge.

Definition 1 can be interpreted as a join order assumption, which
defines the constraint on the plan.

CoRollaRy 3.2 (join oRdeR view of Definition 1). Given a
TQ , TTJ assumes the order of relations in a left-deep query plan
satisfies the following property: for a node 𝑅𝑖 and its child 𝑅 𝑗 in TQ ,
𝑅𝑖 is before 𝑅 𝑗 in PQ , i.e., PQ = [. . . , 𝑅𝑖 , . . . , 𝑅 𝑗 , . . .].

Construction of PQ is straightforward: performing a top-down
pass (not necessarily from left to right) of TQ .

Example 10. ForTQ in Figure 2 (b) with𝑇 as the root, bothP1
Q =

[𝑇, 𝑆, 𝐵, 𝑅] and P2
Q = [𝑇, 𝑆, 𝑅, 𝐵] are valid plans for TTJ.

3.2 Additional Practical Considerations
To use TTJ in production environment, additional considerations
are required beyond the algorithm itself. In [2], we further discuss
(1) TTJ cost modeling to determine both TQ and PQ ; (2) using
TTJ with buhsy plan, including the construction of a buhsy plan
from a TQ and a formal analysis of TTJ performance; and (3) an
extended TTJ for cyclic queries with a formal runtime analysis.

4 CORRECTNESS AND OPTIMALITY OF TTJ
We prove the correctness and the optimality gurantee of TTJ in
this section. Due to the space limit, we present the correctness the-
orem without the proof and focus on the proof of optimality. The
omitted lemmas and proofs are in [2].

TheoRem 4.1 (CoRRectness ofTTJ). Evaluating an ACQ of𝑘
relations using PQ , which consists of 𝑘−1 instances of Algorithm 3.1
as the join operators and 1 instance of TTJ scan (Algorithm 3.2) for
the left-most relation 𝑅𝑘 , computes the correct query result.

The runtime analysis of evaluating PQ is done in two steps.
First, we propose a general condition for any left-deep plan with-
out cross-product for ACQ called clean state. Clean state specifies
what tuples can be left in the input relations without breaching the
O(𝑛 + 𝑟) evaluation time guarantee. In contrast to the common be-
lief that input relations have to be free of dangling tuples to enable
O(𝑛 + 𝑟) evaluation, clean state permits the existence of dangling
tuples. Clean state provides a formal explanation on one reason
why YA may have large dangling tuple removal costs — it spends
efforts to remove more than necessary tuples. Second, we show
PQ reaches the clean state and the work done by TTJ between
the beginning of the query evaluation and reaching the clean state

(cleaning cost) is no more than the work done after reaching the
clean state. The former takes O(𝑛) and the latter takes O(𝑛 + 𝑟).

Definition 2 (clean state). For a left-deep plan without cross-
product for ACQ, we denote the contents of 𝑅𝑖 that satisfy the fol-
lowing conditions by R̃𝑖 :

(i) R̃𝑖 = R𝑖 for all the leaf relations 𝑅𝑖 of TQ ;
(ii) (R𝑖 ><𝐽 ∗𝑖+1) >< R̃𝑢 = ∅ for internal◦ relations 𝑅𝑖 and their

child relations 𝑅𝑢 ; and
(iii) R𝑘 >< R̃𝑢 = ∅ for the root of TQ , 𝑅𝑘 and its children 𝑅𝑢 .

The plan reaches clean state if the contents of all 𝑅𝑖 equal R̃𝑖 .

Lemma 4.2. When the left-deep plan without cross-product for
ACQ is in clean state, 𝑅𝑘 is fully reduced and free of dangling tuples.

TheoRem 4.3 (Clean state implies optimal evaluation).
Once the left-deep plan without cross-product is in clean state, any in-
termediate results generated from the plan evaluation will contribute
to the final join result and the plan can be evaluated optimally.

Comparison with full reducer and reducing semijoin program. Re-
lations that are free from dangling tuples are in clean state. Thus,
relations after 𝐹Q are in clean state. Relations after 𝐻𝐹Q are in
clean state aswell. Leaf relations after𝐻𝐹Q satisfy Condition (i) (by
definition of 𝐻𝐹Q) and the root relation after 𝐻𝐹Q satisfies Con-
dition (iii) (by Lemma 4.2 and Lemma 4 of [13]). For an internal◦
relation 𝑅𝑖 , it satisfies R𝑖 >< R̃𝑢 = ∅, which implies the satisfaction
of Condition (ii). However, the state of relations after 𝐻𝐹Q or 𝐹Q
is stricter than what is required by clean state, i.e., more than nec-
essary tuples are removed for optimal evaluation. Tuples of 𝑅𝑖 that
are not joinable with 𝐽 ∗𝑖+1 will be removed by both 𝐹Q and 𝐻𝐹Q if
such tuples are not joinable with tuples from any child relation of
𝑅𝑖 . But, those dangling tuples are allowed to present in clean state.

Example 11. Consider a TQ 𝑅3 (𝑥) → 𝑅2 (𝑥,𝑦) → 𝑅1 (𝑦) with
the following database instance: 𝑅3 (4), 𝑅2 (4, 6), 𝑅2 (3, 5), 𝑅2 (3, 7),
𝑅2 (4, 7), and 𝑅1 (7). Clean state only requires the removal of one
tuple 𝑅2 (4, 6). 𝐻𝐹Q removes two tuples 𝑅2 (4, 6) and 𝑅2 (3, 5). 𝐹Q
removes three tuples: 𝑅2 (4, 6), 𝑅2 (3, 5), and 𝑅2 (3, 7).

Lemma 4.4. When TTJ finishes execution, PQ is in clean state.

Lemma 4.5. TTJ evaluates PQ inO(𝑛+𝑟) once it is in clean state.

Next, we prove the optimality guarantee of TTJ by bounding
the cleaning cost.The key idea is to leverage the fact that whenever
a dangling tuple is detected, some tuple has to be removed and
there can be at most 𝑘𝑛 tuples removed. The cost to remove each
tuple is O(1) under data complexity.

TheoRem 4.6 (DatacomplexityoptimalityofTTJ). Eval-
uating an ACQ of 𝑘 relations using PQ , which consists of 𝑘 − 1
instances of Algorithm 3.1 as the join operators and 1 instance of
TTJ scan (Algorithm 3.2) for the left-most relation 𝑅𝑘 , has runtime
O(𝑛 + 𝑟), meeting the optimality bound for ACQ in data complexity.

PRoof. By Lemma 4.4, the execution of a plan is in clean state
when TTJ execution finishes. The amount of work that makes PQ
clean, i.e., cleaning cost, is fixed despite the distribution of dangling
tuples in the relations. Suppose the execution is in clean state after
computing the first join result.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

To bound the cleaning cost, we bound the cost of getting the
first join result. Cleaning cost of TTJ includes the following com-
ponents: (1) the cost of open(), which is 𝑂 (𝑘𝑛); (2) the cost of
getNext(); and (3) the cost of deleteDT(), which is bounded by
the cost of getNext() as well.

The total cost of getNext() is bounded by the total number
of loops (starting at Line 14). Within the loop, hash table lookup
(Line 15) is 𝑂 (1). The total number of loops equals the total num-
ber of times that 𝑟𝑜𝑢𝑡𝑒𝑟 is assigned with a value. 𝑟𝑜𝑢𝑡𝑒𝑟 assignment
happens on Lines 11, 13, 20, and 27. Line 13 is called when get
Next() is recursively called from Z1 to start computing the first
join result, which in total happens 𝑘 times. Afterwards, whenever
𝑟𝑜𝑢𝑡𝑒𝑟 becomes𝑛𝑖𝑙 , execution terminates by returning𝑛𝑖𝑙 (Lines 12,
21, and 28) and Line 13 never gets called.

Each time deleteDT() is called from Line 20, exactly one tuple
is removed. Thus, 𝑟𝑜𝑢𝑡𝑒𝑟 is assigned 𝑂 (𝑘𝑛) times on Line 20. After
a call to deleteDT() made in the 𝑖th operator (𝑖 ∈ [𝑘 − 2]) from
Line 20, deleteDT() can be recursively called at most 𝑘 − 𝑖 times
from Line 27. The number of deleteDT() calls with 𝑘 − 𝑖 recursive
calls is at most 𝑛 because each relation has size 𝑛 and each initi-
ation of deleteDT() removes a tuple. Thus, the total number of
assignment to 𝑟𝑜𝑢𝑡𝑒𝑟 from Line 27 is ≤ ∑𝑘−2

𝑖=1 (𝑘 − 𝑖) · 𝑛 = 𝑂 (𝑘2𝑛).
If deleteDT() is never called during the computation of the first

join result, Line 11 is not called. Line 11 can only be called from
Line 29 when Line 23 is evaluated to true; any getNext() calls
(Line 29) from recursive deleteDT() calls triggered by Line 20 will
not call Line 11 because MatchingTuples is set to 𝑛𝑖𝑙 on Line 26.
Thus, the number of calls on Line 11 equals to the number of del
eteDT() calls from Line 20, which is 𝑂 (𝑘𝑛).

Summing everything together, cleaning cost is 𝑂 (𝑘2𝑛). Since
PQ is clean after computing the first join result, with Lemma 4.5,
the result follows. □

The combined complexity of TTJ is 𝑂 (𝑘2𝑛 + 𝑘𝑟), which can
be further reduced to 𝑂 (𝑛𝑘 log𝑘 + 𝑘𝑟) by imposing an additional
constraint on PQ . We defer the details to [2].

5 EVALUATION
We compare the performance of TTJ with the baselines (§ 5.3),
introduce three parameters that impact TTJ performance, and an-
alyze them through control studies (§ 5.4). We further examine the
space consumption of 𝑛𝑔 and the robustness of TTJ (§ 5.4).

5.1 Algorithms and Implementation
We compare TTJ with the baselines (§ 2.3) in an apples-to-apples
fashion, where we implement all these methods within the same
query engine built from scratch in Java. The engine architecture
is similar to the architecture of recent federated database systems
[12, 54]. The engine optimizes each algorithm using the same DP
procedure [26] with an algorithm-specific cost model6. Due to the
space limit, we defer the details of the cost models to [2]. The en-
gine connects two data sources: PostgreSQL 13, which provides
the estimation to the terms in the cost models, and DuckDB [50],
which serves as the storage manager. All data are stored on disk.

6All cost models estimate the sum of intermediate result sizes

We detail the implementation of 𝑛𝑔 here. Suppose 𝑅𝑘 has 𝑚
children 𝑆1, . . . , 𝑆𝑚 . Physically, 𝑛𝑔 is implemented as a hash table
⟨𝑆𝑖 , ℓ𝑖 ⟩ where ℓ𝑖 is a set containing 𝑗𝑎𝑣 (𝑡, 𝑅𝑘 , 𝑆𝑖) for dangling tuple
𝑡 from 𝑅𝑘 detected by 𝑆𝑖 .

We provide additional implementation details of the baselines
that are not described in § 2.3. To implement YA, we introduce
a 𝑘-ary physical operator full reducer operator that executes 𝐹Q .
The fully reduced relations, which already reside in memory, are
then evaluated by HJ. PT is implemented similarly to YA with
a 𝑘-ary operator for the predicate transfer phase. PT originally
works on the predicate transfer graph, which contains redundant
edges compared with TQ . Redundant edges may lead to additional
unnecessary passes of Bloom filters that may negatively impact
PT performance 7. Thus, we show the results of PT on TQ . We
use the blocked Bloom filter [48] implementation from [31].

5.2 Experimental Setup
Workload.Weuse threeworkloads: JoinOrdering Benchmark (JOB)
[40], TPC-H [58] (scale factor = 1), and Star Schema Benchmark
(SSB) [47] (scale factor = 1). We focus on ACQs in the benchmarks,
i.e., we omit cyclic queries, single-relation queries, and querieswith
correlated subqueries. All 113 JOB queries, 13 TPC-H queries, and
all 13 SSB queries meet the criteria.

Environment. For all our experiments, we use a single machine
with one AMD Ryzen 9 5900X 12-Core Processor @ 3.7Hz CPU
and 64 GB of RAM.We only use one logical core. We set the size of
the JVM heap to 20 GB. All the data structures are stored on JVM
heap. Benchmarks are orchestrated by JMH [1], which includes 5
warmup forks and 10 measurement forks for each query and algo-
rithm. Each fork contains 3 warmup and 5 measurement iterations.

5.3 Comparison with Existing Algorithms
5.3.1 Query Performance. Figure 4 compares the execution time
of TTJ, YA, and PT against HJ on JOB queries. Of all 113 queries,
TTJ runs faster than HJ on 112 (99%) of them. The maximum
speedup is 6.8× (6.c) and the minimum speedup is 1× (6f). On av-
erage (geometric mean), TTJ is 1.8× faster than HJ. YA is faster
than HJ on 47 (42%) queries. The maximum, average, and mini-
mum speedup is 11.3× (5a), 1×, 0.3× (6f), respectively. PT is faster
thanHJ on 67 (59%) queries.Themaximum, average, andminimum
speedup is 11.5× (5a), 1.1×, 0.3× (15b), respectively. From the ag-
gregate statistics we can see that (1) TTJ has more steady speedup
than YA and PT on the entire workload: TTJ has higher aver-
age and minimum speedup than the other two algorithms; (2) YA
and PT can outperform TTJ in special cases such as 5a, which
returns empty results. 5a is favorable for YA and PT because the
query evaluation terminates earlier than TTJ: The first semijoin
movie_companies><company_type in the bottom-up pass com-
pletely removes all the tuples in movie_companies, which subse-
quently terminates the whole query evaluaiton. In contrast, the
two relations appear as the second and the fourth relation in PQ ,
which makes TTJ perform more join computations than YA and

7We conducted an empirical study by comparing PT on the predicate transfer graph
with the same PT on TQ to verify our conclusion. Result shows PT on TQ outper-
forms PT on the predicate transfer graph by 1× [2].

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

TreeTracker Join: Turning the Tide When a Tuple Fails to Join SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 4a 4b 4c 5a 5b 5c 6a 6b 6c 6d 6e 6f 7a 7b 7c 8a 8b 8c 8d 9a 9b 9c 9d 10a 10b 10c 11a 11b 11c 11d 12a 12b 12c 13a 13b 13c 13d 14a 14b 14c 15a 15b 15c 15d 16a
0

5

10

Sp
ee

du
p

16b 16c 16d 17a 17b 17c 17d 17e 17f 18a 18b 18c 19a 19b 19c 19d 20a 20b 20c 21a 21b 21c 22a 22b 22c 22d 23a 23b 23c 24a 24b 25a 25b 25c 26a 26b 26c 27a 27b 27c 28a 28b 28c 29a 29b 29c 30a 30b 30c 31a 31b 31c 32a 32b 33a 33b 33c
0

2

4

Sp
ee

du
p

Figure 4: Speedup of TTJ, YA, PT over HJ on all 113 JOB queries

3 7 8 9 10 11 12 14 15 16 18 19 20
0

0.5

1

1.5

2

2.5

Sp
ee

du
p

Figure 5: Speedup ofTTJ,YA,PT overHJ on 13 TPC-H queries

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3
0

1

2

3

4

5

6

Sp
ee

du
p

Figure 6: Speedup of TTJ, YA, PT, and LIP over HJ on all 13
SSB queries

PT before it terminates. This exemplifies the importance of join
order for TTJ, which we further study in § 5.4.5.

Figure 5 shows the comparison result on TPC-H. TTJ has the
maximum speedup 2.4× onQ8, the largest querywith𝑘 = 8 in TPC-
H. 2.4× is also the largest speedup among the three algorithms.
Similar to its performance pattern on JOB queries, TTJ has steady
speedup over the benchmarked TPC-H queries with average 1.2×
compared with 0.69× from YA and 0.84× from PT. We further
study a few interesting TPC-H queries in § 5.3.2.

For star schema queries, all algorithms share the identical TQ
and plan, where the fact table is 𝑅𝑘 and the dimension tables are
the children of 𝑅𝑘 ordered from left to right. Figure 6 illustrates
TTJ has the largest speedup, 3.2× on average, for all SSB queries
and LIP comes in second with average of 2.8×. After eliminating
the impact of join order and join tree, the performance difference
between TTJ and LIP shows that lazily building and probing 𝑛𝑔
works better than proactively building and probing a set of Bloom
filters. Probing Bloom filters at 𝑅𝑘 in LIP can be viewed as per-
forming a bottom-up pass of TQ . Compared with LIP, YA and PT
perform an additional top-down pass of TQ . The potential benefit
of the top-down pass performed by YA or PT can be very small be-
cause the fact table is fully or nearly fully reduced after the bottom-
up pass [13] and the dangling tuples in the dimension tables will
not or unlikely be matched during join evaluation. A possible per-
formance gain from the top-down pass is from dimension table size
reduction, which can speed up hash table operations. Both YA (av-
erage 1.2×) and PT (average 1.4×) are slower than LIP, indicating
that the cost of performing the top-down pass of TQ outweighs the
potential benefit due to dimension table size reduction. PT comes
the third and runs faster than YA because Bloom filter probe is
faster than semijoin hash table probe.

5.3.2 Trade-off between join time and removing dangling tuple time.
All the join algorithms we studied strategically allocate runtime
between performing joins and removing dangling tuples. On one

end of the spectrum, HJ spends all of its runtime performing joins.
On the other end of the spectrum, YA, PT, and LIP spend most
of its runtime removing dangling tuples. PT spends less than YA
due to the efficiency of Bloom filters. LIP further reduces dangling
tuple removal time on star schema queries by eliminating the top-
down pass of TQ . Due to the laziness nature of TTJ, it aims to stay
closer to the HJ side by spending less of its runtime on removing
dangling tuples and more time on computing joins. Figure 7 illus-
trates the patterns by showing the runtime breakdown on TPC-H
queries 8. The figure shows that each algorithm’s overall perfor-
mance largely depends on its dominate time, i.e., join time for TTJ
and dangling tuple removal time for YA and PT.

YA and PT are performant when the full reducer can be exe-
cuted quickly. Consider Q7: A fragment of YA join tree is a chain
orders → lineitem → supplier → nation. The first semijoin
supplier><nation already removes more than 90% of tuples from
supplier because |nation| = 1. The largely reduced supplier speeds
up the subsequent semijoin lineitem><supplier and starts a chain
reaction on the remaining semijoins. As a result, YA removes close
to 100% of the tuples of the input relations (Figure 8) in a small
amount of time (Figure 7). PT shares the same join tree as YA and
has a similar behavior. On the flip side, YA and PT face challenges
when the full reducer executes slowly. A typical example is star
schema queries. Figure 9 shows the fraction of input relations tu-
ples removed on SSB. From the figure we see that YA and PT re-
move almost identical number of dangling tuples as LIP but have
much lower speedup (Figure 6).This shows that the top-down pass
of TQ that YA and PT perform on star schema queries not only
incurs additional execution cost but also can hardly reduce dimen-
sion table size.

TTJ performs better when its join time is smaller than the dan-
gling tuple removal time of YA and PT. Join time is usually small

8Due to the space limit, we defer the runtime breakdown of LIP on SSB to [2], which
illustrates LIP spends less time on dangling tuple removal than YA and PT but more
than TTJ.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

if a large number of dangling tuples can be removed. Thus, intu-
itively, TTJ is good if the small amount of dangling tuple removal
time spent by TTJ can remove a huge number of dangling tuples.
In Q8, a typical example that TTJ greatly outperforms YA and
PT, TTJ removes 91% of the dangling tuples removed by YA or
PT, while using only 22% of YA’s and 27% of PT’s dangling tuple
removal time. However, the quantity of dangling tuples removed
alone is not a decisive factor on explaining the performance ofTTJ.
For example, in Q15, TTJ spends a neglible amount of time re-
moving the same number of dangling tuples as YA and PT (99%
of input tuples) but unlike Q8, the join time is not significantly re-
duced. As a result, TTJ does not considerably outperform YA and
PT. Such observation indicates that the quality of dangling tuples
removed also matters. A dangling tuple has high quality if remov-
ing it can substantially reduce the join time. Directly measuring
dangling tuple quality is non-trivial; instead, we use two parame-
ters to measure the effectiveness of the actions to remove certain
groups of dangling tuples. The more effectiveness the actions are,
the higher quality the removed dangling tuples have.

Duplicate ratio 𝛼 . 𝑛𝑔 contains all the unique 𝑗𝑎𝑣s of the dangling
tuples in 𝑅𝑘 . The action taken by TTJ related to 𝑛𝑔 contains two
steps: (1) If 𝑅𝑘 is the guilty relation, 𝑗𝑎𝑣 is computed and put into
𝑛𝑔; (2) Future tuples from 𝑅𝑘 are filtered out if their 𝑗𝑎𝑣 appear
in 𝑛𝑔. We focus on the filtering step of the action. To measure its
effectivness, we can divide the dangling tuples of 𝑅𝑘 into two sets:
Set𝐴 contains dangling tuples that can be filtered out by𝑛𝑔 and set
𝐵 contains the rest of the dangling tuples. We define 𝛼 = |𝐴 |

|𝐴 |+|𝐵 | ,
which is the fraction of tuples in the dangling tuples of 𝑅𝑘 that can
be filtered out by 𝑛𝑔. The larger 𝛼 is, the more dangling tuples can
be filtered out by 𝑛𝑔. For example, 99% of the tuples in lineitem (𝑅𝑘
of Q8) is dangling. Its 𝛼 is 96%.

Modified Semijoin Selectivity 𝜃 . On detecting dangling tuples,
deleteDT() is called. If the guilty relation is an internal◦ rela-
tion, a tuple is removed from its hash table. We denote the action
of removing dangling tuples from the hash tables as 𝑟𝑚. 𝜃𝑅 mea-
sures the fraction of tuples from an internal◦ relation 𝑅 that will
no longer participate join once the dangling tuples from all of its
child relations are removed. The larger 𝜃𝑅 is, the more effective 𝑟𝑚
is. For example, in Q8, customer has the highest 𝜃 6.6%.We provide
the formal definition of 𝜃 in [2] and give an example in § 5.4.2.

With the concept of quality, we can say that TTJ is fast when it
can remove a large number of high quality dangling tuples within
a small amount of dangling tuple removal time. We introduce a
third parameter, backjumping distance, which determines how fast
a dangling tuple can be removed.

Backjumping distance 𝑏𝑖 𝑗 . When join fails, TTJ backjumps to
the guilty relation via deleteDT() calls. We call the action 𝑏 𝑗 . 𝑏𝑖 𝑗
denotes the number of relations between the detection relation 𝑅𝑖
(excluding) and the guilty relation 𝑅 𝑗 (including) for a join failure.
The larger 𝑏𝑖 𝑗 is, the quicker the dangling tuple from the guilty
relation can be removed. Join time is also reduced because back-
jumped relations (relations appear between the detection and the
guilty relations in PQ) will no longer be probed until a new join
result is produced by the guilty relaiton. In Q8, the largest 𝑏𝑖 𝑗 is 4.

5.4 Detailed Analysis of TTJ
We perform control studies on the parameters introduced in § 5.3.2
to measure the effectivness of the corresponding TTJ actions.

Result Summary.Query and database instance can lead to a large
number of high quality dangling tuple removal if (1) duplicate ratio
𝛼 > 50% (§ 5.4.1); (2) modified semijoin selectivity 𝜃 > 2% (§ 5.4.2).
Backjumping is more effective when 𝑏𝑖 𝑗 > 4 (𝑘 > 5). Furthermore,
we show that: (1) no-good list takes small spaces on the benchmark
workloads (§ 5.4.4); (2) join order has a large impact on TTJ perfor-
mance, but even with a suboptimal join order, TTJ can still match
or outperform HJ.

5.4.1 Impact of 𝛼 . Consider the following query
Q = 𝑇 (𝑎, 𝑏)Z𝑅(𝑎)Z𝑆 (𝑏) (3)

𝑇 is the root of TQ and PQ = [𝑇, 𝑅, 𝑆]. Let all tuples in 𝑇 be
dangling due to 𝑆 , i.e.,𝑇 ><𝑅 = 𝑇 and𝑇 ><𝑆 = ∅. |𝐴| + |𝐵 | = |𝑇 | and
|𝐴| = 𝛼 |𝑇 |. Column𝑇 .𝑎 and 𝑅.𝑎 contain the numbers from 1 to |𝑇 |.
For𝑇 .𝑏, we first put |𝐵 | unique values; then, we append additional
|𝐴| values that are sampled from the unique values uniformly at
random. We fill in 𝑆.𝑏 with values that are not in 𝑇 .𝑏. We shuffle
all the rows of all the relations at the end. All three relations have
equal size of 10 million tuples.

Result Analysis. Figure 10 shows the fraction of 𝑛𝑔 build and
probe time over the overall runtime with different 𝛼 . The left-most
bar shows that 𝑛𝑔 operations take 8% of runtime when 𝛼 = 0%,
i.e., all dangling tuples in 𝑇 have unique 𝑗𝑎𝑣s. The fraction stays
between 8% and 10% when 𝛼 ≤ 50%. Once 𝛼 > 50%, the fraction
starts a steady drop. The right-most bar (𝛼 = 100% 9) has 2% frac-
tion and the lowest execution time overall. In general, the larger 𝛼 ,
the less time 𝑛𝑔 operations takes, and the better TTJ performs.

5.4.2 Impact of𝜃 . Condier the followingmicro-benchmark query:
𝑅(𝑎, 𝑐)Z𝑈 (𝑐, 𝑒)Z𝑉 (𝑐, 𝑑)Z𝑇 (𝑑,𝑔)Z𝑊 (𝑑, 𝑓) (4)

PQ = [𝑅,𝑈 ,𝑉 ,𝑇 ,𝑊]. TQ starts 𝑅 as the root and has a chain
𝑅 → 𝑈 → 𝑉 . Both 𝑇 and 𝑊 are children of 𝑉 . 𝑅 has two tu-
ples (1, 2), (1, 4). 𝑈 has tuples (2, 1), (2, 2), . . . , (2, 𝜃 |𝑈 |), (3, 𝜃 |𝑈 | +
1), . . . , (3, |𝑈 |−1), (4, 4), where 𝜃 is defined below.𝑉 has two tuples
(2, 3), (4, 4). 𝑇 has two tuples (3, 1),(4, 1). 𝑊 has one tuple (4, 5).
The query result set is {(1, 4, 4, 4, 1, 5)}.

We define 𝜃 on 𝑈 as 𝜃𝑈 = | (𝑈
><𝑅) >< (𝑉><𝑉) |

|𝑈 | . 𝑉 is 𝑉 in clean
state. In words, 𝜃 is the fraction of tuples in 𝑈 that are joinable
with 𝑅 and joinable with the dangling tuples from 𝑉 . We com-
pare TTJ𝑏 𝑗 with TTJ𝑏 𝑗+𝑟𝑚 . TTJ𝑏 𝑗 only enables 𝑏 𝑗 and disables
𝑛𝑔 and 𝑟𝑚. TTJ𝑏 𝑗+𝑟𝑚 enables 𝑏 𝑗 and 𝑟𝑚, which removes the dan-
gling tuples from the hash tables in addition to backjumping. We
fix |𝑈 | = 1 million.

Result Analysis. Figure 11 shows that (1) the larger 𝜃 is, the more
beneficial removing dangling tuples from the hash tables becomes;
(2) in our implementation, it is always beneficial to remove dan-
gling tuples from the hash tables: When 𝜃 = 0% 10, removing dan-
gling tuples will not reduce subsequent join computations, but in
such case, TTJ𝑏 𝑗+𝑟𝑚 and TTJ𝑏 𝑗 still have matching performance.
9Technically, 𝛼 = 99.9% because |𝐵 | ≥ 1, i.e., there has to be at least one tuple in 𝐵
so that tuples in𝐴 can be filtered out by 𝑛𝑔.
10Technically, 𝜃 > 0% because in our micro-benchmark, 𝑈 at least has (2, 1) and 𝜃
is at least one over 1 million.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

TreeTracker Join: Turning the Tide When a Tuple Fails to Join SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

3 7 8 9 10 11 12 14 15 16 18 19 20
0

20

40

60

80

100

120

140

160

No
rm

ali
ze

d
ex

ec
ut

ion
 tim

e

R

R

R

Figure 7: Breakdown of TTJ, YA, and
PT execution time into dangling tu-
ples removal (e.g.,TTJ𝑅) and join (e.g.,
TTJZ) on TPC-H

3 7 8 9 10 11 12 14 15 16 18 19 20
0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 in

pu
t t

up
les

 re
m

ov
ed

Figure 8: Fraction of tuples removed
from the input relations by TTJ, YA,
and PT on TPC-H

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

82%

85%

88%

90%

92%

95%

98%

100%

Fr
ac

tio
n

of
 in

pu
t t

up
les

 re
m

ov
ed

Figure 9: Fraction of tuples removed
from the input relations by TTJ, YA,
LIP, and PT on SSB

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

1000

2000

3000

4000

5000

6000

7000

Ex
ec

ut
ion

 tim
e

(m
s)

8% 10% 9% 9% 10% 10% 8% 6% 6% 5% 2%

Figure 10: Execution time and profile
percentage of runtime spent on build-
ing and probing 𝑛𝑔 across different 𝛼
on mini-benchmarkQuery (3)

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

Ex
ec

ut
ion

 tim
e

(m
s)

bj bj + rm

Figure 11: Execution time between
TTJ𝑏 𝑗 and TTJ𝑏 𝑗+𝑟𝑚 for different 𝜃 of
mini-benchmarkQuery (4)

3 4 5 6 7 8 9 10
k

101

102

103

104

Ex
ec

ut
ion

 tim
e

(m
s)

 in
 lo

g 1
0
 sc

ale

bj

bj +

Figure 12: Execution time between
TTJ𝑏 𝑗− (𝑏𝑖 𝑗 = 1) and TTJ𝑏 𝑗+ (𝑏𝑖 𝑗 = 𝑘 −
1) for different number of input rela-
tions 𝑘 of mini-benchmark Query (5)

0

1

2

3

4

5

6

7

Sp
ee

du
p

o

Figure 13: Performance comparison among TTJ on TTJ order (TTJ in the figure), TTJ on HJ order (TTJ𝑜 in the figure), and
HJ on HJ order on all 113 JOB queries

To explain the performance difference, first consider TTJ𝑏 𝑗 , where
it does not remove dangling tuples.The evaluation startswith𝑈 (2, 1)
and does not fail until𝑊 (𝑑, 𝑓). Then, deleteDT() resets the eval-
uation flow to𝑉 .𝑉 (2, 3) is not removed. No more matching tuples
is left from 𝑉 given 𝑗𝑎𝑣 (𝑐 : 2). deleteDT() further sets the eval-
uation flow to 𝑈 and moves on to 𝑈 (2, 2), which is joinable with
𝑅(1, 2). Since 𝑉 (2, 3) still presents, the join result (1, 2, 2, 3) will

eventually try𝑊 and fail again. deleteDT() brings the evaluation
flow back to 𝑉 . Since no more tuples are joinable with 𝑈 (2, 2), de
leteDT() resets the flow back to𝑈 . Then,𝑈 (2, 3) is returned. The
same process repeats 𝜃 |𝑈 | times in total. In TTJ𝑏 𝑗+𝑟𝑚 evaluation,
𝑉 (2, 3) is deleted when deleteDT() first resets the evaluation flow
to𝑉 .The evaluationwill finishmuch earlier because𝑈 (2, 2) will be

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

removed immediately once it probes into𝑉 , and the same happens
to𝑈 (2, 3), . . . ,𝑈 (2, 𝜃 |𝑈 |).

5.4.3 Impact of 𝑏𝑖 𝑗 . For this study, we only enable the backjump-
ing action of TTJ (TTJ𝑏 𝑗). Consider the following query (for sim-
plicity, we replace Z with comma between relations):

Q = 𝑅1 (𝑎1, . . . , 𝑎𝑘), 𝑅2 (𝑎2, 𝑎3), . . . , 𝑅𝑘−1 (𝑎𝑘−1, 𝑎𝑘), 𝑅𝑘 (𝑎𝑘) (5)

The database instance is as follows: 𝑅1 (𝑎1, . . . , 𝑎𝑘) has two tu-
ples (1, 2, 3, . . . , 𝑘 − 1, 𝑘) and (1, 3, 4, 5, . . . , 𝑘, 𝑘 + 1). 𝑅𝑖 (𝑎𝑖 , 𝑎 𝑗) has
𝑛 − 1 copies of (𝑖, 𝑗) and a tuple (𝑖 + 1, 𝑗 + 1). 𝑅𝑘 (𝑎𝑘) has one tuple
(𝑘 + 1). Query (5) has only one join result (1, 3, 4, 5, . . . , 𝑘 + 1).

We run TTJ𝑏 𝑗 on two TQ : T −Q is a chain shape: 𝑅1 → 𝑅2 →
· · · → 𝑅𝑘 . T +Q is a star shape: 𝑅1 is the root and the rest of the rela-
tions are its children ordered from left to right. We denote TTJ𝑏 𝑗
onT −Q asTTJ𝑏 𝑗− and onT +Q asTTJ𝑏 𝑗+ .TTJ𝑏 𝑗− has the character-
istic that every guilty relation 𝑆 is immediately before the detection
relation 𝑅 for any join failure, i.e., 𝑏𝑖 𝑗 = 1. TTJ𝑏 𝑗+ has only one
join failure, which happens when the tuple (𝑘 − 1, 𝑘) of 𝑅𝑘−1 joins
with 𝑅𝑘 . After the join failure, TTJ𝑏 𝑗+ resets the execution flow
to 𝑅1 and starts to compute the final join result. Thus, 𝑏𝑖 𝑗 = 𝑘 − 1.
TTJ𝑏 𝑗− produces (𝑛 − 2)∑𝑘−3

𝑗=0 (𝑛 − 1) 𝑗 = 𝑂 (𝑘𝑛𝑘) more dangling
intermediate results than TTJ𝑏𝑓 + [2]. We fix 𝑛 = 10 and vary 𝑘 .

Result Analysis. Figure 12 shows that the performance between
TTJ𝑏 𝑗+ and TTJ𝑏 𝑗− begins to diverge when 𝑘 = 6 (𝑏𝑖 𝑗 = 5) where
TTJ𝑏 𝑗− produces 6560more dangling tuples than TTJ𝑏 𝑗+ does. Af-
ter that, we see the execution time of TTJ𝑏 𝑗− grows exponentially
whereas TTJ𝑏 𝑗+ grows logrithmically.The result indicates that the
backjumping distance impacts the number of dangling tuples that
can be avoided by TTJ, thereby affecting TTJ performance.

Table 2: Number of 𝑗𝑎𝑣s stored in 𝑛𝑔. In parenthesis, we list
memory percentage consumption taken by 𝑛𝑔 with respect
to total query evaluation memory consumption

Bench. min max avg.
JOB 12 (0%) 4051176 (6%) 908226 (0.3%)

TPC-H 24 (0%) 1470901 (4.2%) 176716 (0.6%)
SSB 2041 (0%) 201343 (1.9%) 65223 (0.4%)

5.4.4 Space Consumption of 𝑛𝑔. Table 2 shows the space taken by
𝑛𝑔 on the benchmark queries. Despite of the relatively large 𝑛𝑔
size, the memory footprint is negligible, e.g., at most 6% of total
memory consumption. The main reason is that 𝑛𝑔 only stores 𝑗𝑎𝑣s
(a few integers), which are tiny compared with other memory con-
sumption, e.g., loading relations into memory.

5.4.5 Robustness against Poor Plans. In this experiment, we study
whether TTJ performance is robust against poor plans. We com-
pare three setups: (1) TTJ on HJ order (we call it TTJ𝑜); (2) TTJ
on TTJ order; and (3) HJ on HJ order. We consider HJ order as
a poor plan because the order is not specific optimized for TTJ.
Figure 13 shows that compared with TTJ, the number of queries
that TTJ𝑜 outperforms HJ is smaller (105 vs. 112) and the aver-
age speedup goes down (1.1× vs. 1.8×). This result shows that in

general, optimizing TTJ specifically can lead to much larger per-
formance gain compared with treating TTJ as HJ. Nevertheless,
TTJ still matches or outperforms HJ on HJ order.

6 DISCUSSION AND RELATEDWORK
We organize the related work in four categories. (1) CSP.The equiv-
alence between CQ evaluation and CSP is established by [16, 39].
TreeTracker in [10] solves a CSP for one solution without prepro-
cessing the CSP. TTJ extends TreeTracker into query evaluation
by (a) returning all possible solutions; (b) blending the ideas from
TreeTracker into physical operators in a query plan. (2) Semijoin re-
duction. An intensive research has been done on using semijoin to
improve query evaluation speed [13, 14, 18, 37, 41, 60, 61, 67]. TTJ
achieves a similar effect (clean state) as performing semijoin reduc-
tion without explicitly using semijoins. (3) SIP deleteDT() of TTJ
takes the form of SIP [9, 22, 23, 25, 30, 32, 33, 36, 43, 45, 49, 53, 55,
70, 71]. TTJ is different from the prior approaches in one or more
of the following aspects: (a) TTJ does not introduce any prepro-
cessing steps; (b) TTJ does not use Bloom filters, bitmaps, or semi-
joins; and (c) TTJ provides optimality guarantee. (4) Worst-Case
Optimal Join (WCOJ) algorithms. A related line of work is to im-
plement WCOJ algorithms efficiently [3, 7, 24, 35, 44, 64, 65]. TTJ
is orthogonal to such direction as TTJ focuses on ACQ evaluation
(§ 2.2). We designed an extended TTJ [2] that works for cyclic CQ
evaluation. Comparing toWCOJ algorithms, which commonly use
multi-way join operators, the extended TTJ uses binary physical
operators in iterator interface.

7 LIMITATIONS AND FUTUREWORK
We propose the first join algorithm that incorporates backjump-
ing and no-good into query evaluation. Gaps remain when con-
sider TTJ with additional requirements from both practical and
theoretical aspects, which we discuss next. Practical aspects. (1) We
focus on estimating the logical cost in our cost model for TTJ. Fu-
ture extension to the model can include physical cost coefficients
such as 𝑛𝑔 probing cost, hash table probing cost, and tuple deletion
cost, and so on; (2) we present TTJ using the tuple-based iterator
interface. Extending TTJ to work with vectorization has one chal-
lenge: Batch processing introduces an additional trade-off because
it reduces the number of recursion calls, but potentially loses the
opportunity for detecting and deleting dangling tuples; (3) TTJ
assumes demand-driven pipelining and requires additional exten-
sion to work with asychronous processing; and (4) TTJ uses 𝑛𝑔
only on the left-most relation 𝑅𝑘 . Whether using 𝑛𝑔 on the other
relations requires further assessment on the𝑛𝑔 probing cost versus
the potential additional dangling tuple removal.Theoretical aspects.
(1) The combined complexity of TTJ can be improved because it
has an additional log𝑘 term compared with the complexity of YA;
(2) the extended TTJ for cyclic queries does not have the same
complexity as WCOJ algorithms do, which requires further explo-
ration.

REFERENCES
[1] [n.d.]. Java Microbenchmark Harness (JMH). https://github.com/openjdk/jmh
[2] [n.d.]. Omitted due to Double Anonymous Requirement.

12

https://github.com/openjdk/jmh

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

TreeTracker Join: Turning the Tide When a Tuple Fails to Join SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

[3] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Oluko-
tun, and Christopher Ré. 2017. EmptyHeaded: A Relational Engine for Graph
Processing. ACM Trans. Database Syst. 42, 4, Article 20 (Oct. 2017), 44 pages.
https://doi.org/10.1145/3129246

[4] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-
Type Inequalities, SubmodularWidth, and Disjunctive Datalog Have to Do with
One Another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17).
Association for Computing Machinery, New York, NY, USA, 429–444. https:
//doi.org/10.1145/3034786.3056105

[5] Alfred V. Aho, John E. Hopcroft, and JeffreyD. Ullman. 1974. Design andAnalysis
of Computer Algorithms. Addison-Wesley.

[6] Junya Arai, Yasuhiro Fujiwara, and Makoto Onizuka. 2023. GuP: Fast Subgraph
Matching by Guard-Based Pruning. Proc. ACM Manag. Data 1, 2, Article 167
(jun 2023), 26 pages. https://doi.org/10.1145/3589312

[7] Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. 2015. Design and Im-
plementation of the LogicBlox System. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 1371–1382.

[8] Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, and Andreas
Pieris. 2022. Database Theory. Open source at https://github.com/pdm-book/
community.

[9] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985.
Magic Sets and Other Strange Ways to Implement Logic Programs (Extended
Abstract). In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Prin-
ciples of Database Systems (Cambridge, Massachusetts, USA) (PODS ’86). Associ-
ation for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.
1145/6012.15399

[10] Roberto J. Bayardo Jr and Daniel P. Miranker. 1994. An Optimal Backtrack Al-
gorithm for Tree-Structured Constraint Satisfaction Problems. Artificial Intelli-
gence 71, 1 (1994), 159–181.

[11] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the
Desirability of Acyclic Database Schemes. J. ACM 30, 3 (July 1983), 479–513.
https://doi.org/10.1145/2402.322389

[12] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Opti-
mized Query Processing Over Heterogeneous Data Sources. In Proceedings of
the 2018 International Conference on Management of Data (Houston, TX, USA)
(SIGMOD ’18). Association for Computing Machinery, New York, NY, USA, 221–
230. https://doi.org/10.1145/3183713.3190662

[13] Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using Semi-Joins to Solve
Relational Queries. J. ACM 28, 1 (Jan. 1981), 25–40. https://doi.org/10.1145/
322234.322238

[14] Philip A Bernstein and Nathan Goodman. 1981. Power of Natural Semijoins.
SIAM J. Comput. 10, 4 (1981), 751–771.

[15] Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM 13, 7 (jul 1970), 422–426. https://doi.org/10.1145/362686.
362692

[16] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of
Conjunctive Queries in Relational Data Bases. In Proceedings of the Ninth An-
nual ACM Symposium on Theory of Computing (Boulder, Colorado, USA) (STOC
’77). Association for Computing Machinery, New York, NY, USA, 77–90. https:
//doi.org/10.1145/800105.803397

[17] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational
Systems. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sym-
posium on Principles of database systems. 34–43.

[18] Ming-Syan Chen and Philip S. Yu. 1990. Using Join Operations as Reduc-
ers in Distributed Query Processing. In Proceedings of the Second International
Symposium on Databases in Parallel and Distributed Systems (Dublin, Ireland)
(DPDS ’90). Association for Computing Machinery, New York, NY, USA, 116–
123. https://doi.org/10.1145/319057.319074

[19] Danette Chimenti, Ruben Gamboa, and Ravi Krishnamurthy. 1990. Abstract
Machine for LDL. In EDBT.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3rd ed.). MIT press.

[21] Rina Dechter. 2003. Constraint Processing. Morgan Kaufmann, USA.
[22] Bailu Ding, Surajit Chaudhuri, and Vivek Narasayya. 2020. Bitvector-Aware

Query Optimization for Decision Support Queries. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (Portland, OR,
USA) (SIGMOD ’20). Association for ComputingMachinery, New York, NY, USA,
2011–2026. https://doi.org/10.1145/3318464.3389769

[23] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li,
Ying Li, Donald Kossmann, Johannes Gehrke, and Tim Kraska. 2021. Instance-
Optimized Data Layouts for Cloud Analytics Workloads. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 418–
431. https://doi.org/10.1145/3448016.3457270

[24] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational
Database Systems. Proc. VLDB Endow. 13, 12 (July 2020), 1891–1904. https:
//doi.org/10.14778/3407790.3407797

[25] Kevin P. Gaffney, Martin Prammer, Larry Brasfield, D. Richard Hipp, Dan
Kennedy, and Jignesh M. Patel. 2022. SQLite: Past, Present, and Future. Proc.
VLDB Endow. 15, 12 (Aug. 2022), 3535 – 3547.

[26] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book (2nd ed.). Prentice Hall Press, USA.

[27] John Gaschnig. 1979. Performance Measurement and Analysis of Certain Search
Algorithms. PhD dissertation. Deptment of Computer Science, Carnegie Mellon
University.

[28] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.
Hypertree Decompositions: Questions and Answers. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (San
Francisco, California, USA) (PODS ’16). Association for Computing Machinery,
New York, NY, USA, 57–74. https://doi.org/10.1145/2902251.2902309

[29] Danièle Grady and Claude Puech. 1989. On the Effect of Join Operations on
Relation Sizes. ACM Trans. Database Syst. 14, 4 (Dec. 1989), 574–603. https:
//doi.org/10.1145/76902.76907

[30] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM
Comput. Surv. 25, 2 (June 1993), 73–169. https://doi.org/10.1145/152610.152611

[31] Thomas Mueller Graf and Daniel Lemire. 2022. Binary Fuse Filters: Fast and
Smaller Than Xor Filters. ACM J. Exp. Algorithmics 27, Article 1.5 (mar 2022),
15 pages. https://doi.org/10.1145/3510449

[32] Zachary G. Ives and Nicholas E. Taylor. 2008. Sideways Information Passing
for Push-Style Query Processing. In 2008 IEEE 24th International Conference on
Data Engineering. IEEE, 774–783.

[33] Guodong Jin and Semih Salihoglu. 2022. Making RDBMSs Efficient on Graph-
Workloads Through Predefined Joins. PVLDB 15 (2022).

[34] Roberto J. Bayardo Jr and Daniel P. Miranker. 1996. Processing queries for first-
few answers. In Proceedings of the fifth international conference on Information
and knowledge management. 45–52.

[35] Oren Kalinsky, Yoav Etsion, and Benny Kimelfeld. 2017. Flexible Caching in Trie
Joins. EDBT (2017). https://openproceedings.org/2017/conf/edbt/paper-131.pdf

[36] Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. 2019. Pushing Data-
Induced Predicates through Joins in Big-Data Clusters. Proc. VLDB Endow. 13, 3
(nov 2019), 252–265. https://doi.org/10.14778/3368289.3368292

[37] H. Kang and N. Roussopoulos. 1991. A Pipeline N-Way Join Algorithm Based
on the 2-Way Semijoin Program. IEEE Transactions on Knowledge & Data Engi-
neering 3, 04 (oct 1991), 486–495. https://doi.org/10.1109/69.109109

[38] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2016.
Joins via Geometric Resolutions: Worst Case and Beyond. ACM Trans. Database
Syst. 41, 4, Article 22 (Nov. 2016), 45 pages. https://doi.org/10.1145/2967101

[39] Phokion G. Kolaitis and Moshe Y. Vardi. 1998. Conjunctive-Query Contain-
ment andConstraint Satisfaction. In Proceedings of the Seventeenth ACMSIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (Seattle, Wash-
ington, USA) (PODS ’98). Association for Computing Machinery, New York, NY,
USA, 205–213. https://doi.org/10.1145/275487.275511

[40] Viktor Leis, AndreyGubichev, AtanasMirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[41] Zhe Li and Kenneth A. Ross. 1995. PERF Join: An Alternative to Two-Way Semi-
join and Bloomjoin. In Proceedings of the Fourth International Conference on In-
formation and Knowledge Management (Baltimore, Maryland, USA) (CIKM ’95).
Association for Computing Machinery, New York, NY, USA, 137–144. https:
//doi.org/10.1145/221270.221360

[42] David Maier. 1983. TheTheory of Relational Databases. Computer Science Press.
http://web.cecs.pdx.edu/%7Emaier/TheoryBook/TRD.html

[43] Inderpal Singh Mumick and Hamid Pirahesh. 1994. Implementation of Magic-
Sets in a Relational Database System. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data (Minneapolis, Minnesota, USA)
(SIGMOD ’94). Association for Computing Machinery, New York, NY, USA, 103–
114. https://doi.org/10.1145/191839.191860

[44] Yoon-Min Nam Nam, Donghyoung Han Han, and Min-Soo Kim Kim. 2020.
SPRINTER: A Fast n-Ary Join Query Processing Method for Complex OLAP
Queries. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Com-
puting Machinery, New York, NY, USA, 2055–2070. https://doi.org/10.1145/
3318464.3380565

[45] Thomas Neumann and GerhardWeikum. 2009. Scalable Join Processing on Very
Large RDF Graphs. In Proceedings of the 2009 ACM SIGMOD International Con-
ference on Management of Data (Providence, Rhode Island, USA) (SIGMOD ’09).
Association for Computing Machinery, New York, NY, USA, 627–640. https:
//doi.org/10.1145/1559845.1559911

[46] Hung Q. Ngo, Dung T. Nguyen, Christopher Ré, and Atri Rudra. 2014. Beyond
Worst-Case Analysis for Joins withMinesweeper. In Proceedings of the 33rd ACM

13

https://doi.org/10.1145/3129246
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1145/3589312
https://github.com/pdm-book/community
https://github.com/pdm-book/community
https://doi.org/10.1145/6012.15399
https://doi.org/10.1145/6012.15399
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/319057.319074
https://doi.org/10.1145/3318464.3389769
https://doi.org/10.1145/3448016.3457270
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/76902.76907
https://doi.org/10.1145/76902.76907
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/3510449
https://openproceedings.org/2017/conf/edbt/paper-131.pdf
https://doi.org/10.14778/3368289.3368292
https://doi.org/10.1109/69.109109
https://doi.org/10.1145/2967101
https://doi.org/10.1145/275487.275511
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1145/221270.221360
https://doi.org/10.1145/221270.221360
http://web.cecs.pdx.edu/%7Emaier/TheoryBook/TRD.html
https://doi.org/10.1145/191839.191860
https://doi.org/10.1145/3318464.3380565
https://doi.org/10.1145/3318464.3380565
https://doi.org/10.1145/1559845.1559911
https://doi.org/10.1145/1559845.1559911

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

SIGMOD ’25, xxxx xx–xx, 2025, xxxx, xx Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Snow-
bird, Utah, USA) (PODS ’14). Association for Computing Machinery, New York,
NY, USA, 234–245. https://doi.org/10.1145/2594538.2594547

[47] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009.
The Star Schema Benchmark and Augmented Fact Table Indexing. In Perfor-
mance Evaluation and Benchmarking, Raghunath Nambiar and Meikel Poess
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 237–252.

[48] Felix Putze, Peter Sanders, and Johannes Singler. 2010. Cache-, Hash-, and
Space-Efficient Bloom Filters. ACM J. Exp. Algorithmics 14, Article 4 (jan 2010),
18 pages. https://doi.org/10.1145/1498698.1594230

[49] Wilson Qin and Stratos Idreos. 2016. Adaptive Data Skipping in Main-Memory
Systems. In Proceedings of the 2016 International Conference on Management of
Data (San Francisco, California, USA) (SIGMOD ’16). Association for Computing
Machinery, New York, NY, USA, 2255–2256. https://doi.org/10.1145/2882903.
2914836

[50] Mark Raasveldt andHannesMühleisen. 2019. DuckDB: An Embeddable Analyti-
cal Database. In Proceedings of the 2019 International Conference on Management
of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981–1984. https://doi.org/10.1145/3299869.
3320212

[51] Raghu Ramakrishnan and Johannes Gehrke. 2000. Database Management Sys-
tems (2nd ed.). McGraw-Hill.

[52] Kenneth Rosen. 2011. Discrete Mathematics and Its Applications (7th ed.). Mc-
Graw Hill.

[53] Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung,
Raghu Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan.
1996. Cost-Based Optimization for Magic: Algebra and Implementation. In Pro-
ceedings of the 1996 ACM SIGMOD International Conference on Management of
Data (Montreal,Quebec, Canada) (SIGMOD ’96). Association for ComputingMa-
chinery, New York, NY, USA, 435–446. https://doi.org/10.1145/233269.233360

[54] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. 2019. Presto: SQL on Everything. In 2019 IEEE 35th Inter-
national Conference on Data Engineering (ICDE). 1802–1813. https://doi.org/10.
1109/ICDE.2019.00196

[55] Lakshmikant Shrinivas, Sreenath Bodagala, Ramakrishna Varadarajan, Ariel
Cary, Vivek Bharathan, and Chuck Bear. 2013. Materialization Strategies in
the Vertica Analytic Database: Lessons Learned. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 1196–1207.

[56] Abraham Silberschatz, Henry F. Korth, and Shashank Sudarshan. 2019. Database
System Concepts (7th ed.). McGraw-Hill New York.

[57] K. Stocker, D. Kossmann, R. Braumandi, and A. Kemper. 2001. Integrating Semi-
Join-Reducers into State-of-the-Art Query Processors. In Proceedings 17th Inter-
national Conference onData Engineering. 575–584. https://doi.org/10.1109/ICDE.
2001.914872

[58] Transaction Processing Performance Council (TPC). [n.d.]. TPC-H Benchmark.
Online. http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
Accessed on 11-18-2021.

[59] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Opti-
mal Join Algorithms Meet Top-k. (2020), 2659–2665. https://doi.org/10.1145/
3318464.3383132

[60] Jeffrey D. Ullman. 1989. Principles of Database and Knowledge-Base Systems Vol.
2: The New Technologies (first ed.). Computer Science Press, USA.

[61] Patrick Valduriez and Georges Gardarin. 1984. Join and Semijoin Algorithms
for a Multiprocessor Database Machine. ACM Trans. Database Syst. 9, 1 (mar
1984), 133–161. https://doi.org/10.1145/348.318590

[62] Allen Van Gelder. 1993. Multiple Join Size Estimation by Virtual Domains (Ex-
tended Abstract). In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (Washington, D.C., USA) (PODS
’93). Association for Computing Machinery, New York, NY, USA, 180–189.
https://doi.org/10.1145/153850.153872

[63] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages. In Pro-
ceedings of the Fourteenth Annual ACM Symposium onTheory of Computing (San
Francisco, California, USA) (STOC ’82). Association for Computing Machinery,
New York, NY, USA, 137–146. https://doi.org/10.1145/800070.802186

[64] Yisu Remy Wang, Max Willsey, and Dan Suciu. 2023. Free Join: Unifying Worst-
Case Optimal and Traditional Joins. Proc. ACM Manag. Data 1, 2, Article 150
(jun 2023), 23 pages. https://doi.org/10.1145/3589295

[65] Sungheun Wi, Wook-Shin Han, Chuho Chang, and Kihong Kim. 2020. Towards
Multi-Way Join Aware Optimizer in SAP HANA. Proc. VLDB Endow. 13, 12 (Aug.
2020), 3019–3031. https://doi.org/10.14778/3415478.3415531

[66] Yifei Yang, Hangdong Zhao, Xiangyao Yu, and Paraschos Koutris. 2024. Predi-
cate Transfer: Efficient Pre-Filtering on Multi-Join Queries. Conference on Inno-
vative Data Systems Research (CIDR) (2024). arXiv:2307.15255 [cs.DB]

[67] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB,
Vol. 81. 82–94.

[68] C. T. Yu and C. C. Chang. 1984. Distributed Query Processing. ACM Comput.
Surv. 16, 4 (Dec. 1984), 399–433. https://doi.org/10.1145/3872.3874

[69] Clement T. Yu, Z. Meral Ozsoyoglu, and K. Lam. 1984. Optimization of Dis-
tributed Tree Queries. J. Comput. System Sci. 29, 3 (1984), 409–445. https:
//doi.org/10.1016/0022-0000(84)90007-2

[70] Yunjia Zhang, Yannis Chronis, JigneshM. Patel, andTheodoros Rekatsinas. 2023.
Simple AdaptiveQuery Processing vs. LearnedQuery Optimizers: Observations
and Analysis. Proc. VLDB Endow. 16, 11 (jul 2023), 2962–2975. https://doi.org/
10.14778/3611479.3611501

[71] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking
AheadMakesQuery Plans Robust: Making the Initial Case with in-Memory Star
Schema Data Warehouse Workloads. Proc. VLDB Endow. 10, 8 (April 2017), 889–
900. https://doi.org/10.14778/3090163.3090167

14

https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/1498698.1594230
https://doi.org/10.1145/2882903.2914836
https://doi.org/10.1145/2882903.2914836
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/233269.233360
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2001.914872
https://doi.org/10.1109/ICDE.2001.914872
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/348.318590
https://doi.org/10.1145/153850.153872
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/3589295
https://doi.org/10.14778/3415478.3415531
https://arxiv.org/abs/2307.15255
https://doi.org/10.1145/3872.3874
https://doi.org/10.1016/0022-0000(84)90007-2
https://doi.org/10.1016/0022-0000(84)90007-2
https://doi.org/10.14778/3611479.3611501
https://doi.org/10.14778/3611479.3611501
https://doi.org/10.14778/3090163.3090167

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Acyclic Conjunctive Query Evaluation
	2.2 Problem Definition
	2.3 Baselines
	2.4 Notation

	3 TreeTracker Join Operators
	3.1 Construction of Query Plan or Join Tree
	3.2 Additional Practical Considerations

	4 Correctness and Optimality of TTJ
	5 Evaluation
	5.1 Algorithms and Implementation
	5.2 Experimental Setup
	5.3 Comparison with Existing Algorithms
	5.4 Detailed Analysis of TTJ

	6 Discussion and Related Work
	7 Limitations and Future Work
	References

