
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TreeTracker Join: A Composable Join Algorithm that Yields
Optimal Acyclic Multi-Way Joins

Anonymous Author(s)
ABSTRACT
Improving the speed of a relational join is of constant interest. In
database theory, continual refinements of applicable algorithmic
complexity models serve to focus attention on different fundamen-
tals of the computation and have led to new optimal algorithms.
Yet these formal algorithmic improvements rarely make their way
into fielded general purpose relational query systems.

TreeTracker Join (TTJ) is a join algorithm that enables the op-
timal execution of acyclic conjunctive queries and that embodies
a solution to two impediments to the practical deployment of op-
timal join algorithms. First, unlike k-way optimal join algorithms
that have k inputs, TTJ takes two relations as input and produces
a third relation as output making it compatible with traditional re-
lational query systems. Only upon considering a query plan com-
posed of k − 1 instances of TTJ can one determine that the en-
semble computes the result of an acyclic k-way join in O(n + r)
data complexity, where n and r are the input and output sizes. This
matches the optimal bound first established by Yannakakis’s algo-
rithm. Second, TTJ accomplishes this without introducing semi-
join operators. Introducing semi-join operators enlarges the query
plan and commonly results in a net reduction of execution speed
despite improving the algorithmic complexity.

CCS CONCEPTS
• Information systems→ Join algorithms.

KEYWORDS
optimal join algorithm, join operator, acyclic conjunctive queries

ACM Reference Format:
Anonymous Author(s). 2021. TreeTracker Join: A Composable Join Algo-
rithm that Yields Optimal Acyclic Multi-Way Joins. In PODS ’22: The Princi-
ples of Database Systems (PODS), June 12–17, 2022, Philadelphia, PA. ACM,
New York, NY, USA, 10 pages. https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
Improving join performance is of ongoing interest to the entire
database community. In database theory, forward progress with
respect to formal algorithmic measures has been continually made
but, typically, only in association with refinements of the optimal-
ity condition. Yannakakis [54] was the first to show that acyclic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODS ’22, June 12–17, 2022, Philadelphia, PA
© 2021 Association for Computing Machinery.
ACM ISBN XXX-X-XXXX-XXXX-X/XX/XX…$15.00
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

conjunctive queries can be evaluated optimally with respect to in-
put and output size. More recently, Ngo et al. [39] proved that the
same bound is unattainable for cyclic queries under tuple-based bi-
nary join query plan. This result is motivated by a bound proposed
by Atserias et al. [6] on the worst-case output size of a k-way join.
Subsequently, Ngo et al. [39] proposed a new optimality measure
with respect to input and worst-case output size. A new class of
optimal join algorithms followed [37, 39, 52] coined worst-case op-
timal join algorithms (WCOJAs). Further advances concern output-
sensitive join algorithms [4, 20, 41] and algorithms with stronger
optimality [32, 38].

Despite these algorithmic advances, the techniques strugglewith
respect to their integration with, and impact on, existing relational
query systems. For example, Yannakakis’s Algorithm plays a cen-
tral role in hypertree decomposition based join algorithms [4, 20]
and related systems [1, 31]. However, to implement Yannakakis’s
Algorithm in an actual query system, it is necessary to introduce
semi-join operators in the query plan. Extensive study [13, 47, 55,
56] has been done on optimizing queries by introducing semi-join
operators. However, as noted by Stocker et al. [47], introducing
semi-joins into query optimization increases plan search space dra-
matically and, quite often, the goal of removing dangling tuples
clashes with finding good plans. In addition, the introduction of
semi-join reduction complicates intermediate result size estima-
tion [23] and even instigates faulty results [50].

Another practical challenge appears when optimal algorithms
are captured by special join operators. For example, WCOJAs are
captured as multi-way join operators [1, 5, 17, 31, 36, 53]. Such
multi-way join operators take k inputs to compute a k-way join.
Query systems must then represent, and optimize query plans con-
taining traditional unary and binary operators then add k-ary op-
erators. At least one effort determined it was best to completely
abandon the relational algebra approach and start from scratch [1].
Even if that direction proves fruitful, existing systems are unlikely
to re-engineer such a large and important aspect of their systems.

These observations provided criteria for the design of TreeTracker
Join (TTJ), a join algorithm that enables the execution of acyclic
conjunctive queries with the same bound as Yannakakis’s algo-
rithm and avoids two impediments that limit the use of optimal
algorithms in practice.

We suggest two algorithmic elements that are practical constraints
and must be attained to achieve integration with current RDBMSs:

(1) the signature of the algorithm (the data type of the inputs
and output) must be consistent with the traditional signa-
ture(s) used to implement binary relational operators. Thus,
the operators can be composed with other relational opera-
tors and represented in conventional query plans.

(2) the algorithmmust avoid a multi-phase algorithm structure.
The problematic elements covered by this constraint include

1

https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx
https://doi.org/xx.xxxx/xxxxxxx.xxxxxxx

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PODS ’22, June 12–17, 2022, Philadelphia, PA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

increasing the number of operators in a query plan and in-
creasing the number of I/O passes on the base relations.These
introduce real costs that are often omitted in algorithmic
complexity models.

TTJ is not the first optimal join algorithm result with a practical
focus. However, the others do not fulfill the aforementioned prac-
tical constraints. Pagh and Pagh [42] developed an I/O efficient
Yannakakis’s algorithm. However, their results retain the full re-
ducer steps of Yannakakis’s algorithm and thus do not fulfill con-
straint (2). Hu and Yi [27] devised worst-case I/O-optimal join al-
gorithms for acyclic queries. Like most WCOJAs, their algorithms
take k relations as input and do not fulfill constraint (1). Ciucanu
andOlteanu [14] observed this problem and developed ternary join
operators to work with a factorized representation [40] of interme-
diate results. They achieved WCOJA optimality in a join-at-a-time
fashion. However, their design violates constraint (1) due to a dis-
ruptive change to the standard binary/unary operator interfaces.

In this paper, we introduce TTJ that satisfies these practical con-
straints while having the same optimality as Yannakakis’s algo-
rithm. A key insight is that dangling tuples can be identified and
deleted on the fly during query evaluation thereby avoiding prepro-
cessing. As a side effect, the input relations can be incrementally
reduced such that at quiescence, their contents sufficiently approx-
imate the results of running reducing semi-join program [11]. As
a result, we are able to achieve optimal O(n + r)1 without intro-
ducing explicit semi-joins.

Example 1. Consider a simple chain query S(x ,y)ZB(y, z). We
use Algorithm 1.1 to compute the join result. We assume both S
and B are passed to the algorithm by reference.

Algorithm 1.1: Modified Nested-Loop Join to illustrate
TTJ idea
Input: two relations S(x ,y) and B(y, z)
Output: join result res

1 res ← ∅
2 nд← ∅
3 for s ∈ S(x ,y) do
4 danдle ← true

5 if s < nд then
6 for b ∈ B(y, z) do
7 if (t ← sZb) , nil then
8 danдle ← f alse

9 add t to res

10 if danдle = true then
11 nд← nд ∪ {s}

12 S ← S − nд
13 return res

Algorithm 1.1 is an enhanced nested-loop join: once s is identi-
fied as a dangling tuple, the algorithm can add s to no-good list (nд)
such that if a duplicate tuple of s shows up again, its iteration will
1In this paper, the big-O notation is in data complexity ignoring terms that depending
on query expression not data, and big-O indicates the combined complexity [51].

be skipped. Note nд = S ⋉̄ B when Algorithm 1.1 reaches Line 12
and subsequently, S is semi-join reduced with respect to B.

Concisely stated, Algorithm 1.1, is an augmentation of nested-
loop join that simultaneously computes S><B (i.e., two different
relational operators are computed by a single algorithm). The re-
mainder of the paper evolves this concept into an operator that
satisfies the practical constraints detailed above. Further, we show
a composition of k − 1 TTJ operators computes a k-way acyclic
conjunctive queries in O(n + r), which is optimal.

For those readers familiar with constraint satisfaction problem
(CSP) solving algorithms, we point out that Algorithm 1.1 was de-
rived from the TreeTracker-2 (TT-2) Algorithm for a CSP limited
to two variables [8]. The aspect detailed in Algorithm 1.1 as iden-
tifying and deleting a dangling tuple is called learning a no-good
(Section 6.3 in [43]) in the CSP literature. Given the equivalence be-
tween CSP and query evaluation [33], it is not surprising that, oper-
ationally, a relational operator, semi-join, corresponds to a named
technique in CSP. Bayardo and Miranker [8] showed that TT-2 can
solve tree-structured CSPs optimally and without an explicit pre-
processing step. A primary contribution of this paper is the capture
of that technique to compute all the results of a join and to do so
within the structure of a composable operator.

For pedagogical purposes, the paper develops TTJ in steps. After
preliminaries (Section 2), we first prove in Section 3 that limiting
preprocessing of an acyclic conjunctive query to the reducing semi-
join program [11] is sufficient for an algorithm otherwise identical
to Yannakakis’s algorithm to be correct and optimal. We then, in
Section 4, define a join operator that can be composed with itself
and if the inputs of an acyclic conjunctive query have already been
preprocessed by a reducing semi-join program, the set of the com-
posed operators will compute a k-way join optimally. Our main
contribution, TTJ, in Section 5, removes the preprocessing assump-
tion used in Section 4 by integrating the idea of Algorithm 1.1 into
the operator of Section 4, thereby creating a single operator that
computes a join and effects the advantages of semi-join prepro-
cessing. The essence is, if the operator is defined as an object, an
additional method called RemoveDanglingT() is added to the it-
erator interface. RemoveDanglingT() implements the removal of
dangling tuples during join computation by sending information
down the query plan, which is akin to Sideway Information Passing
(SIP) and Magic Sets (Section 6).

2 PRELIMINARIES
Conjuctive queries (CQs) correspond to select-project-join queries
in relational algebra [21]. To simplify the presentation, we discuss
only full CQs, which correspond to a natural join of k relations. A
subclass of CQs is acyclic CQs.Many different definitions of acyclic
CQs have been purposed and shown to be equivalent [2, 9, 34].
Herein, we use the join tree definition of acyclic CQs. A Join tree,
GQ , is an acyclic query graph [12] with one additional constraint:
for each pair of distinct nodes R1, R2 in the tree and for every
common attribute a between R1 and R2, every relation on the path
between R1 and R2 contains a [9].

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TreeTracker Join: A Composable Join Algorithm that Yields Optimal Acyclic Multi-Way Joins PODS ’22, June 12–17, 2022, Philadelphia, PA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Yannakakis’s Algorithm [54] evaluates acyclic CQs optimally
O(n + r) with input size n and output size r . It requires three-
passes over the join tree. The algorithm first runs a reducing semi-
join program [11] by traversing the join tree bottom-up and ap-
plying Rp><Rc where Rp is a parent relation and Rc is one of its
children. We use PQ,i to denote reducing semi-join program on
GQ with root Ri (when we do not need to emphasize that Ri is the
root, we simply writes PQ). The resulting relations after PQ are de-
noted R′i . In the second pass, the algorithm traverses the join tree
top-down applying R′c><R′p (Rc><R′p if Rc is a leaf node). The fully
reduced relations are denoted R∗i for i ∈ [k] 2. The third pass pro-
duces the join output by again traversing join tree bottom-up. The
data complexity [51] of Yannakakis’s algorithm is O(n + r) with
n being the relation size and r being the output size. The key in-
gredient in Yannakakis’s algorithm is the full reducer’s complete
removal of dangling tuples (i.e., those tuples that do not appear in
the final join result).

In practice, a query is translated into a query plan comprising re-
lational algebra operators. Often, query engines are architected as
dataflow systems [25, 26]. That architecture is extensible and effec-
tively supports parallel execution. An implementation characteris-
tic of such systems is the physical implementation of the operators
using iterators [24]. An iterator is a base class inherited by all of the
physical relational operators that includes three methods: Open()
(initialize internal state and set up dataflow), GetNext() (produce
an output tuple from some computation), and Close() (clean up
state) [18, 19]. To evaluate queries, query systems commonly orga-
nize operators as a left-deep query plan (a binary tree with its all
right children base relations [19]) and use a demand-driven pipelin-
ing physical plan evaluation strategy [46] shown in Algorithm 2.1
to obtain query result. In this paper, we use the same strategy to
drive operators in our algorithms to evaluate queries.

Algorithm 2.1: Driver program to evaluate Q
Input: root i of a left-deep query plan
Output: join result res

1 res ← ∅
2 i .Open()
3 while (r ← i .GetNext()) , nil do
4 add r to res
5 i .Close()
6 return res

2.1 Additional Notation
We denote a database schema as D and a database instance of D as
I . We consider an acyclic CQ Q of k relations each with size n. Its
join tree is GQ . To evaluate such Q, we use pre-order traversal of
join tree and place relations in a left-deep query plan in bottom-up
fashion - the root ofGQ is the left-most relation at the bottom. For
a given join operator in the plan, Router (Rinner) refers to its left
(right) child. Join operators in a plan are labeled top-down as Zu
foru ∈ [k−1] in ascending order.The left-most relation, the root of
2[k] is a shorthand for {1, . . . , k } [30].

GQ , is Zk .GZu shall denote the set of relations in the query plan
that below Zu . attr is a function that extracts attributes from a
relation or from each relation in a set of relations and returns their
union. In addition, Ju , u ∈ [k] denotes the join result computed by
Zu . J∗u denotes the join of relations inGZu . Thus, for a correct join
algorithm, Ju = J∗u . Let ju denote Zu ’s result size. In particular,
j1 = r , which is the query result size. For a tuple t of R(a,b), we
use both a named perspective (e.g., (a : 1, b : 2)) and an unnamed
perspective (e.g.,R(1, 2)) to represent t interchangeably [2]. t [a] =
π a(t) for tuple t and attribute a. For tuple t and relations R, S , let
join attribute value jav(t ,R, S) = t [attr(R) ∩ attr(S)]. We assume
standard RAM complexity model.

3 REDUCING SEMI-JOIN PROGRAM IS
ENOUGH

Algorithm 1.1 indicates that PQ can be interwoven with join com-
putation, which implies two-passes over GQ is sufficient to com-
pute the join result. Algorithm 1.1 is enumerating output top-down
over GQ and interweavingly, doing bottom-up semi-join opera-
tions. In other words, there is one redundant pass in Yannakakis’s
algorithm, which comes from the full reducer, that makes it im-
practical.

Theorem 3.1. Given a join treeGQ and root R1, one can compute
join with the following two steps:

(1) apply PQ,1 on GQ ;
(2) perform pair-wise join from root R1 to leaves recursively.

Any intermediate join result during the computation will not con-
tain any dangling tuples.

The intuition is that after applying PQ,1, R1 = R∗1 (Lemma 4 of
[11]) and each other relation only contains tuples that are joinable
with its child relations. If we start to compute join from this state
in a top-down fashion, it is impossible to produce dangling tuples.
Detailed proof ofTheorem 3.1 is in Appendix A. We use Example 2
to illustrate the extra work done by Yannakakis’s algorithm.

Example 2. Suppose there are three relations inGQ : Rp ,Rj , and
Ri . Rp is the parent of Rj and Rj is the parent of Ri . To evaluate Q
using Yannakakis’s algorithm, the following operations are carried
out:

R′j = Rj><Ri (1)
R′p = Rp><R

′
j (2)

R∗j = R′j><R
′
p (3)

R∗i = Ri><R
∗
j (4)

Theorem 3.1 executes (1) and (2). Join is executed starting at R′p .
For R′pZR′j , tuples in R′j ⋉̄ R′p will not be selected. Thus, (3) is not
needed. Similarly, (4) is not needed. The reason that Yannakakis’s
algorithm requires (3) and (4) is because the join is performed in
a bottom-up fashion. Without first removing dangling tuples in
Rj and Ri , Yannakakis’s algorithm may produce an unjoinable in-
termediate result. Thus, the additional semi-joins are needed to
achieve the complexity bound but not the correctness of the al-
gorithm.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

PODS ’22, June 12–17, 2022, Philadelphia, PA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Corollary 3.2. The algorithm in Theorem 3.1 runs O(n + r),
which is the same as Yannakakis’s algorithm.

Corollary 3.2 immediately follows fromTheorem 3.1 because in-
termediate result size is smaller than the final result size.

Empirically andwithout proof of correctness of the system, Emp-
tyHeaded [1] (Section 3.5) eliminates the top-down pass of Yan-
nakakis’s algorithm and demonstrates a 10%performance improve-
ment for tested workload.

4 TREETRACKER-γ JOIN
We first define the TreeTracker-γ (TT-γ) Join (Algorithm 4.1, 4.2,
and 4.3) that assumes step (1) ofTheorem 3.1 is done and computes
step (2) of Theorem 3.1 in Yannakakis bound. TT-γ forms the basis
of TTJ and plays an important role in TTJ runtime analysis.

Algorithm 4.1: Open() of Join Operator (TT-γ & TTJ)
Global variables: rinner , router , Rinner , Router , l , Il
Output: One joined tuple of Router ,Rinner (i.e., one row

of RouterZRinner)
1 Function Open():
2 l ← nil

3 Il ← nil

4 rinner ← nil

5 router ← nil

6 H ← empty hash table
7 Rinner .Open()
8 while (rinner ← Rinner .GetNext()) , nil do
9 H [jav]← H [jav] ∪ {rinner } where

jav = jav(rinner ,Rinner ,Router)

10 Router .Open()

Algorithm 4.2: GetNext() of Join Operator in TT-γ
1 Function GetNext():
2 if l , nil then
3 advance Il
4 if Il , nil then
5 return join of element pointed by Il with

router

6 router ← Router .GetNext()
7 if router = nil then
8 return nil

9 return LookUpH()

Here are a few remarks on the algorithm details:
• Consider Algorithm 4.1, 4.2, and 4.3 to be methods asso-

ciated with operators. Thus, global variables first listed in
Algorithm 4.1 are within the scope of all three algorithms.
Methods associated with the operator can change the state
of those variables during the runtime. Further, those vari-
ables are not accessible by other operator instances.

Algorithm 4.3: LookUpH() of Join Operator in TT-γ
1 Function LookUpH():
2 l ← H [jav] with jav computed from router
3 if l , nil then
4 initialize Il pointing to the first element of l
5 return join of the element pointed by Il with router
6 return nil

• H is a hash table with jav computed from rinner as its key
and its value is a list of tuples from Rinner sharing the same
jav .
• LoopUpH() is a privatemethod that is invoked by GetNext().

Thus, no modification is made to the iterator interface.
TT-γ join algorithm is very similar to hash join (Table 1 in [24]).

The only difference between TT-γ and hash join happens inside
GetNext() starting at Line 6. Since PQ is already applied and rela-
tions are ordered in pre-order traversal, by Theorem 3.1, any non-
nil router returned from Line 6 is joinable.Thus, algorithm can call
LookUpH() to compute the join result.

Theorem 4.1. TT-γ Join Algorithm (Algorithm 4.1, 4.2, and 4.3)
computes the correct join result.

Proof. Proof by induction on the join operator u. Base case,
u = k . Because Zk is the root of GQ and PQ has been applied,
the claim holds followingTheorem 3.1. Assume the claim holds for
u = i (i.e., Ji = J∗i), we want to show it holds for u = i − 1. Let
r
j
outer denote the jth value assigned to router . LookUpH() is called
for each new router from Zi . Thus, for each non-nil r jouter with
j ∈ [ji] from Ji , l = Ri−1><

{
r
j
outer

}
. Since Il is never reset until{

r
j
outer

}
Zl is computed, Thus, tuples returned by Zi−1 equals to

ji∪
j=1

(Ri−1><
{
r
j
outer

}
)Z

{
r
j
outer

}
, which is J∗i−1. □

Theorem 4.2. The runtime complexity of evaluating Q assuming
application of PQ using TT-γ Join Algorithm (Algorithm 4.1, 4.2, 4.3)
driven by Algorithm 2.1 is O(n + r).

Proof. There are k relations and k − 1 join operators, Open()
takesO(kn) as each operator is called once and takesO(n) to build
H . By Theorem 3.1, It takes O(k) GetNext() calls to compute a
tuple in J1. Since each GetNext() call takes O(1), it takes O(k) to
compute one join result and O(kr) for J1. Thus, in total, we have
O(kn + kr) = O(n + r). □

5 TREETRACKER JOIN
To define TTJ (Algorithms 4.1, 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6), we
integrate the removal of dangling tuples into the TT-γ algorithm,
thereby eliminating the preprocessing reduction step assumed to
have occurred in the previous section.

Intuitively, to eliminate the explicit preprocessing step, we are
integrating the concept first shown in Algorithm 1.1. The proper

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TreeTracker Join: A Composable Join Algorithm that Yields Optimal Acyclic Multi-Way Joins PODS ’22, June 12–17, 2022, Philadelphia, PA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

algorithmic changes are actually accomplished by interweaving
step (1) and step (2) of Theorem 3.1. Yet, like Algorithm 1.1, TTJ
takes a fine-grained approach. Instead of doing join and semi-join
on sets of tuples, the same results are achieved in a tuple-by-tuple
fashion.Thenumber of dangling tuples removed by TTJ is no greater
than the number removed by PQ3 and they may be removed prior
to the completion of TTJ’s execution. If so, at that point, TTJ will
have the same behavior as TT-γ . TTJ takes no more than the time
PQ takes to remove dangling tuples, O(n). Since TT-γ meets Yan-
nakakis’s algorithmoptimality, TTJ also achieves the desired bound.

Algorithm 5.1: GetNext() of Join Operator in TTJ
1 Function GetNext():
2 return GetOuter(дetNewOuterTuple = true)

Algorithm 5.2: LookUpH() of Join Operator in TTJ
1 Function LookUpH():
2 if l = nil then
3 l ← H [jav] with jav = jav(router ,Rinner ,Router)

4 if l , nil then
5 initialize Il to point to the first element of l
6 return join of the element pointed by Il with

router

7 else
8 advance Il pointing to the next element of l
9 return the join of element pointed by Il with router

10 return nil

Example 3. Let D = {T (x), S(x ,y, z), B(z), R(y, z)},
I = {T (дreen), T (red), S(red, 1, 2), S(red, 3, 2), B(2), R(3, 2)},
and GQ =

{
(T , S), (S,B), (S,R)

}
in edge list representation with

rootT .Q overD has exactly one result: (x : red, y : 3, z : 2). Start-
ing with the driver (Algorithm 2.1), GetNext() makes recursive
calls to itself ending with a call to T ’s table scan operator (Algo-
rithm 5.6). The table scan operator’s nд value is empty, soT (дreen)
is returned (indicated by→ in Figure 1 (A)). LookUpH() is called
by operator instance Z3 (Algorithm 5.3 Line 12). Figure 1 (A) illus-
trates the resulting state.

Since none of the tuples in S can join with T (дreen), nil is re-
turned (Algorithm 5.2 Line 10). Z3 calls RemoveDanglingT() (Al-
gorithm 5.3 Line 15). For Z3, Router referencesT and Rinner refer-
ences S . Thus,T .RemoveDanglingT(S) is called (indicated by← in
Figure 1 (B)).The call to the table scan operator’s RemoveDanglingT()
(Algorithm 5.5) results inT (дreen) being added to nд. The next tu-
ple that is not in nд,T (red), is returned. Figure 1 (B) illustrates this
state.

OperatorZ3’s router input containsT (red). LookUpH() is called
byZ3 fromAlgorithm 5.3 Line 12. A lookup on hash tableH , which
contains S , returns

{
(x : red, y : 1, z : 2)

}
as l (Algorithm 5.2 Line 3).

LookUpH() in Z3 per Algorithm 5.3 Line 14 returns (x : red, y :

3See Lemma 5.1 and Corollary 5.2.

Algorithm 5.3: GetOuter() of Join Operator in TTJ
1 Function GetOuter(дetNewOuterTuple):
2 if дetNewOuterTuple = true then
3 if l , nil then
4 advance Il
5 if Il , nil then
6 return join of element pointed by Il with

router

7 router ← Router .GetNext()
8 l ← nil

9 if router = nil then
10 return nil

11 while true do
12 rinner ← LookUpH()

13 if rinner , nil then
14 return rinner

15 router ← Router .RemoveDanglingT(Rinner)
16 if router = nil then
17 return nil

18 l ← nil

Algorithm 5.4: RemoveDanglingT() of Join Operator in
TTJ
1 Function RemoveDanglingT(relation):
2 if Rinner is the parent of relation in GQ then
3 Remove tuple pointed by Il
4 if H is empty then
5 return nil

6 else
7 router ← Router .RemoveDanglingT(relation)
8 l ← nil

9 return GetOuter(дetNewOuterTuple = f alse)

Algorithm 5.5: RemoveDanglingT() of Table Scan Opera-
tor in TTJ
1 Function RemoveDanglingT(relation):

// nд is a set of tuples.

2 put the tuple last returned in nд

3 return GetNext()

Algorithm 5.6: GetNext() of Table Scan Operator in TTJ
1 Function GetNext():
2 return the next tuple that is not in nд

1, z : 2). The value of router in operator instance Z2 is set to
(x : red, y : 1, z : 2) byAlgorithm 5.3 Line 7.The call to LookUpH()

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

PODS ’22, June 12–17, 2022, Philadelphia, PA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 1: The figure shows four execution states of TTJ when evaluating T (x)ZS(x ,y, z)ZB(z)ZR(y, z) over I in Example 3.

returns (x : red, y : 1, z : 2) and set as Z1’s router value. Opera-
tor Z1 then calls LookUpH(). Figure 1 (C) illustrates this state.

Looking up R tuples in H of Z1 returns nothing because y =
1 in tuple (x : red, y : 1, z : 2) fails to join. Thus, operator
Z1 calls RemoveDanglingT() (Algorithm 5.3 Line 15) with argu-
ment R. Router is referencing Z2. Since B is not the parent of R in
GQ , RemoveDanglingT() is recursively called from Algorithm 5.4
Line 7 with Router references Z3. S is the parent of R inGQ . The al-
gorithm removes S(red, 1, 2), which is pointed by Il (Algorithm 5.4
Line 3). Figure 1 (D) illustrates that state.

Looking into H of R in Z1 returns nothing because y = 1 from
(x : red, y : 1, z : 2) fails the join. Z1 calls RemoveDanglingT()
(Algorithm 5.3 Line 15) with argument R. Router in Z1 references
Z2. Since B is not the parent of R inGQ , RemoveDanglingT() is re-
cursively called from Algorithm 5.4 Line 7 with Router references
Z3. S is the parent of R inGQ . The algorithm removes S(red, 1, 2),
which is pointed by Il (Algorithm 5.4 Line 3). Figure 1 (D) illus-
trates the state of operators at this moment.

The algorithm calls GetOuter(false) fromAlgorithm 5.4 Line 9
so that H of S can be checked again to see if there is another tu-
ple joining with T (red). In this case, (red, 3, 2) does and the join
result is computed.

TTJ has similar structure as TT-γ but adds the method
RemoveDanglingT(). Technically, RemoveDanglingT() is a third
input to the operator. However it is strictly additive to existing
interfaces, does not need to be implemented by other operators
and thus, as a practical matter, does not pose a challenge to con-
straint (1).

TTJ implements the concept presented asAlgorithm 1.1 but does
so in the form of a composable operator. Algorithm 1.1 achieves
semi-join reduction by removing dangling tuples from a base rela-
tion, which is not possible if the algorithm is embedded in a rela-
tional query system. To achieve the same effect, TTJ, like a hash
join, reads one of its relational arguments and initializes a local
hash index, Hi , per the contents of the relation Ri for i ∈ [k − 1].
As dangling tuples are identified, they can be removed from fur-
ther consideration by removing them from Hi , limiting the scope
of the side effect to inside the operator. Similar mechanism for Rk
is a deny list nд, which works the same as shown in Algorithm 1.1.

In Example 1, S is the parent of R. In Algorithm 1.1, once s ∈ S
is detected as a dangling tuple, the execution flow can switch from
inner loop associated with B to outer loop associated with S and
modify its nд value. However, in query plan, this mechanism is
not built-in. Thus, RemoveDanglingT() is needed to change eval-
uation execution flow; just like GoTo in programming languages.
When a dangling tuple is detected by Ri , the execution should di-
rectly jump back to Ri ’s parent, Rj , and remove Rj ’s tuple pointed
by Il because byGQ definition, Rj is the source of the failure. Thus,
RemoveDanglingT() is invoked with argument Ri and execution
flow restarts from Rj . This disruption with respect to flow of con-
trol skips executing unnecessary operations in the operators skipped.
This idea is the same as backjumping in CSP [43]. Broadly speak-
ing, information of joined tuple flows up in the query plan whereas
RemoveDanglingT() sends a dangling tuple signal down.

Lemma 5.1 speaks to how TTJ reflects step (1) of Theorem 3.1 in
its join computation.

Lemma 5.1. W.L.O.G, let Rk be the root of GQ with k relations.
Let H ′i with i ∈ [k − 1] denote the initial contents of Hi minus the
entries removed by Line 3 in RemoveDanglingT() (Algorithm 5.4)
after evaluating Q with TTJ. We have two families of sets:

(1) A = {Rk − nд,H ′k−1, . . . ,H
′
1}

(2) B = {R′k ,R
′
k−1, . . . ,R

′
1} after running PQ,k on GQ

Then, Rk − nд = R′k and R′i ⊆ H ′i for i ∈ [k − 1].

Proof. For each Ri for i ∈ [k], Denote the set fromA that built
from Ri as RAi (e.g., RA1 = H ′1 and RAk = Rj −nд). Similarly, the set
from B denoted as RBi . We first show RBi ⊆ RAi .

Case 1. Ri is a leaf node of GQ . By the definition of PQ , RBi =

R′i = Ri . On the other hand, RAi = H ′i = Hi = Ri because Hi
contains all tuples of Ri and is modified only when Ri is the parent
of some node in GQ . Thus, RAi = RBi and lemma holds for leaf
nodes.

Case 2. Ri is a non-leaf node of GQ . First consider i ∈ [k −
1], RAi = H ′i . Suppose t < RAi . This means t is one of the tuples
removed by Algorithm 5.4 Line 3. Line 3 is executed only when
an intermediate join result, a concatenation of tuples including t ,
cannot join with one of its child relation Rj in the upper part of

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

TreeTracker Join: A Composable Join Algorithm that Yields Optimal Acyclic Multi-Way Joins PODS ’22, June 12–17, 2022, Philadelphia, PA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

plan. Thus, t < RBi because t cannot join with any tuples in Rj and
will be removed by Ri><Rj in PQ,k . Since t < RAi implies t < RBi ,
RBi ⊆ RAi for i ∈ [k −1]. For i = k , we have RAi ⊆ Rk −nд. Suppose
t < Rk −nд. Since nд contains the tuples of Rk that are removed by
RemoveDanglingT(), for the same reason as above, t cannot join
with one of Rk ’s child. Thus, t < RBk . Thus, RBi ⊆ RAi for i ∈ [k].

Implied by Theorem 3.1, it can be the case that t ∈ RAi and
t < RBi for i ∈ [k − 1]. Specifically, tuples from Ri that cannot
join with any tuples from its parent will not be removed by TTJ.
However, some of them can be removed by PQ,k if those tuples
cannot join with one of Ri ’s children. For example, consider D =
{R3(x),R2(x ,y),R1(y)}with I = {R3(4),R2(4, 6),R2(3, 5),R2(4, 7),
R1(7)}. Suppose R3 → R2 → R1 is theGQ . Then, R2(3, 5)will not
be removed after TTJ but will be by PQ,k . Thus, R2(3, 5) ∈ H ′2 but
R2(3, 5) < R′2. On the other hand, if tuples from Ri that cannot join
with Ri ’s parent but can join with Ri ’s children, then RAi ⊆ RBi .

It remains to show RAk ⊆ RBk . Suppose t < R′k . t is removed
because it cannot join with any tuples from Rj , a Rk ’s child. t <
Rk − nд. Every tuple of Rk will be returned if it doesn’t belong
to nд. Then t will be returned. Since none of Rj can join with t ,
RemoveDanglingT() is called. Since Rk is the parent of Rj , t is put
onto nд. Since t < R′k implies t < Rk −nд, RAk ⊆ RBk . Since R

A
k ⊇ RBk ,

RAk = RBk . Combining all the cases, the lemma holds under bag
semantics. □

Corollary 5.2. If we measure work,W , done by an algorithm as
the number of tuples removed from relations in GQ ,WTT J ≤W PQ .

Corollary 5.2 immediately follows from Lemma 5.1. Intuitively,
PQ does redundant work. Reusing Example 2, tuples from Rj ⋉̄ Rp
will not fail Theorem 3.1 but some may be removed by PQ because
they cannot join with Ri .

5.1 Correctness of TTJ
Lemma 5.3. For every assignment to router , l is initialized with

values in LookUpH() and Il is reset. Between each pair of assignments
to router , l is never initialized and Il is never reset.

Proof. Whenever router is assigned, l is set to nil . Since l is
initialized and Il is reset when l = nil in LookUpH(), the result
follows. □

Theorem 5.4. TTJ (Algorithms 4.1, 5.1, 5.2, 5.3, and 5.4, 5.5, 5.6)
driven by Algorithm 2.1 computes the correct join result .

Proof. We need to show J1 = J∗1 with

J∗1 =
{
t over attr(GZ1) | t [attr(Ru)] ∈ Ru ∀u ∈ [k]}

under bag semantics. We first show J1 ⊆ J∗1 . Let t < J∗1 . There
are two cases.

Case 1. There exists Ri such that t [attr(Ri)] < Ri . In this case,
it is trivial to see that t < J1.

Case 2. t satisfies: ∃Ri such that t [attr(Ri)] = ti ∈ Ri but
ti ∈ Ri ⋉̄ Rj for some Rj . We need to show any t satisfying
above condition cannot be in J1. By GQ definition, relations on
the path between Ri and Rj have attributes attr(Ri) ∩ attr(Rj).
Thus, t also satisfies: ∃Rx such that t [attr(Rx)] = tx ∈ Rx but
tx ∈ Rx ⋉̄ Rp for some relations Rx and Rp on the path between

Ri and Rj . Further, Rx and Rp form parent-child relation and are
connected by an edge inGQ . If Rp is the parent and Rx is the child,
t < J1. Suppose Rp is the child and Rx is the parent. TTJ will
call RemoveDanglingT() from the join operator connected with
Rp and tx will be deleted from Hx . Thus, t will not be returned
and is not in J1. Note the same execution applies if t values are
duplicated. Thus, the condition is satisfied under both set and bag
semantics.

To show J∗1 ⊆ J1, suppose t ∈ J∗u but < Ju for some u ∈ [k].
Since t ∈ J∗u , t [attr(Ru)] can join with all relations from u − 1
to 1 in the plan. Thus, t [attr(Ru)] ∈ H ′u . Thus, it must be that
t [attr(GZu+1)] ∈ J∗u+1 but t < Ju+1. The same argument applies
to every operator in the plan. Eventually, we have t [attr(Rk)] ∈ J∗k
but t < Jk . However, this is a contradiction. t [attr(Rk)] ∈ J∗k and
joins with the rest of the relations in plan. Thus, t [attr(Rk)] < nд
and ∈ Jk . Since u is picked arbitrarily, J∗1 ⊆ J1.

For t ∈ J∗1 , we need to show the number of tuples t that are in
J∗1 equals to the number of tuples t shown in J1. This follows from
Lemma 5.3. The proof similar to Theorem 4.1’s proof. □

5.2 Runtime Analysis of TTJ
Definition 1 (clean state). The execution of a query plan reaches

a clean state if nд and Hu for u ∈ [k − 1] are the same as A in
Lemma 5.1.

Themoment after the query execution reaches a clean state, TTJ
satisfies Lemma 5.5 and 5.6. The proofs are in Appendix B and Ap-
pendix C, respectively.

Lemma 5.5. J∗uZH
′
u−1 will not create dangling tuples.

Lemma 5.6. The tuple produced by Zu will be an element in J∗u
for all u ∈ [k].

Theorem 5.7. The data complexity of evaluating Q using Tree-
Tracker Join Algorithm (Algorithm 4.1, 5.1, 5.2, 5.3, and 5.4, 5.5) driven
by Algorithm 2.1 is O(n + r).

Proof. By Lemma 5.1, the execution of a plan is in clean state
when TTJ execution finishes. Thus, the amount of work caused by
backtracking via RemoveDanglingT() is fixed. Suppose the execu-
tion is in clean state after computing the first join result.

We first bound the cost of getting the first join result. Open() is
O(kn).The total cost of GetNext()without counting RemoveDanglingT()
is bounded by the total number of loops (starting at Line 11) within
GetOuter() nomatter the argument. Each time RemoveDanglingT()
is called (Algorithm 5.3 Line 15), exactly one tuple is removed from
H : since TTJ never re-reads a base relation after H is built, remov-
ing an element from H is effectively the same as removing a tuple
from the base relation. There can be at most (k − 1)n backtracks
because onceH is empty, RemoveDanglingT() returns nil . In addi-
tion, for the Z1 operator, the number of RemoveDanglingT() calls
from Algorithm 5.3 Line 15 is j2 + 1 and for the Z2 operator, the
number is j3 + 1, and so on. Thus,

∑k−1
i=1(ji+1 + 1) = (k − 1)n.

In other words, the total number of loops in GetOuter() calls is
O((k−1)n). Since the number of loops in GetOuter(true) and the
number of loops in GetOuter(false) in total is O((k − 1)n), the
total cost of GetNext() without considering RemoveDanglingT()
is O(kn).

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

PODS ’22, June 12–17, 2022, Philadelphia, PA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Next, we bound the cost of LookUpH(). Each call takes O(1).
Since the total number of LookUpH() calls is bounded by the total
number of loops in GetOuter() no matter the argument, the total
cost of LookUpH() is O(kn).

Next, we need to count the total number of RemoveDanglingT()
calls: not just calls from Algorithm 5.3 Line 15 (in total,O(kn)) but
also the recursive calls made by RemoveDanglingT() itself at Algo-
rithm 5.4 Line 7. A call to RemoveDanglingT() made in ith opera-
tor from Line 15, RemoveDanglingT() can be recursively called at
most k − i times from Algorithm 5.4 Line 7 and ji+1+1more calls
made in Algorithm 5.3 Line 15 due to additional GetR1(false)
calls from RemoveDanglingT(). Since each relation can be back-
tracked at most n times, the number of RemoveDanglingT() calls
with k − 1 recursive calls is at most n. The same applies to
RemoveDanglingT() calls with k − 2,k − 3, . . . , 1 recursive calls.
Thus, the total number of RemoveDanglingT() calls is

∑k−1
i=1(k −

i) · n + ji+1 + 1 = O(k2n).
For each RemoveDanglingT() call, GetOuter(false) is called

exactly once. Between two GetOuter(false) calls, O(1) work is
done. Therefore, total amount of work done by GetOuter(false)
is O(k2n).

Summing everything together, it takes O(k2n) to compute the
first join result. From Lemma 5.5 and Lemma 5.6, once execution
reaches a clean state and Ju ⊆ J∗u , there is no backtracking. Thus,
there will be no more RemoveDanglingT() calls and the result
of LookUpH() can be returned directly. Thus, once the execution
is in a clean state, TTJ behaves exactly the same as TT-γ (Sec-
tion 4). Since the execution is in a clean state after the first join
result is computed, the total cost for computing the r join result
is O(k2n + (r − 1)k) = O(n + r), which is equal to that of Yan-
nakakis’s algorithm. □

Corollary 5.8. TTJ and Yannakakis’s algorithm is equivalent
from both scope of applicability and algorithmic complexity.

6 DISCUSSION AND RELATEDWORK
From database perspective, RemoveDanglingT() is reminiscent of
Sideways Information Passing (SIP) [7, 10, 28, 45, 57] andMagic Sets
[7, 10, 35, 44]. TTJ, SIP, andMagic Sets share the same goal of filter-
ing out dangling tuples as early as possible in the query plan. SIP
and Magic Sets achieve the goal by sending partial results com-
puted from subpart of the query to the other subpart. TTJ is differ-
ent from their approach because TTJ never waits for partial results
computed before calling RemoveDanglingT(); once a dangling tu-
ple is identified, information is sent immediately. In addition, TTJ
does not transform query and associated plans; what information
to pass is determined at runtime instead of optimization step. How-
ever, TTJ is compatible with many existing SIP approaches. For ex-
ample, Ives and Taylor [28] create a Bloom filter on a computation-
completed subtree of a bushy plan and sends the filter to the other
subtree to semi-join reduce arriving tuples. TTJ can be directly em-
ployed in the subtree computation.

A CSP technique, (hyper)tree decomposition [15, 16, 22], has
been successfully adapted and applied in the context of query eval-
uation [3, 20, 21, 29, 48]. Join algorithms based on hypertree decom-
position handle CQs with complexity form O(nd + r) where d is
a width parameter determined by the topology of query structure

[20]. Tziavelis et al. [49] note that those algorithms share the same
algorithmic structure and Yannakakis’s algorithm as the final step
is used to compute the join result on derived relations from the
decomposition. Given the equivalence between Yannakakis’s algo-
rithm and TTJ, TTJ can directly replace Yannakakis’s algorithm to
evaluate cyclic CQs with hypertree decomposition.

Note that TTJ cannot be directly applied to cyclic CQs because
the join failure may be caused by a combination of values of multi-
ple attributes from different relations.Thus, removing a tuple from
a relation that contributes only partial of the combination will lead
to incorrect join result. However, TTJ demonstrates that one oper-
ator can pass information to another operator with method calls
subject to parent-child relation inGQ . In addition, the dangling tu-
ple information is either explicit or implicit maintained in each
operator. It is natural to ask whether it is possible to maintain
no-good combination of attribute values in proper operator(s) to
achieve reasonable bound for evaluating cyclic CQs. We treat this
exploration as part of future work.

7 CONCLUSION AND FUTUREWORK
Being an optimal algorithm for acyclic CQs, Yannakakis’s algo-
rithm is hard to use in practice due to additional semi-joins in-
troduced in the full reducer preprocessing step. In this paper, we
show that preprocessing relations are not needed to reach optimal
evaluation of acyclic CQs.We develop TTJ, a composable join algo-
rithm that has the same bound as the Yannakakis’s algorithm. TTJ
takes traditional unary and binary operator forms and can be di-
rectly used in existing query plans without introducing any extra
operators.The key ingredient is, with techniques from CSP, TTJ re-
moves dangling tuples on the fly during join computation. The im-
plication is that a physical operator can implement two relational
algebra operations at the same time. Thus, as a future work, it is
worth to explore the possibility of mix and match operators shown
in Algorithm 1.1 with existing operators to improve overall query
performance. In addition, TTJ implements learning no-good idea
with the help from object-oriented design pattern: an operator has
private fields that can be changed by a side effect of a method call
at runtime. Thus, it is interesting to see whether such idea enables
the design of practical algorithms that may be seemingly impossi-
ble from relational algebra perspective.

REFERENCES
[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Oluko-

tun, and Christopher Ré. 2017. EmptyHeaded: A Relational Engine for Graph
Processing. ACM Trans. Database Syst. 42, 4, Article 20 (Oct. 2017), 44 pages.
https://doi.org/10.1145/3129246

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Vol. 8. Addison-Wesley Reading.

[3] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions
Asked Frequently. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (San Francisco, California, USA) (PODS
’16). Association for Computing Machinery, New York, NY, USA, 13–28. https:
//doi.org/10.1145/2902251.2902280

[4] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-
Type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with
One Another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17).
Association for Computing Machinery, New York, NY, USA, 429–444. https:
//doi.org/10.1145/3034786.3056105

[5] Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu,
Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. 2015. Design and Im-
plementation of the LogicBlox System. In Proceedings of the 2015 ACM SIGMOD

8

https://doi.org/10.1145/3129246
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1145/3034786.3056105

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

TreeTracker Join: A Composable Join Algorithm that Yields Optimal Acyclic Multi-Way Joins PODS ’22, June 12–17, 2022, Philadelphia, PA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

International Conference on Management of Data. 1371–1382.
[6] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query

Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.
[7] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985.

Magic Sets and Other Strange Ways to Implement Logic Programs (Extended
Abstract). In Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Prin-
ciples of Database Systems (Cambridge, Massachusetts, USA) (PODS ’86). Associ-
ation for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.
1145/6012.15399

[8] Roberto J. Bayardo Jr and Daniel P. Miranker. 1994. An Optimal Backtrack Al-
gorithm for Tree-Structured Constraint Satisfaction Problems. Artificial Intelli-
gence 71, 1 (1994), 159–181.

[9] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the
Desirability of Acyclic Database Schemes. J. ACM 30, 3 (July 1983), 479–513.
https://doi.org/10.1145/2402.322389

[10] C. Beeri and R. Ramakrishnan. 1987. On the Power of Magic. In Proceedings of
the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (San Diego, California, USA) (PODS ’87). Association for Computing
Machinery, New York, NY, USA, 269–284. https://doi.org/10.1145/28659.28689

[11] Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using Semi-Joins to Solve
Relational Queries. J. ACM 28, 1 (Jan. 1981), 25–40. https://doi.org/10.1145/
322234.322238

[12] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational Sys-
tems. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems. 34–43.

[13] Ming-Syan Chen and Philip S. Yu. 1990. Using Join Operations as Reduc-
ers in Distributed Query Processing. In Proceedings of the Second International
Symposium on Databases in Parallel and Distributed Systems (Dublin, Ireland)
(DPDS ’90). Association for Computing Machinery, New York, NY, USA, 116–
123. https://doi.org/10.1145/319057.319074

[14] Radu Ciucanu and Dan Olteanu. 2016. Worst-Case Optimal Join at a Time. Tech-
nical Report. Department of Computer Science, University of Oxford.

[15] Rina Dechter and Judea Pearl. 1987. Network-based Heuristics for Constraint-
Satisfaction Problems. Artificial Intelligence 34, 1 (1987), 1–38. https://doi.org/
10.1016/0004-3702(87)90002-6

[16] Rina Dechter and Judea Pearl. 1989. Tree Clustering for Constraint Networks.
Artif. Intell. 38, 3 (April 1989), 353–366. https://doi.org/10.1016/0004-3702(89)
90037-4

[17] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational
Database Systems. Proc. VLDB Endow. 13, 12 (July 2020), 1891–1904. https:
//doi.org/10.14778/3407790.3407797

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley.

[19] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. Database
Systems: The Complete Book (2nd ed.). Prentice Hall Press, USA.

[20] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.
Hypertree Decompositions: Questions and Answers. In Proceedings of the 35th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (San
Francisco, California, USA) (PODS ’16). Association for Computing Machinery,
New York, NY, USA, 57–74. https://doi.org/10.1145/2902251.2902309

[21] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. 2012. Size
and Treewidth Bounds for Conjunctive Queries. J. ACM 59, 3, Article 16 (June
2012), 35 pages. https://doi.org/10.1145/2220357.2220363

[22] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2000. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelligence 124, 2 (2000), 243–
282. https://doi.org/10.1016/S0004-3702(00)00078-3

[23] Danièle Grady and Claude Puech. 1989. On the Effect of Join Operations on
Relation Sizes. ACM Trans. Database Syst. 14, 4 (Dec. 1989), 574–603. https:
//doi.org/10.1145/76902.76907

[24] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM
Comput. Surv. 25, 2 (June 1993), 73–169. https://doi.org/10.1145/152610.152611

[25] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE
Data Eng. Bull. 18, 3 (1995), 19–29.

[26] Goetz Graefe and William J McKenna. 1993. The Volcano Optimizer Genera-
tor: Extensibility and Efficient Search. In Proceedings of IEEE 9th International
Conference on Data Engineering. IEEE, 209–218.

[27] Xiao Hu and Ke Yi. 2016. Towards a Worst-Case I/O-Optimal Algorithm for
Acyclic Joins. In Proceedings of the 35th ACMSIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (San Francisco, California, USA) (PODS ’16).
Association for Computing Machinery, New York, NY, USA, 135–150. https:
//doi.org/10.1145/2902251.2902292

[28] Zachary G. Ives and Nicholas E. Taylor. 2008. Sideways Information Passing for
Push-StyleQuery Processing. In 2008 IEEE 24th International Conference on Data
Engineering. IEEE, 774–783.

[29] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré. 2016. AJAR: Ag-
gregations and Joins over Annotated Relations. In Proceedings of the 35th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (San Fran-
cisco, California, USA) (PODS ’16). Association for Computing Machinery, New
York, NY, USA, 91–106. https://doi.org/10.1145/2902251.2902293

[30] Stasys Jukna. 2011. Extremal Combinatorics: With Applications in Computer Sci-
ence (2nd ed.). Springer Publishing Company, Incorporated.

[31] Oren Kalinsky, Yoav Etsion, and Benny Kimelfeld. 2017. Flexible Caching in Trie
Joins. EDBT (2017). https://openproceedings.org/2017/conf/edbt/paper-131.pdf

[32] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2016.
Joins via Geometric Resolutions: Worst Case and Beyond. ACM Trans. Database
Syst. 41, 4, Article 22 (Nov. 2016), 45 pages. https://doi.org/10.1145/2967101

[33] Phokion G. Kolaitis and Moshe Y. Vardi. 1998. Conjunctive-Query Contain-
ment and Constraint Satisfaction. In Proceedings of the Seventeenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (Seattle, Wash-
ington, USA) (PODS ’98). Association for Computing Machinery, New York, NY,
USA, 205–213. https://doi.org/10.1145/275487.275511

[34] David Maier. 1983. The Theory of Relational Databases. Computer Science Press.
http://web.cecs.pdx.edu/%7Emaier/TheoryBook/TRD.html

[35] Inderpal Singh Mumick and Hamid Pirahesh. 1994. Implementation of Magic-
Sets in a Relational Database System. In Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data (Minneapolis, Minnesota, USA)
(SIGMOD ’94). Association for Computing Machinery, New York, NY, USA, 103–
114. https://doi.org/10.1145/191839.191860

[36] Yoon-Min Nam Nam, Donghyoung Han Han, and Min-Soo Kim Kim. 2020.
SPRINTER: A Fast n-Ary Join Query Processing Method for Complex OLAP
Queries. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Com-
puting Machinery, New York, NY, USA, 2055–2070. https://doi.org/10.1145/
3318464.3380565

[37] Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. 2020. Optimal
Joins Using Compact Data Structures. In 23rd International Conference on Data-
base Theory (ICDT 2020) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 155), Carsten Lutz and Jean Christoph Jung (Eds.). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 21:1–21:21. https://doi.org/10.
4230/LIPIcs.ICDT.2020.21

[38] Hung Q. Ngo, Dung T. Nguyen, Christopher Ré, and Atri Rudra. 2014. Beyond
Worst-Case Analysis for Joins withMinesweeper. In Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (Snow-
bird, Utah, USA) (PODS ’14). Association for Computing Machinery, New York,
NY, USA, 234–245. https://doi.org/10.1145/2594538.2594547

[39] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-Case
Optimal Join Algorithms. J. ACM 65, 3, Article 16 (March 2018), 40 pages.
https://doi.org/10.1145/3180143

[40] Dan Olteanu andMaximilian Schleich. 2016. Factorized Databases. SIGMOD Rec.
45, 2 (Sept. 2016), 5–16. https://doi.org/10.1145/3003665.3003667

[41] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Representa-
tions of Query Results. ACM Trans. Database Syst. 40, 1, Article 2 (March 2015),
44 pages. https://doi.org/10.1145/2656335

[42] Anna Pagh and Rasmus Pagh. 2006. Scalable Computation of Acyclic Joins. In
Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (Chicago, IL, USA) (PODS ’06). Association for
Computing Machinery, New York, NY, USA, 225–232. https://doi.org/10.1145/
1142351.1142384

[43] S. Russell and P. Norvig. 2010. Artificial Intelligence: A Modern Approach (third
ed.). Prentice Hall, Upper Saddle River, NJ. http://aima.cs.berkeley.edu/

[44] Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung,
Raghu Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan.
1996. Cost-Based Optimization for Magic: Algebra and Implementation. In Pro-
ceedings of the 1996 ACM SIGMOD International Conference on Management of
Data (Montreal,Quebec, Canada) (SIGMOD ’96). Association for Computing Ma-
chinery, New York, NY, USA, 435–446. https://doi.org/10.1145/233269.233360

[45] Lakshmikant Shrinivas, Sreenath Bodagala, Ramakrishna Varadarajan, Ariel
Cary, Vivek Bharathan, and Chuck Bear. 2013. Materialization Strategies in
the Vertica Analytic Database: Lessons Learned. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 1196–1207.

[46] Abraham Silberschatz, Henry F. Korth, and Shashank Sudarshan. 2019. Database
System Concepts (7th ed.). McGraw-Hill New York.

[47] K. Stocker, D. Kossmann, R. Braumandi, and A. Kemper. 2001. Integrating Semi-
Join-Reducers into State-of-the-Art Query Processors. In Proceedings 17th Inter-
national Conference on Data Engineering. 575–584. https://doi.org/10.1109/ICDE.
2001.914872

[48] Susan Tu and Christopher Ré. 2015. DunceCap: Query Plans Using General-
izedHypertree Decompositions. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data (Melbourne, Victoria, Australia) (SIG-
MOD ’15). Association for Computing Machinery, New York, NY, USA, 2077–
2078. https://doi.org/10.1145/2723372.2764946

[49] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal
Join Algorithms Meet Top-k. In Proceedings of the 2020 International Conference
on Management of Data, SIGMOD Conference 2020, online conference [Portland,

9

https://doi.org/10.1145/6012.15399
https://doi.org/10.1145/6012.15399
https://doi.org/10.1145/2402.322389
https://doi.org/10.1145/28659.28689
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/319057.319074
https://doi.org/10.1016/0004-3702(87)90002-6
https://doi.org/10.1016/0004-3702(87)90002-6
https://doi.org/10.1016/0004-3702(89)90037-4
https://doi.org/10.1016/0004-3702(89)90037-4
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/2220357.2220363
https://doi.org/10.1016/S0004-3702(00)00078-3
https://doi.org/10.1145/76902.76907
https://doi.org/10.1145/76902.76907
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/2902251.2902292
https://doi.org/10.1145/2902251.2902292
https://doi.org/10.1145/2902251.2902293
https://openproceedings.org/2017/conf/edbt/paper-131.pdf
https://doi.org/10.1145/2967101
https://doi.org/10.1145/275487.275511
http://web.cecs.pdx.edu/%7Emaier/TheoryBook/TRD.html
https://doi.org/10.1145/191839.191860
https://doi.org/10.1145/3318464.3380565
https://doi.org/10.1145/3318464.3380565
https://doi.org/10.4230/LIPIcs.ICDT.2020.21
https://doi.org/10.4230/LIPIcs.ICDT.2020.21
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/3180143
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2656335
https://doi.org/10.1145/1142351.1142384
https://doi.org/10.1145/1142351.1142384
http://aima.cs.berkeley.edu/
https://doi.org/10.1145/233269.233360
https://doi.org/10.1109/ICDE.2001.914872
https://doi.org/10.1109/ICDE.2001.914872
https://doi.org/10.1145/2723372.2764946

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

PODS ’22, June 12–17, 2022, Philadelphia, PA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2659–2665.
https://doi.org/10.1145/3318464.3383132

[50] Allen Van Gelder. 1993. Multiple Join Size Estimation by Virtual Domains (Ex-
tended Abstract). In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (Washington, D.C., USA) (PODS
’93). Association for ComputingMachinery, New York, NY, USA, 180–189. https:
//doi.org/10.1145/153850.153872

[51] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages. In Pro-
ceedings of the Fourteenth Annual ACM Symposium onTheory of Computing (San
Francisco, California, USA) (STOC ’82). Association for Computing Machinery,
New York, NY, USA, 137–146. https://doi.org/10.1145/800070.802186

[52] Todd L Veldhuizen. 2014. Leapfrog Triejoin: A Simple, Worst-Case Optimal Join
Algorithm. ICDT (2014). https://doi.org/10.5441/002/icdt.2014.13

[53] Sungheun Wi, Wook-Shin Han, Chuho Chang, and Kihong Kim. 2020. Towards
Multi-Way Join Aware Optimizer in SAP HANA. Proc. VLDB Endow. 13, 12 (Aug.
2020), 3019–3031. https://doi.org/10.14778/3415478.3415531

[54] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB,
Vol. 81. 82–94.

[55] C. T. Yu and C. C. Chang. 1984. Distributed Query Processing. ACM Comput.
Surv. 16, 4 (Dec. 1984), 399–433. https://doi.org/10.1145/3872.3874

[56] Clement T. Yu, Z. Meral Ozsoyoglu, and K. Lam. 1984. Optimization of Dis-
tributed Tree Queries. J. Comput. System Sci. 29, 3 (1984), 409–445. https:
//doi.org/10.1016/0022-0000(84)90007-2

[57] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking
Ahead MakesQuery Plans Robust: Making the Initial Case with in-Memory Star
Schema Data Warehouse Workloads. Proc. VLDB Endow. 10, 8 (April 2017), 889–
900. https://doi.org/10.14778/3090163.3090167

A PROOF OF THEOREM 3.1
Proof by induction on the height of GQ . Base case. Suppose the
height of GQ is 0. Claim trivially holds. Suppose the claim holds
for all queries whose height of GQ < h. We want to show the
claim holds for height of GQ equals h. We want to show J1 =
R1Z . . .ZRk and there is no dangling tuples in any intermediate
result during computation. (. . . ((R∗1ZR

′
2)ZR

′
3) . . .ZR

′
m) equals

to R1ZR′2Z . . .ZR
′
m .

J1 = (. . . ((R∗1ZR
′
2)ZR

′
3) . . .ZR

′
m)ZJ2Z . . .ZJm

= R1ZR′2Z . . .ZR
′
mZJ2Z . . .ZJm

= R1Z(R′2ZJ2)Z(R
′
3ZJ3)Z . . .Z(R

′
mZJm)

= R1ZJ2ZJ3Z . . .ZJm
= R1ZR2Z . . .ZRk

The last step because J2, . . . , Jm are subtrees of GQ and they are
disjoint. To show there is no dangling tuple, pick R1,Rj and Ri
where Rj is a child of R1 and Ri is a child of Rj . During PQ,1,
R1><(Rj><Ri) is executed. Because GQ is a join tree, R1,Rj ,Ri
share common attributes. If there is a dangling tuple, it has to hap-
pen after R1ZRj . However this is not possible because R1ZRj after
PQ,1 equals to (R1><(Rj><Ri))Z(Rj><Ri), which is (R1ZRj)><Ri .
By induction assumption, no dangling tuple when join relations
in subtree rooted in Ri . Since Rj and Ri are picked arbitrarily, the
theorem holds.

B PROOF OF LEMMA 5.5
Since the plan is in clean state, by Lemma 5.1, we have R′u−1 ⊆
H ′u−1. The query plan is created from a join tree, and by Theo-
rem 3.1 there has to be some tuple in R′u−1 that can join with some
tuple(s) in J∗u . To show the resulting tuple is not a dangling tuple,
we proceed with a proof by contradiction. Let Ju−1 = J∗uZH

′
u−1

and J = R1Z . . .ZRk . Suppose a dangling tuple exists. That is,
there exists t1 ∈ Ju−1 such that there is no t2 ∈ J with t1[attr(Ju−1)∩

attr(J)] = t2[attr(Ju−1) ∩ attr(J)]. Since attr(Ju−1) ∩ attr(J) =
attr(Ju−1), there is no t2 ∈ J with t1[attr(Ju−1)] = t2[attr(Ju−1)].
Then, it is sufficient to show there is no t2 ∈ J∗uZRu−1 with the
condition holding. Since t1 ∈ J∗uZH

′
u−1, the assumption implies

that there exists t1 ∈ J∗uZH
′
u−1 such that t1 < J∗uZRu−1. However,

this is not true because J∗uZH
′
u−1 ⊆ J∗uZRu−1.

C PROOF OF LEMMA 5.6
We will consider three possible cases.

Case 1. Suppose the query execution is already in the clean state
at the beginning of the evaluation. Base case u = k . By Lemma 5.1,
Rk = R∗k and the tuple returned from Zk is in J∗k . Assume the
lemma holds for u = i . We show that lemma holds for u = i − 1.
By induction, the assumption implies that Zi−1’s router belongs
to J∗i . By Lemma 5.5, the joined tuple between router and a tuple
in H ′i−1 cannot be dangling tuple. Thus, tuple produced by Zi−1
from Algorithm 5.3 Line 12 is in J∗i−1. In addition, with Lemma 5.3,
the tuple returned from Algorithm 5.3 Line 6 is in J∗i−1. The lemma
holds.

Case 2. Suppose the clean state happens at u = k . Consider the
base case u = k . The assumption indicates that the clean state is
formed right after Algorithm 5.5 Line 2 is executed. By Lemma 5.1,
Rk = R∗k and the tuple returned from Zk is in J∗k . Assume the
lemma holds for u = i . We show the lemma holds form u = i − 1.
Since the clean state happens at u = k , Algorithm 5.5 Line 3 will
eventually cause Zi−1’s router reassigned. By induction assump-
tion, Zi−1’s router will be from J∗i . By Lemma 5.3, l will be initial-
ized and by Lemma 5.5, we know the joined tuple returned from
Zi−1 is in J∗i−1.

Case 3. Suppose the clean state happens at u = i where i ∈
[k − 1]. This happens after Algorithm 5.4 Line 3 is executed. Base
case u = k . The assumption indicates that the tuple returned by
Zk is already in J∗k because otherwise, the clean state will happen
at u = k . Assume the lemma holds for u = j. We show the lemma
holds for u = j −1. Using a similar argument as Case 2, the lemma
holds.

10

https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/153850.153872
https://doi.org/10.1145/153850.153872
https://doi.org/10.1145/800070.802186
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.14778/3415478.3415531
https://doi.org/10.1145/3872.3874
https://doi.org/10.1016/0022-0000(84)90007-2
https://doi.org/10.1016/0022-0000(84)90007-2
https://doi.org/10.14778/3090163.3090167

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Additional Notation

	3 Reducing Semi-join Program is Enough
	4 TreeTracker- Join
	5 TreeTracker Join
	5.1 Correctness of TTJ
	5.2 Runtime Analysis of TTJ

	6 Discussion and Related Work
	7 Conclusion and Future Work
	References
	A Proof of Theorem 3.1
	B Proof of Lemma 5.5
	C Proof of Lemma 5.6

