

TreeTracker Join: A Composable Join Algorithm that Yields Optimal Acyclic Multi-Way Joins

Anonymous Author(s)

ABSTRACT

Improving the speed of a relational join is of constant interest. In database theory, continual refinements of applicable algorithmic complexity models serve to focus attention on different fundamentals of the computation and have led to new optimal algorithms. Yet these formal algorithmic improvements rarely make their way into fielded general purpose relational query systems.

TreeTracker Join (TTJ) is a join algorithm that enables the optimal execution of acyclic conjunctive queries and that embodies a solution to two impediments to the practical deployment of optimal join algorithms. First, unlike k -way optimal join algorithms that have k inputs, TTJ takes two relations as input and produces a third relation as output making it compatible with traditional relational query systems. Only upon considering a query plan composed of $k - 1$ instances of TTJ can one determine that the ensemble computes the result of an acyclic k -way join in $O(n + r)$ data complexity, where n and r are the input and output sizes. This matches the optimal bound first established by Yannakakis's algorithm. Second, TTJ accomplishes this without introducing semi-join operators. Introducing semi-join operators enlarges the query plan and commonly results in a net reduction of execution speed despite improving the algorithmic complexity.

CCS CONCEPTS

• Information systems → Join algorithms.

KEYWORDS

optimal join algorithm, join operator, acyclic conjunctive queries

ACM Reference Format:

Anonymous Author(s). 2021. TreeTracker Join: A Composable Join Algorithm that Yields Optimal Acyclic Multi-Way Joins. In *PODS '22: The Principles of Database Systems (PODS)*, June 12–17, 2022, Philadelphia, PA. ACM, New York, NY, USA, 10 pages. <https://doi.org/xx.xxxx/xxxxxx.xxxxxxx>

1 INTRODUCTION

Improving join performance is of ongoing interest to the entire database community. In database theory, forward progress with respect to formal algorithmic measures has been continually made but, typically, only in association with refinements of the optimality condition. Yannakakis [54] was the first to show that acyclic

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

PODS '22, June 12–17, 2022, Philadelphia, PA

© 2021 Association for Computing Machinery.

ACM ISBN XXX-X-XXXX-XXXX-X/XX/\$15.00

<https://doi.org/xx.xxxx/xxxxxx.xxxxxxx>

conjunctive queries can be evaluated optimally with respect to input and output size. More recently, Ngo *et al.* [39] proved that the same bound is unattainable for cyclic queries under tuple-based binary join query plan. This result is motivated by a bound proposed by Atserias *et al.* [6] on the worst-case output size of a k -way join. Subsequently, Ngo *et al.* [39] proposed a new optimality measure with respect to input and worst-case output size. A new class of optimal join algorithms followed [37, 39, 52] coined *worst-case optimal join algorithms (WCOJAs)*. Further advances concern output-sensitive join algorithms [4, 20, 41] and algorithms with stronger optimality [32, 38].

Despite these algorithmic advances, the techniques struggle with respect to their integration with, and impact on, existing relational query systems. For example, Yannakakis's Algorithm plays a central role in hypertree decomposition based join algorithms [4, 20] and related systems [1, 31]. However, to implement Yannakakis's Algorithm in an actual query system, it is necessary to introduce semi-join operators in the query plan. Extensive study [13, 47, 55, 56] has been done on optimizing queries by introducing semi-join operators. However, as noted by Stocker *et al.* [47], introducing semi-joins into query optimization increases plan search space dramatically and, quite often, the goal of removing dangling tuples clashes with finding good plans. In addition, the introduction of semi-join reduction complicates intermediate result size estimation [23] and even instigates faulty results [50].

Another practical challenge appears when optimal algorithms are captured by special join operators. For example, WCOJAs are captured as multi-way join operators [1, 5, 17, 31, 36, 53]. Such multi-way join operators take k inputs to compute a k -way join. Query systems must then represent, and optimize query plans containing traditional unary and binary operators then add k -ary operators. At least one effort determined it was best to completely abandon the relational algebra approach and start from scratch [1]. Even if that direction proves fruitful, existing systems are unlikely to re-engineer such a large and important aspect of their systems.

These observations provided criteria for the design of *TreeTracker Join (TTJ)*, a join algorithm that enables the execution of acyclic conjunctive queries with the same bound as Yannakakis's algorithm and avoids two impediments that limit the use of optimal algorithms in practice.

We suggest two algorithmic elements that are *practical constraints* and must be attained to achieve integration with current RDBMSs:

- (1) the signature of the algorithm (the data type of the inputs and output) must be consistent with the traditional signature(s) used to implement binary relational operators. Thus, the operators can be composed with other relational operators and represented in conventional query plans.
- (2) the algorithm must avoid a multi-phase algorithm structure. The problematic elements covered by this constraint include

117 increasing the number of operators in a query plan and in-
 118 creasing the number of I/O passes on the base relations. These
 119 introduce real costs that are often omitted in algorithmic
 120 complexity models.

121 TTJ is not the first optimal join algorithm result with a practical
 122 focus. However, the others do not fulfill the aforementioned practical
 123 constraints. Pagh and Pagh [42] developed an I/O efficient
 124 Yannakakis's algorithm. However, their results retain the full re-
 125 ducer steps of Yannakakis's algorithm and thus do not fulfill con-
 126 straint (2). Hu and Yi [27] devised worst-case I/O-optimal join al-
 127 gorithms for acyclic queries. Like most WCOJAs, their algorithms
 128 take k relations as input and do not fulfill constraint (1). Ciucanu
 129 and Olteanu [14] observed this problem and developed ternary join
 130 operators to work with a factorized representation [40] of interme-
 131 diate results. They achieved WCOJA optimality in a join-at-a-time
 132 fashion. However, their design violates constraint (1) due to a dis-
 133 ruptive change to the standard binary/unary operator interfaces.

134 In this paper, we introduce TTJ that satisfies these practical con-
 135 straints while having the same optimality as Yannakakis's algo-
 136 rithm. A key insight is that dangling tuples can be identified and
 137 deleted on the fly during query evaluation thereby avoiding pre-
 138 processing. As a side effect, the input relations can be incrementally
 139 reduced such that at quiescence, their contents sufficiently approx-
 140 imate the results of running reducing semi-join program [11]. As
 141 a result, we are able to achieve optimal $O(n + r)$ ¹ without intro-
 142 ducing explicit semi-joins.

143 *Example 1.* Consider a simple chain query $S(x, y) \bowtie B(y, z)$. We
 144 use Algorithm 1.1 to compute the join result. We assume both S
 145 and B are passed to the algorithm by reference.

148 **Algorithm 1.1:** Modified Nested-Loop Join to illustrate
 149 TTJ idea

150 **Input:** two relations $S(x, y)$ and $B(y, z)$
 151 **Output:** join result res

152 1 $res \leftarrow \emptyset$
 153 2 $ng \leftarrow \emptyset$
 154 3 **for** $s \in S(x, y)$ **do**
 155 4 $dangle \leftarrow true$
 156 5 **if** $s \notin ng$ **then**
 157 6 **for** $b \in B(y, z)$ **do**
 158 7 **if** $(t \leftarrow s \bowtie b) \neq nil$ **then**
 159 8 $dangle \leftarrow false$
 160 9 add t to res
 161 10 **if** $dangle = true$ **then**
 162 11 $ng \leftarrow ng \cup \{s\}$
 163 12 $S \leftarrow S - ng$
 164 13 **return** res

168 Algorithm 1.1 is an enhanced nested-loop join: once s is identi-
 169 fied as a dangling tuple, the algorithm can add s to *no-good list* (ng)
 170 such that if a duplicate tuple of s shows up again, its iteration will

172 ¹In this paper, the big- O notation is in data complexity ignoring terms that depending
 173 on query expression not data, and big- O indicates the combined complexity [51].

175 be skipped. Note $ng = S \setminus B$ when Algorithm 1.1 reaches Line 12
 176 and subsequently, S is semi-join reduced with respect to B .

177 Concisely stated, Algorithm 1.1, is an augmentation of nested-
 178 loop join that simultaneously computes $S \bowtie B$ (i.e., two different
 179 relational operators are computed by a single algorithm). The re-
 180 mainder of the paper evolves this concept into an operator that
 181 satisfies the practical constraints detailed above. Further, we show
 182 a composition of $k - 1$ TTJ operators computes a k -way acyclic
 183 conjunctive queries in $O(n + r)$, which is optimal.

184 For those readers familiar with *constraint satisfaction problem*
 185 (*CSP*) solving algorithms, we point out that Algorithm 1.1 was de-
 186 rived from the *TreeTracker-2 (TT-2)* Algorithm for a *CSP* limited
 187 to two variables [8]. The aspect detailed in Algorithm 1.1 as iden-
 188 tifying and deleting a dangling tuple is called *learning a no-good*
 189 (Section 6.3 in [43]) in the *CSP* literature. Given the equivalence
 190 between *CSP* and query evaluation [33], it is not surprising that, oper-
 191 ationally, a relational operator, semi-join, corresponds to a named
 192 technique in *CSP*. Bayardo and Miranker [8] showed that TT-2 can
 193 solve tree-structured *CSPs* optimally and without an explicit pre-
 194 processing step. A primary contribution of this paper is the capture
 195 of that technique to compute all the results of a join and to do so
 196 within the structure of a composable operator.

197 For pedagogical purposes, the paper develops TTJ in steps. After
 198 preliminaries (Section 2), we first prove in Section 3 that limiting
 199 preprocessing of an acyclic conjunctive query to the reducing semi-
 200 join program [11] is sufficient for an algorithm otherwise identical
 201 to Yannakakis's algorithm to be correct and optimal. We then, in
 202 Section 4, define a join operator that can be composed with itself
 203 and if the inputs of an acyclic conjunctive query have already been
 204 preprocessed by a reducing semi-join program, the set of the com-
 205 posed operators will compute a k -way join optimally. Our main
 206 contribution, TTJ, in Section 5, removes the preprocessing assump-
 207 tion used in Section 4 by integrating the idea of Algorithm 1.1 into
 208 the operator of Section 4, thereby creating a single operator that
 209 computes a join and effects the advantages of semi-join prepro-
 210 cessing. The essence is, if the operator is defined as an object, an
 211 additional method called *RemoveDanglingT()* is added to the it-
 212 erator interface. *RemoveDanglingT()* implements the removal of
 213 dangling tuples during join computation by sending information
 214 down the query plan, which is akin to *Sideway Information Passing*
 215 (*SIP*) and *Magic Sets* (Section 6).

2 PRELIMINARIES

220 Conjunctive queries (CQs) correspond to select-project-join queries
 221 in relational algebra [21]. To simplify the presentation, we discuss
 222 only full CQs, which correspond to a natural join of k relations. A
 223 subclass of CQs is acyclic CQs. Many different definitions of acyclic
 224 CQs have been proposed and shown to be equivalent [2, 9, 34].
 225 Herein, we use the join tree definition of acyclic CQs. A *Join tree*,
 226 G_Q , is an acyclic query graph [12] with one additional constraint:
 227 for each pair of distinct nodes R_1, R_2 in the tree and for every
 228 common attribute a between R_1 and R_2 , every relation on the path
 229 between R_1 and R_2 contains a [9].

Yannakakis's Algorithm [54] evaluates acyclic CQs optimally $O(n + r)$ with input size n and output size r . It requires three-passes over the join tree. The algorithm first runs a *reducing semi-join program* [11] by traversing the join tree bottom-up and applying $R_p \bowtie R_c$ where R_p is a parent relation and R_c is one of its children. We use $P_{Q,i}$ to denote reducing semi-join program on G_Q with root R_i (when we do not need to emphasize that R_i is the root, we simply writes P_Q). The resulting relations after P_Q are denoted R'_i . In the second pass, the algorithm traverses the join tree top-down applying $R'_c \bowtie R'_p$ ($R_c \bowtie R'_p$ if R_c is a leaf node). The fully reduced relations are denoted R_i^* for $i \in [k]$ ². The third pass produces the join output by again traversing join tree bottom-up. The *data complexity* [51] of Yannakakis's algorithm is $O(n + r)$ with n being the relation size and r being the output size. The key ingredient in Yannakakis's algorithm is the full reducer's complete removal of *dangling tuples* (i.e., those tuples that do not appear in the final join result).

In practice, a query is translated into a query plan comprising relational algebra operators. Often, query engines are architected as dataflow systems [25, 26]. That architecture is extensible and effectively supports parallel execution. An implementation characteristic of such systems is the physical implementation of the operators using iterators [24]. An iterator is a base class inherited by all of the physical relational operators that includes three methods: `Open()` (initialize internal state and set up dataflow), `GetNext()` (produce an output tuple from some computation), and `Close()` (clean up state) [18, 19]. To evaluate queries, query systems commonly organize operators as a *left-deep query plan* (a binary tree with its all right children base relations [19]) and use a demand-driven pipelining physical plan evaluation strategy [46] shown in Algorithm 2.1 to obtain query result. In this paper, we use the same strategy to drive operators in our algorithms to evaluate queries.

Algorithm 2.1: Driver program to evaluate Q

Input: root i of a left-deep query plan
Output: join result res

```

1  $res \leftarrow \emptyset$ 
2  $i.Open()$ 
3 while ( $r \leftarrow i.GetNext()$ )  $\neq nil$  do
4    $\quad$  add  $r$  to  $res$ 
5  $i.Close()$ 
6 return  $res$ 

```

2.1 Additional Notation

We denote a database schema as D and a database instance of D as I . We consider an acyclic CQ Q of k relations each with size n . Its join tree is G_Q . To evaluate such Q , we use pre-order traversal of join tree and place relations in a left-deep query plan in bottom-up fashion - the root of G_Q is the left-most relation at the bottom. For a given join operator in the plan, R_{outer} (R_{inner}) refers to its left (right) child. Join operators in a plan are labeled top-down as \bowtie_u for $u \in [k - 1]$ in ascending order. The left-most relation, the root of

²[k] is a shorthand for $\{1, \dots, k\}$ [30].

G_Q , is \bowtie_k . G_{\bowtie_u} shall denote the set of relations in the query plan that below \bowtie_u . $attr$ is a function that extracts attributes from a relation or from each relation in a set of relations and returns their union. In addition, J_u , $u \in [k]$ denotes the join result computed by \bowtie_u . J_u^* denotes the join of relations in G_{\bowtie_u} . Thus, for a correct join algorithm, $J_u = J_u^*$. Let j_u denote \bowtie_u 's result size. In particular, $j_1 = r$, which is the query result size. For a tuple t of $R(a, b)$, we use both a named perspective (e.g., $(a : 1, b : 2)$) and an unnamed perspective (e.g., $R(1, 2)$) to represent t interchangeably [2]. $t[a] = \pi_a(t)$ for tuple t and attribute a . For tuple t and relations R, S , let join attribute value $jav(t, R, S) = t[attr(R) \cap attr(S)]$. We assume standard RAM complexity model.

3 REDUCING SEMI-JOIN PROGRAM IS ENOUGH

Algorithm 1.1 indicates that P_Q can be interwoven with join computation, which implies two-passes over G_Q is sufficient to compute the join result. Algorithm 1.1 is enumerating output top-down over G_Q and interweavingly, doing bottom-up semi-join operations. In other words, there is one redundant pass in Yannakakis's algorithm, which comes from the full reducer, that makes it impractical.

THEOREM 3.1. *Given a join tree G_Q and root R_1 , one can compute join with the following two steps:*

- (1) *apply $P_{Q,1}$ on G_Q ;*
- (2) *perform pair-wise join from root R_1 to leaves recursively.*

Any intermediate join result during the computation will not contain any dangling tuples.

The intuition is that after applying $P_{Q,1}$, $R_1 = R_1^*$ (Lemma 4 of [11]) and each other relation only contains tuples that are joinable with its child relations. If we start to compute join from this state in a top-down fashion, it is impossible to produce dangling tuples. Detailed proof of Theorem 3.1 is in Appendix A. We use Example 2 to illustrate the extra work done by Yannakakis's algorithm.

Example 2. Suppose there are three relations in G_Q : R_p , R_j , and R_i . R_p is the parent of R_j and R_j is the parent of R_i . To evaluate Q using Yannakakis's algorithm, the following operations are carried out:

$$R'_j = R_j \bowtie R_i \quad (1)$$

$$R'_p = R_p \bowtie R'_j \quad (2)$$

$$R_j^* = R'_j \bowtie R'_p \quad (3)$$

$$R_i^* = R_i \bowtie R_j^* \quad (4)$$

Theorem 3.1 executes (1) and (2). Join is executed starting at R'_p . For $R'_p \bowtie R'_j$, tuples in $R'_j \setminus R'_p$ will not be selected. Thus, (3) is not needed. Similarly, (4) is not needed. The reason that Yannakakis's algorithm requires (3) and (4) is because the join is performed in a bottom-up fashion. Without first removing dangling tuples in R_j and R_i , Yannakakis's algorithm may produce an unjoinable intermediate result. Thus, the additional semi-joins are needed to achieve the complexity bound but not the correctness of the algorithm.

349 COROLLARY 3.2. *The algorithm in Theorem 3.1 runs $O(n + r)$,
350 which is the same as Yannakakis’s algorithm.*

351 Corollary 3.2 immediately follows from Theorem 3.1 because in-
352 termediate result size is smaller than the final result size.

353 Empirically and without proof of correctness of the system, Emp-
354 tityHeaded [1] (Section 3.5) eliminates the top-down pass of Yan-
355 nakakis’s algorithm and demonstrates a 10% performance improve-
356 ment for tested workload.

358 4 TREETRACKER- γ JOIN

359 We first define the *TreeTracker- γ (TT- γ) Join* (Algorithm 4.1, 4.2,
360 and 4.3) that assumes step (1) of Theorem 3.1 is done and computes
361 step (2) of Theorem 3.1 in Yannakakis bound. TT- γ forms the basis
362 of TTJ and plays an important role in TTJ runtime analysis.

365 Algorithm 4.1: Open() of Join Operator (TT- γ & TTJ)

366 **Global variables:** r_{inner} , r_{outer} , R_{inner} , R_{outer} , l , I_l
367 **Output:** One joined tuple of R_{outer} , R_{inner} (i.e., one row
368 of $R_{outer} \bowtie R_{inner}$)

369 **1 Function** Open():
370 2 $l \leftarrow \text{nil}$
371 3 $I_l \leftarrow \text{nil}$
372 4 $r_{inner} \leftarrow \text{nil}$
373 5 $r_{outer} \leftarrow \text{nil}$
374 6 $H \leftarrow \text{empty hash table}$
375 7 $R_{inner}.\text{Open}()$
376 8 **while** ($r_{inner} \leftarrow R_{inner}.\text{GetNext}()$) $\neq \text{nil}$ **do**
377 9 $H[jav] \leftarrow H[jav] \cup \{r_{inner}\}$ where
378 10 $jav = jav(r_{inner}, R_{inner}, R_{outer})$
380 11 $R_{outer}.\text{Open}()$

384 Algorithm 4.2: GetNext() of Join Operator in TT- γ

386 **1 Function** GetNext():
387 2 **if** $l \neq \text{nil}$ **then**
388 3 advance I_l
389 4 **if** $I_l \neq \text{nil}$ **then**
390 5 **return** join of element pointed by I_l with
391 r_{outer}
392 6 $r_{outer} \leftarrow R_{outer}.\text{GetNext}()$
393 7 **if** $r_{outer} = \text{nil}$ **then**
394 8 **return** nil
395 9 **return** LookUpH()

398 Here are a few remarks on the algorithm details:

399

- 400 • Consider Algorithm 4.1, 4.2, and 4.3 to be methods asso-
401 ciated with operators. Thus, global variables first listed in
402 Algorithm 4.1 are within the scope of all three algorithms.
403 Methods associated with the operator can change the state
404 of those variables during the runtime. Further, those vari-
405 ables are not accessible by other operator instances.

407 Algorithm 4.3: LookUpH() of Join Operator in TT- γ

408 **1 Function** LookUpH():
409 2 $l \leftarrow H[jav]$ with jav computed from r_{outer}
410 3 **if** $l \neq \text{nil}$ **then**
411 4 initialize I_l pointing to the first element of l
412 5 **return** join of the element pointed by I_l with r_{outer}
413 6 **return** nil

414

- 415 • H is a hash table with jav computed from r_{inner} as its key
416 and its value is a list of tuples from R_{inner} sharing the same
417 jav .
- 418 • LoopUpH() is a private method that is invoked by GetNext().
419 Thus, no modification is made to the iterator interface.

420 TT- γ join algorithm is very similar to hash join (Table 1 in [24]).
421 The only difference between TT- γ and hash join happens inside
422 GetNext() starting at Line 6. Since P_Q is already applied and rela-
423 tions are ordered in pre-order traversal, by Theorem 3.1, any non-
424 nil r_{outer} returned from Line 6 is joinable. Thus, algorithm can call
425 LookUpH() to compute the join result.

426 **THEOREM 4.1.** *TT- γ Join Algorithm (Algorithm 4.1, 4.2, and 4.3)
427 computes the correct join result.*

428 **PROOF.** Proof by induction on the join operator u . Base case,
429 $u = k$. Because \bowtie_k is the root of G_Q and P_Q has been applied,
430 the claim holds following Theorem 3.1. Assume the claim holds for
431 $u = i$ (i.e., $J_i = J_i^*$), we want to show it holds for $u = i - 1$. Let
432 r_{outer}^j denote the j th value assigned to r_{outer} . LookUpH() is called
433 for each new r_{outer} from \bowtie_i . Thus, for each non-nil r_{outer}^j with
434 $j \in [j_i]$ from J_i , $l = R_{i-1} \bowtie \{r_{outer}^j\}$. Since I_l is never reset until
435 $\{r_{outer}^j\} \bowtie l$ is computed, Thus, tuples returned by \bowtie_{i-1} equals to

$$\bigcup_{j=1}^{j_i} (R_{i-1} \bowtie \{r_{outer}^j\}) \bowtie \{r_{outer}^j\}$$

436 , which is J_{i-1}^* . \square

437 **THEOREM 4.2.** *The runtime complexity of evaluating Q assuming
438 application of P_Q using TT- γ Join Algorithm (Algorithm 4.1, 4.2, 4.3)
439 driven by Algorithm 2.1 is $O(n + r)$.*

440 **PROOF.** There are k relations and $k - 1$ join operators, Open()
441 takes $O(kn)$ as each operator is called once and takes $O(n)$ to build
442 H . By Theorem 3.1, It takes $O(k)$ GetNext() calls to compute a
443 tuple in J_1 . Since each GetNext() call takes $O(1)$, it takes $O(k)$ to
444 compute one join result and $O(kr)$ for J_1 . Thus, in total, we have
445 $O(kn + kr) = O(n + r)$. \square

446 5 TREETRACKER JOIN

447 To define TTJ (Algorithms 4.1, 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6), we
448 integrate the removal of dangling tuples into the TT- γ algorithm,
449 thereby eliminating the preprocessing reduction step assumed to
450 have occurred in the previous section.

451 Intuitively, to eliminate the explicit preprocessing step, we are
452 integrating the concept first shown in Algorithm 1.1. The proper
453

algorithmic changes are actually accomplished by interweaving step (1) and step (2) of Theorem 3.1. Yet, like Algorithm 1.1, TTJ takes a fine-grained approach. Instead of doing join and semi-join on sets of tuples, the same results are achieved in a tuple-by-tuple fashion. The number of dangling tuples removed by TTJ is no greater than the number removed by P_Q ³ and they may be removed prior to the completion of TTJ's execution. If so, at that point, TTJ will have the same behavior as TT- γ . TTJ takes no more than the time P_Q takes to remove dangling tuples, $O(n)$. Since TT- γ meets Yannakakis's algorithm optimality, TTJ also achieves the desired bound.

Algorithm 5.1: GetNext() of Join Operator in TTJ

```

1 Function GetNext():
2   return GetOuter(getNewOuterTuple = true)

```

Algorithm 5.2: LookUpH() of Join Operator in TTJ

```

1 Function LookUpH():
2   if l = nil then
3     l  $\leftarrow$  H[jav] with jav = jav(router, Rinner, Router)
4     if l  $\neq$  nil then
5       initialize Il to point to the first element of l
6       return join of the element pointed by Il with router
7   else
8     advance Il pointing to the next element of l
9     return the join of element pointed by Il with router
10  return nil

```

Example 3. Let $D = \{T(x), S(x, y, z), B(z), R(y, z)\}$, $I = \{T(\text{green}), T(\text{red}), S(\text{red}, 1, 2), S(\text{red}, 3, 2), B(2), R(3, 2)\}$, and $G_Q = \{(T, S), (S, B), (S, R)\}$ in edge list representation with root T . Q over D has exactly one result: $(x : \text{red}, y : 3, z : 2)$. Starting with the driver (Algorithm 2.1), GetNext() makes recursive calls to itself ending with a call to T 's table scan operator (Algorithm 5.6). The table scan operator's *ng* value is empty, so $T(\text{green})$ is returned (indicated by \rightarrow in Figure 1 (A)). LookUpH() is called by operator instance \bowtie_3 (Algorithm 5.3 Line 12). Figure 1 (A) illustrates the resulting state.

Since none of the tuples in S can join with $T(\text{green})$, *nil* is returned (Algorithm 5.2 Line 10). \bowtie_3 calls RemoveDanglingT() (Algorithm 5.3 Line 15). For \bowtie_3 , *Router* references T and *Rinner* references S . Thus, T .RemoveDanglingT(S) is called (indicated by \leftarrow in Figure 1 (B)). The call to the table scan operator's RemoveDanglingT() (Algorithm 5.5) results in $T(\text{green})$ being added to *ng*. The next tuple that is not in *ng*, $T(\text{red})$, is returned. Figure 1 (B) illustrates this state.

Operator \bowtie_3 's *router* input contains $T(\text{red})$. LookUpH() is called by \bowtie_3 from Algorithm 5.3 Line 12. A lookup on hash table H , which contains S , returns $\{(x : \text{red}, y : 1, z : 2)\}$ as *l* (Algorithm 5.2 Line 3). LookUpH() in \bowtie_3 per Algorithm 5.3 Line 14 returns $(x : \text{red}, y :$

³See Lemma 5.1 and Corollary 5.2.

Algorithm 5.3: GetOuter() of Join Operator in TTJ

```

1 Function GetOuter(getNewOuterTuple):
2   if getNewOuterTuple = true then
3     if l  $\neq$  nil then
4       advance Il
5       if Il  $\neq$  nil then
6         return join of element pointed by Il with router
7       router  $\leftarrow$  Router.GetNext()
8       l  $\leftarrow$  nil
9     if router = nil then
10    return nil
11  while true do
12    rinner  $\leftarrow$  LookUpH()
13    if rinner  $\neq$  nil then
14      return rinner
15    router  $\leftarrow$  Router.RemoveDanglingT(Rinner)
16    if router = nil then
17      return nil
18    l  $\leftarrow$  nil

```

Algorithm 5.4: RemoveDanglingT() of Join Operator in TTJ

```

1 Function RemoveDanglingT(relation):
2   if Rinner is the parent of relation in  $G_Q$  then
3     Remove tuple pointed by Il
4     if H is empty then
5       return nil
6   else
7     router  $\leftarrow$  Router.RemoveDanglingT(relation)
8     l  $\leftarrow$  nil
9   return GetOuter(getNewOuterTuple = false)

```

Algorithm 5.5: RemoveDanglingT() of Table Scan Operator in TTJ

```

1 Function RemoveDanglingT(relation):
2   // ng is a set of tuples.
3   put the tuple last returned in ng
4   return GetNext()

```

Algorithm 5.6: GetNext() of Table Scan Operator in TTJ

```

1 Function GetNext():
2   return the next tuple that is not in ng

```

$1, z : 2$). The value of *router* in operator instance \bowtie_2 is set to $(x : \text{red}, y : 1, z : 2)$ by Algorithm 5.3 Line 7. The call to LookUpH()

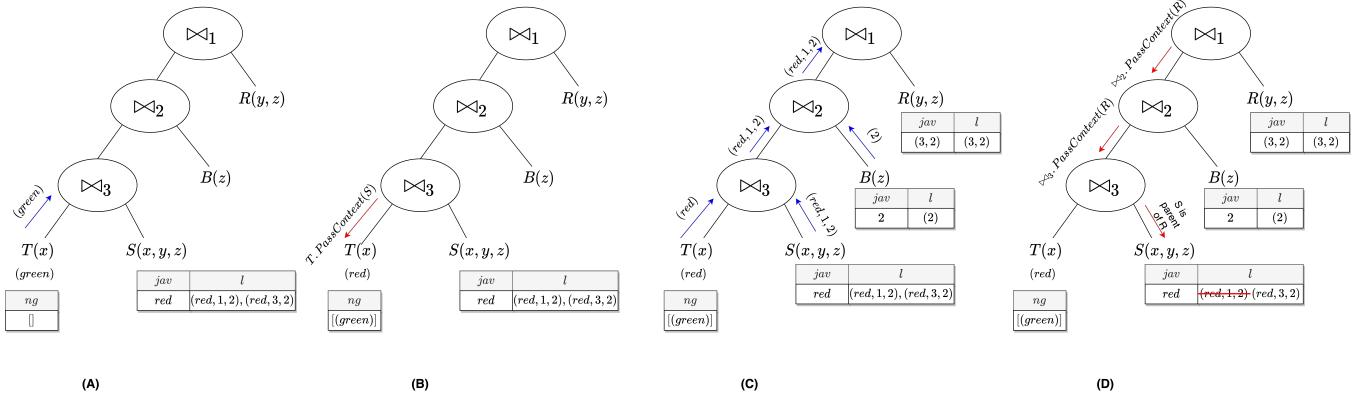


Figure 1: The figure shows four execution states of TTJ when evaluating $T(x) \bowtie S(x, y, z) \bowtie B(z) \bowtie R(y, z)$ over I in Example 3.

returns $(x : red, y : 1, z : 2)$ and set as \bowtie_1 's r_{outer} value. Operator \bowtie_1 then calls `LookUpH()`. Figure 1 (C) illustrates this state.

Looking up R tuples in H of \bowtie_1 returns nothing because $y = 1$ in tuple $(x : red, y : 1, z : 2)$ fails to join. Thus, operator \bowtie_1 calls `RemoveDanglingT()` (Algorithm 5.3 Line 15) with argument R . R_{outer} is referencing \bowtie_2 . Since B is not the parent of R in G_Q , `RemoveDanglingT()` is recursively called from Algorithm 5.4 Line 7 with R_{outer} references \bowtie_3 . S is the parent of R in G_Q . The algorithm removes $S(red, 1, 2)$, which is pointed by I_l (Algorithm 5.4 Line 3). Figure 1 (D) illustrates that state.

Looking into H of R in \bowtie_1 returns nothing because $y = 1$ from $(x : red, y : 1, z : 2)$ fails the join. \bowtie_1 calls `RemoveDanglingT()` (Algorithm 5.3 Line 15) with argument R . R_{outer} in \bowtie_1 references \bowtie_2 . Since B is not the parent of R in G_Q , `RemoveDanglingT()` is recursively called from Algorithm 5.4 Line 7 with R_{outer} references \bowtie_3 . S is the parent of R in G_Q . The algorithm removes $S(red, 1, 2)$, which is pointed by I_l (Algorithm 5.4 Line 3). Figure 1 (D) illustrates the state of operators at this moment.

The algorithm calls `GetOuter(false)` from Algorithm 5.4 Line 9 so that H of S can be checked again to see if there is another tuple joining with $T(red)$. In this case, $(red, 3, 2)$ does and the join result is computed.

TTJ has similar structure as TT- γ but adds the method `RemoveDanglingT()`. Technically, `RemoveDanglingT()` is a third input to the operator. However it is strictly additive to existing interfaces, does not need to be implemented by other operators and thus, as a practical matter, does not pose a challenge to constraint (1).

TTJ implements the concept presented as Algorithm 1.1 but does so in the form of a composable operator. Algorithm 1.1 achieves semi-join reduction by removing dangling tuples from a base relation, which is not possible if the algorithm is embedded in a relational query system. To achieve the same effect, TTJ, like a hash join, reads one of its relational arguments and initializes a local hash index, H_i , per the contents of the relation R_i for $i \in [k - 1]$. As dangling tuples are identified, they can be removed from further consideration by removing them from H_i , limiting the scope of the side effect to inside the operator. Similar mechanism for R_k is a deny list ng , which works the same as shown in Algorithm 1.1.

In Example 1, S is the parent of R . In Algorithm 1.1, once $s \in S$ is detected as a dangling tuple, the execution flow can switch from inner loop associated with B to outer loop associated with S and modify its ng value. However, in query plan, this mechanism is not built-in. Thus, `RemoveDanglingT()` is needed to change evaluation execution flow; just like `GoTo` in programming languages. When a dangling tuple is detected by R_i , the execution should directly jump back to R_i 's parent, R_j , and remove R_j 's tuple pointed by I_l because by G_Q definition, R_j is the source of the failure. Thus, `RemoveDanglingT()` is invoked with argument R_i and execution flow restarts from R_j . This disruption with respect to flow of control skips executing unnecessary operations in the operators skipped. This idea is the same as *backjumping* in CSP [43]. Broadly speaking, information of joined tuple flows up in the query plan whereas `RemoveDanglingT()` sends a dangling tuple signal down.

Lemma 5.1 speaks to how TTJ reflects step (1) of Theorem 3.1 in its join computation.

LEMMA 5.1. *W.L.O.G, let R_k be the root of G_Q with k relations. Let H'_i with $i \in [k - 1]$ denote the initial contents of H_i minus the entries removed by Line 3 in `RemoveDanglingT()` (Algorithm 5.4) after evaluating Q with TTJ. We have two families of sets:*

- (1) $\mathcal{A} = \{R_k - ng, H'_{k-1}, \dots, H'_1\}$
- (2) $\mathcal{B} = \{R'_k, R'_{k-1}, \dots, R'_1\}$ after running $P_{Q,k}$ on G_Q

Then, $R_k - ng = R'_k$ and $R'_i \subseteq H'_i$ for $i \in [k - 1]$.

PROOF. For each R_i for $i \in [k]$, Denote the set from \mathcal{A} that built from R_i as R_i^A (e.g., $R_1^A = H'_1$ and $R_k^A = R_k - ng$). Similarly, the set from \mathcal{B} denoted as R_i^B . We first show $R_i^B \subseteq R_i^A$.

Case 1. R_i is a leaf node of G_Q . By the definition of $P_{Q,k}$, $R_i^B = R'_i = R_i$. On the other hand, $R_i^A = H'_i = H_i = R_i$ because H_i contains all tuples of R_i and is modified only when R_i is the parent of some node in G_Q . Thus, $R_i^A = R_i^B$ and lemma holds for leaf nodes.

Case 2. R_i is a non-leaf node of G_Q . First consider $i \in [k - 1]$, $R_i^A = H'_i$. Suppose $t \notin R_i^A$. This means t is one of the tuples removed by Algorithm 5.4 Line 3. Line 3 is executed only when an intermediate join result, a concatenation of tuples including t , cannot join with one of its child relation R_j in the upper part of

697 plan. Thus, $t \notin R_i^B$ because t cannot join with any tuples in R_j and
 698 will be removed by $R_i \bowtie R_j$ in $P_{Q,k}$. Since $t \notin R_i^A$ implies $t \notin R_i^B$,
 699 $R_i^B \subseteq R_i^A$ for $i \in [k-1]$. For $i = k$, we have $R_k^A \subseteq R_k - ng$. Suppose
 700 $t \notin R_k - ng$. Since ng contains the tuples of R_k that are removed by
 701 $\text{RemoveDanglingT}()$, for the same reason as above, t cannot join with
 702 one of R_k 's child. Thus, $t \notin R_k^B$. Thus, $R_i^B \subseteq R_i^A$ for $i \in [k]$.
 703

704 Implied by Theorem 3.1, it can be the case that $t \in R_i^A$ and
 705 $t \notin R_i^B$ for $i \in [k-1]$. Specifically, tuples from R_i that cannot
 706 join with any tuples from its parent will not be removed by TTJ.
 707 However, some of them can be removed by $P_{Q,k}$ if those tuples
 708 cannot join with one of R_i 's children. For example, consider $D =$
 709 $\{R_3(x), R_2(x, y), R_1(y)\}$ with $I = \{R_3(4), R_2(4, 6), R_2(3, 5), R_2(4, 7),$
 710 $R_1(7)\}$. Suppose $R_3 \rightarrow R_2 \rightarrow R_1$ is the G_Q . Then, $R_2(3, 5)$ will not
 711 be removed after TTJ but will be by $P_{Q,k}$. Thus, $R_2(3, 5) \in H'_2$ but
 712 $R_2(3, 5) \notin R'_2$. On the other hand, if tuples from R_i that cannot join
 713 with R_i 's parent but can join with R_i 's children, then $R_i^A \subseteq R_i^B$.
 714

715 It remains to show $R_k^A \subseteq R_k^B$. Suppose $t \notin R_k^B$. t is removed
 716 because it cannot join with any tuples from R_j , a R_k 's child. $t \notin$
 717 $R_k - ng$. Every tuple of R_k will be returned if it doesn't belong
 718 to ng . Then t will be returned. Since none of R_j can join with t ,
 719 $\text{RemoveDanglingT}()$ is called. Since R_k is the parent of R_j , t is put
 720 onto ng . Since $t \notin R'_k$ implies $t \notin R_k - ng$, $R_k^A \subseteq R_k^B$. Since $R_k^A \supseteq R_k^B$,
 721 $R_k^A = R_k^B$. Combining all the cases, the lemma holds under bag
 722 semantics. \square

723 **COROLLARY 5.2.** *If we measure work, W , done by an algorithm as
 724 the number of tuples removed from relations in G_Q , $W^{TTJ} \leq W^{PQ}$.*

725 Corollary 5.2 immediately follows from Lemma 5.1. Intuitively,
 726 P_Q does redundant work. Reusing Example 2, tuples from $R_j \bar{\bowtie} R_p$
 727 will not fail Theorem 3.1 but some may be removed by P_Q because
 728 they cannot join with R_i . \square

5.1 Correctness of TTJ

731 **LEMMA 5.3.** *For every assignment to r_{outer} , l is initialized with
 732 values in $\text{LookUpH}()$ and I_l is reset. Between each pair of assignments
 733 to r_{outer} , l is never initialized and I_l is never reset.*

735 **PROOF.** Whenever r_{outer} is assigned, l is set to nil . Since l is
 736 initialized and I_l is reset when $l = nil$ in $\text{LookUpH}()$, the result
 737 follows. \square

738 **THEOREM 5.4.** *TTJ (Algorithms 4.1, 5.1, 5.2, 5.3, and 5.4, 5.5, 5.6)
 739 driven by Algorithm 2.1 computes the correct join result.*

741 **PROOF.** We need to show $J_1 = J_1^*$ with

$$J_1^* = \{t \text{ over } \text{attr}(G_{\bowtie_1}) \mid t[\text{attr}(R_u)] \in R_u \ \forall u \in [k]\}$$

744 under bag semantics. We first show $J_1 \subseteq J_1^*$. Let $t \notin J_1^*$. There
 745 are two cases.

746 **Case 1.** There exists R_i such that $t[\text{attr}(R_i)] \notin R_i$. In this case,
 747 it is trivial to see that $t \notin J_1$.

748 **Case 2.** t satisfies: $\exists R_i$ such that $t[\text{attr}(R_i)] = t_i \in R_i$ but
 749 $t_i \in R_i \bar{\bowtie} R_j$ for some R_j . We need to show any t satisfying
 750 above condition cannot be in J_1 . By G_Q definition, relations on
 751 the path between R_i and R_j have attributes $\text{attr}(R_i) \cap \text{attr}(R_j)$.
 752 Thus, t also satisfies: $\exists R_x$ such that $t[\text{attr}(R_x)] = t_x \in R_x$ but
 753 $t_x \in R_x \bar{\bowtie} R_p$ for some relations R_x and R_p on the path between
 754

755 R_i and R_j . Further, R_x and R_p form parent-child relation and are
 756 connected by an edge in G_Q . If R_p is the parent and R_x is the child,
 757 $t \notin J_1$. Suppose R_p is the child and R_x is the parent. TTJ will
 758 call $\text{RemoveDanglingT}()$ from the join operator connected with
 759 R_p and t_x will be deleted from H_x . Thus, t will not be returned
 760 and is not in J_1 . Note the same execution applies if t values are
 761 duplicated. Thus, the condition is satisfied under both set and bag
 762 semantics.

763 To show $J_1^* \subseteq J_1$, suppose $t \in J_1^*$ but $\notin J_1$ for some $u \in [k]$.
 764 Since $t \in J_u^*$, $t[\text{attr}(R_u)]$ can join with all relations from $u-1$
 765 to 1 in the plan. Thus, $t[\text{attr}(R_u)] \in H'_u$. Thus, it must be that
 766 $t[\text{attr}(G_{\bowtie_{u+1}})] \in J_{u+1}^*$ but $t \notin J_{u+1}$. The same argument applies
 767 to every operator in the plan. Eventually, we have $t[\text{attr}(R_k)] \in J_k^*$
 768 but $t \notin J_k$. However, this is a contradiction. $t[\text{attr}(R_k)] \in J_k^*$ and
 769 joins with the rest of the relations in plan. Thus, $t[\text{attr}(R_k)] \notin ng$
 770 and $\in J_k$. Since u is picked arbitrarily, $J_1^* \subseteq J_1$. \square

771 For $t \in J_1^*$, we need to show the number of tuples t that are in
 772 J_1^* equals to the number of tuples t shown in J_1 . This follows from
 773 Lemma 5.3. The proof similar to Theorem 4.1's proof. \square

5.2 Runtime Analysis of TTJ

774 **Definition 1 (clean state).** The execution of a query plan reaches
 775 a *clean state* if ng and H_u for $u \in [k-1]$ are the same as \mathcal{A} in
 776 Lemma 5.1.

777 The moment after the query execution reaches a clean state, TTJ
 778 satisfies Lemma 5.5 and 5.6. The proofs are in Appendix B and Ap-
 779 pendix C, respectively.

780 **LEMMA 5.5.** $J_u^* \bowtie H'_{u-1}$ will not create dangling tuples.

781 **LEMMA 5.6.** The tuple produced by \bowtie_u will be an element in J_u^*
 782 for all $u \in [k]$.

783 **THEOREM 5.7.** The data complexity of evaluating Q using Tree-
 784 Tracker Join Algorithm (Algorithm 4.1, 5.1, 5.2, 5.3, and 5.4, 5.5) driven
 785 by Algorithm 2.1 is $O(n + r)$. \square

786 **PROOF.** By Lemma 5.1, the execution of a plan is in clean state
 787 when TTJ execution finishes. Thus, the amount of work caused by
 788 backtracking via $\text{RemoveDanglingT}()$ is fixed. Suppose the execu-
 789 tion is in clean state after computing the first join result.

790 We first bound the cost of getting the first join result. $\text{Open}()$ is
 791 $O(kn)$. The total cost of $\text{GetNext}()$ without counting $\text{RemoveDanglingT}()$
 792 is bounded by the total number of loops (starting at Line 11) within
 793 $\text{GetOuter}()$ no matter the argument. Each time $\text{RemoveDanglingT}()$
 794 is called (Algorithm 5.3 Line 15), exactly one tuple is removed from
 795 H : since TTJ never re-reads a base relation after H is built, remov-
 796 ing an element from H is effectively the same as removing a tuple
 797 from the base relation. There can be at most $(k-1)n$ backtracks
 798 because once H is empty, $\text{RemoveDanglingT}()$ returns nil . In addi-
 799 tion, for the \bowtie_1 operator, the number of $\text{RemoveDanglingT}()$ calls
 800 from Algorithm 5.3 Line 15 is $j_2 + 1$ and for the \bowtie_2 operator, the
 801 number is $j_3 + 1$, and so on. Thus, $\sum_{i=1}^{k-1} (j_{i+1} + 1) = (k-1)n$.
 802 In other words, the total number of loops in $\text{GetOuter}()$ calls is
 803 $O((k-1)n)$. Since the number of loops in $\text{GetOuter}(\text{true})$ and the
 804 number of loops in $\text{GetOuter}(\text{false})$ in total is $O((k-1)n)$, the
 805 total cost of $\text{GetNext}()$ without considering $\text{RemoveDanglingT}()$
 806 is $O(kn)$. \square

813 Next, we bound the cost of `LookUpH()`. Each call takes $O(1)$.
 814 Since the total number of `LookUpH()` calls is bounded by the total
 815 number of loops in `GetOuter()` no matter the argument, the total
 816 cost of `LookUpH()` is $O(kn)$.

817 Next, we need to count the total number of `RemoveDanglingT()`
 818 calls: not just calls from Algorithm 5.3 Line 15 (in total, $O(kn)$) but
 819 also the recursive calls made by `RemoveDanglingT()` itself at Algo-
 820 rithm 5.4 Line 7. A call to `RemoveDanglingT()` made in i th opera-
 821 tor from Line 15, `RemoveDanglingT()` can be recursively called at
 822 most $k - i$ times from Algorithm 5.4 Line 7 and $j_{i+1} + 1$ more calls
 823 made in Algorithm 5.3 Line 15 due to additional `GetR1(false)`
 824 calls from `RemoveDanglingT()`. Since each relation can be back-
 825 tracked at most n times, the number of `RemoveDanglingT()` calls
 826 with $k - 1$ recursive calls is at most n . The same applies to
 827 `RemoveDanglingT()` calls with $k - 2, k - 3, \dots, 1$ recursive calls.
 828 Thus, the total number of `RemoveDanglingT()` calls is $\sum_{i=1}^{k-1} (k - i) \cdot n + j_{i+1} + 1 = O(k^2n)$.

829 For each `RemoveDanglingT()` call, `GetOuter(false)` is called
 830 exactly once. Between two `GetOuter(false)` calls, $O(1)$ work is
 831 done. Therefore, total amount of work done by `GetOuter(false)`
 832 is $O(k^2n)$.

833 Summing everything together, it takes $O(k^2n)$ to compute the
 834 first join result. From Lemma 5.5 and Lemma 5.6, once execution
 835 reaches a clean state and $J_u \subseteq J_u^*$, there is no backtracking. Thus,
 836 there will be no more `RemoveDanglingT()` calls and the result
 837 of `LookUpH()` can be returned directly. Thus, once the execution
 838 is in a clean state, TTJ behaves exactly the same as TT- γ (Sec-
 839 tion 4). Since the execution is in a clean state after the first join
 840 result is computed, the total cost for computing the r join result
 841 is $O(k^2n + (r - 1)k) = O(n + r)$, which is equal to that of Yan-
 842 nakakis's algorithm. \square

843 **COROLLARY 5.8.** *TTJ and Yannakakis's algorithm is equivalent*
 844 *from both scope of applicability and algorithmic complexity.*

6 DISCUSSION AND RELATED WORK

845 From database perspective, `RemoveDanglingT()` is reminiscent of
 846 *Sideways Information Passing (SIP)* [7, 10, 28, 45, 57] and *Magic Sets*
 847 [7, 10, 35, 44]. TTJ, SIP, and Magic Sets share the same goal of filter-
 848 ing out dangling tuples as early as possible in the query plan. SIP
 849 and Magic Sets achieve the goal by sending partial results com-
 850 puted from subpart of the query to the other subpart. TTJ is differ-
 851 ent from their approach because TTJ never waits for partial results
 852 computed before calling `RemoveDanglingT()`; once a dangling tu-
 853 ple is identified, information is sent immediately. In addition, TTJ
 854 does not transform query and associated plans; what information
 855 to pass is determined at runtime instead of optimization step. How-
 856 ever, TTJ is compatible with many existing SIP approaches. For ex-
 857 ample, Ives and Taylor [28] create a Bloom filter on a computa-
 858 tion-completed subtree of a bushy plan and sends the filter to the other
 859 subtree to semi-join reduce arriving tuples. TTJ can be directly em-
 860 ployed in the subtree computation.

861 A CSP technique, (hyper)tree decomposition [15, 16, 22], has
 862 been successfully adapted and applied in the context of query eval-
 863 uation [3, 20, 21, 29, 48]. Join algorithms based on hypertree decom-
 864 position handle CQs with complexity form $O(n^d + r)$ where d is
 865 a *width* parameter determined by the topology of query structure

866 [20]. Tziavelis *et al.* [49] note that those algorithms share the same
 867 algorithmic structure and Yannakakis's algorithm as the final step
 868 is used to compute the join result on derived relations from the
 869 decomposition. Given the equivalence between Yannakakis's algo-
 870 rithm and TTJ, TTJ can directly replace Yannakakis's algorithm to
 871 evaluate cyclic CQs with hypertree decomposition.

872 Note that TTJ cannot be directly applied to cyclic CQs because
 873 the join failure may be caused by a combination of values of multi-
 874 ple attributes from different relations. Thus, removing a tuple from
 875 a relation that contributes only partial of the combination will lead
 876 to incorrect join result. However, TTJ demonstrates that one oper-
 877 ator can pass information to another operator with method calls
 878 subject to parent-child relation in G_Q . In addition, the dangling tu-
 879 ple information is either explicit or implicit maintained in each
 880 operator. It is natural to ask whether it is possible to maintain
 881 no-good combination of attribute values in proper operator(s) to
 882 achieve reasonable bound for evaluating cyclic CQs. We treat this
 883 exploration as part of future work.

7 CONCLUSION AND FUTURE WORK

884 Being an optimal algorithm for acyclic CQs, Yannakakis's algo-
 885 rithm is hard to use in practice due to additional semi-joins in-
 886 troduced in the full reducer preprocessing step. In this paper, we
 887 show that preprocessing relations are not needed to reach optimal
 888 evaluation of acyclic CQs. We develop TTJ, a composable join algo-
 889 rithm that has the same bound as the Yannakakis's algorithm. TTJ
 890 takes traditional unary and binary operator forms and can be di-
 891 rectly used in existing query plans without introducing any extra
 892 operators. The key ingredient is, with techniques from CSP, TTJ re-
 893 moves dangling tuples on the fly during join computation. The im-
 894 plication is that a physical operator can implement two relational
 895 algebra operations at the same time. Thus, as a future work, it is
 896 worth to explore the possibility of mix and match operators shown
 897 in Algorithm 1.1 with existing operators to improve overall query
 898 performance. In addition, TTJ implements learning no-good idea
 899 with the help from object-oriented design pattern: an operator has
 900 private fields that can be changed by a side effect of a method call
 901 at runtime. Thus, it is interesting to see whether such idea enables
 902 the design of practical algorithms that may be seemingly impossi-
 903 ble from relational algebra perspective.

REFERENCES

- [1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. EmptyHeaded: A Relational Engine for Graph Processing. *ACM Trans. Database Syst.* 42, 4, Article 20 (Oct. 2017), 44 pages. <https://doi.org/10.1145/3129246>
- [2] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. *Foundations of Databases*. Vol. 8. Addison-Wesley Reading.
- [3] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions Asked Frequently. In *Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems* (San Francisco, California, USA) (PODS '16). Association for Computing Machinery, New York, NY, USA, 13–28. <https://doi.org/10.1145/2902251.2902280>
- [4] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-Type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another?. In *Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems* (Chicago, Illinois, USA) (PODS '17). Association for Computing Machinery, New York, NY, USA, 429–444. <https://doi.org/10.1145/3034786.3056105>
- [5] Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. 2015. Design and Implementation of the LogicBlox System. In *Proceedings of the 2015 ACM SIGMOD*

929 *International Conference on Management of Data*. 1371–1382.

930 [6] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size Bounds and Query
931 Plans for Relational Joins. *SIAM J. Comput.* 42, 4 (2013), 1737–1767.

932 [7] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985.
933 Magic Sets and Other Strange Ways to Implement Logic Programs (Extended
934 Abstract). In *Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles
935 of Database Systems* (Cambridge, Massachusetts, USA) (PODS '86). Association for
936 Computing Machinery, New York, NY, USA, 1–15. <https://doi.org/10.1145/6012.15399>

937 [8] Roberto J. Bayardo Jr and Daniel P. Miranker. 1994. An Optimal Backtrack Al-
938 gorithm for Tree-Structured Constraint Satisfaction Problems. *Artificial Intelligence* 71, 1 (1994), 159–181.

939 [9] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the
940 Desirability of Acyclic Database Schemes. *J. ACM* 30, 3 (July 1983), 479–513.
941 <https://doi.org/10.1145/2402.322389>

942 [10] C. Beeri and R. Ramakrishnan. 1987. On the Power of Magic. In *Proceedings of the
943 Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
944 Systems* (San Diego, California, USA) (PODS '87). Association for Computing
945 Machinery, New York, NY, USA, 269–284. <https://doi.org/10.1145/28659.28689>

946 [11] Philip A. Bernstein and Dah-Ming W. Chiu. 1981. Using Semi-Joins to Solve
947 Relational Queries. *J. ACM* 28, 1 (Jan. 1981), 25–40. <https://doi.org/10.1145/322234.322238>

948 [12] Surajit Chaudhuri. 1998. An Overview of Query Optimization in Relational Sys-
949 tems. In *Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART sym-
950 posium on Principles of database systems*. 34–43.

951 [13] Ming-Syan Chen and Philip S. Yu. 1990. Using Join Operations as Reduc-
952 ers in Distributed Query Processing. In *Proceedings of the Second International
953 Symposium on Databases in Parallel and Distributed Systems* (Dublin, Ireland)
954 (DPDS '90). Association for Computing Machinery, New York, NY, USA, 116–
955 123. <https://doi.org/10.1145/319057.319074>

956 [14] Radu Ciucanu and Dan Olteanu. 2016. *Worst-Case Optimal Join at a Time*. Technical Report. Department of Computer Science, University of Oxford.

957 [15] Rina Dechter and Judea Pearl. 1987. Network-based Heuristics for Constraint-
958 Satisfaction Problems. *Artificial Intelligence* 34, 1 (1987), 1–38. [https://doi.org/10.1016/0004-3702\(87\)90002-6](https://doi.org/10.1016/0004-3702(87)90002-6)

959 [16] Rina Dechter and Judea Pearl. 1989. Tree Clustering for Constraint Networks.
960 *Artif. Intell.* 38, 3 (April 1989), 353–366. [https://doi.org/10.1016/0004-3702\(89\)90037-4](https://doi.org/10.1016/0004-3702(89)90037-4)

961 [17] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and
962 Thomas Neumann. 2020. Adopting Worst-Case Optimal Joins in Relational
963 Database Systems. *Proc. VLDB Endow.* 13, 12 (July 2020), 1891–1904. <https://doi.org/10.14778/3407790.3407797>

964 [18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. *Design
965 Patterns: Elements of Reusable Object-Oriented Software*. Addison-Wesley.

966 [19] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. 2008. *Database
967 Systems: The Complete Book* (2nd ed.). Prentice Hall Press, USA.

968 [20] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarello. 2016.
969 Hypertree Decompositions: Questions and Answers. In *Proceedings of the 35th
970 ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems* (San
971 Francisco, California, USA) (PODS '16). Association for Computing Machinery,
972 New York, NY, USA, 57–74. <https://doi.org/10.1145/2902251.2902309>

973 [21] Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant. 2012. Size
974 and Treewidth Bounds for Conjunctive Queries. *J. ACM* 59, 3, Article 16 (June
975 2012), 35 pages. <https://doi.org/10.1145/2220357.2220363>

976 [22] Georg Gottlob, Nicola Leone, and Francesco Scarello. 2000. A Comparison of
977 Structural CSP Decomposition Methods. *Artificial Intelligence* 124, 2 (2000), 243–
978 282. [https://doi.org/10.1016/S0004-3702\(00\)00078-3](https://doi.org/10.1016/S0004-3702(00)00078-3)

979 [23] Danièle Grady and Claude Puech. 1989. On the Effect of Join Operations on
980 Relation Sizes. *ACM Trans. Database Syst.* 14, 4 (Dec. 1989), 574–603. <https://doi.org/10.1145/76902.76907>

981 [24] Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. *ACM
982 Comput. Surv.* 25, 2 (June 1993), 73–169. <https://doi.org/10.1145/152610.152611>

983 [25] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. *IEEE
984 Data Eng. Bull.* 18, 3 (1995), 19–29.

985 [26] Goetz Graefe and William J McKenna. 1993. The Volcano Optimizer Generator:
986 Extensibility and Efficient Search. In *Proceedings of IEEE 9th International
987 Conference on Data Engineering*. IEEE, 209–218.

988 [27] Xiao Hu and Ke Yi. 2016. Towards a Worst-Case I/O-Optimal Algorithm for
989 Acyclic Joins. In *Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium
990 on Principles of Database Systems* (San Francisco, California, USA) (PODS '16).
991 Association for Computing Machinery, New York, NY, USA, 135–150. <https://doi.org/10.1145/2902251.2902292>

992 [28] Zachary G. Ives and Nicholas E. Taylor. 2008. Sideways Information Passing for
993 Push-Style Query Processing. In *2008 IEEE 24th International Conference on Data
994 Engineering*. IEEE, 774–783.

995 [29] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré. 2016. AJAR: Ag-
996 gregations and Joins over Annotated Relations. In *Proceedings of the 35th ACM
997 SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems* (San Fran-
998 cisco, California, USA) (PODS '16). Association for Computing Machinery, New
999 York, NY, USA, 91–106. <https://doi.org/10.1145/2902251.2902293>

999 [30] Stasys Jukna. 2011. *Extremal Combinatorics: With Applications in Computer Sci-
999 ence* (2nd ed.). Springer Publishing Company, Incorporated.

999 [31] Oren Kalinsky, Yoav Etsion, and Benny Kimelfeld. 2017. Flexible Caching in Trie
999 Joins. *EDBT* (2017). <https://openproceedings.org/2017/conf/edbt/paper-131.pdf>

999 [32] Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. 2016.
999 Joins via Geometric Resolutions: Worst Case and Beyond. *ACM Trans. Database
999 Syst.* 41, 4, Article 22 (Nov. 2016), 45 pages. <https://doi.org/10.1145/2967101>

999 [33] Phokion G. Kolaitis and Moshe Y. Vardi. 1998. Conjunctive-Query Contain-
999 ment and Constraint Satisfaction. In *Proceedings of the Seventeenth ACM SIGACT-
999 SIGMOD-SIGART Symposium on Principles of Database Systems* (Seattle, Wash-
999 ington, USA) (PODS '98). Association for Computing Machinery, New York, NY,
999 USA, 205–213. <https://doi.org/10.1145/275487.275511>

999 [34] David Maier. 1983. *The Theory of Relational Databases*. Computer Science Press.
999 <http://web.ccs.pdx.edu/%7Emaier/TheoryBook/TRD.html>

999 [35] Inderpal Singh Mumick and Hamid Pirahesh. 1994. Implementation of Magic-
999 Sets in a Relational Database System. In *Proceedings of the 1994 ACM SIGMOD
999 International Conference on Management of Data* (Minneapolis, Minnesota, USA)
999 (SIGMOD '94). Association for Computing Machinery, New York, NY, USA, 103–
999 114. <https://doi.org/10.1145/191839.191860>

999 [36] Yoon-Min Nam Nam, Donghyoung Han Han, and Min-Soo Kim Kim. 2020.
999 SPRINTER: A Fast n-Ary Join Query Processing Method for Complex OLAP
999 Queries. In *Proceedings of the 2020 ACM SIGMOD International Conference on
999 Management of Data* (Portland, OR, USA) (SIGMOD '20). Association for Com-
999 puting Machinery, New York, NY, USA, 2055–2070. <https://doi.org/10.1145/331846.3380565>

999 [37] Gonzalo Navarro, Juan L. Reutter, and Javie Rojas-Ledesma. 2020. Optimal
999 Joins Using Compact Data Structures. In *23rd International Conference on Data-
999 base Theory (ICDT 2020) (Leibniz International Proceedings in Informatics (LIPIcs),
999 Vol. 155)*, Carsten Lutz and Jean Christoph Jung (Eds.). Schloss Dagstuhl–Leibniz-
999 Zentrum für Informatik, Dagstuhl, Germany, 21:1–21:21. <https://doi.org/10.4230/LIPIcs. ICDT.2020.21>

999 [38] Hung Q. Ngo, Dung T. Nguyen, Christopher Ré, and Atri Rudra. 2014. Beyond
999 Worst-Case Analysis for Joins with Minesweeper. In *Proceedings of the 33rd ACM
999 SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems* (Snow-
999 bird, Utah, USA) (PODS '14). Association for Computing Machinery, New York,
999 NY, USA, 234–245. <https://doi.org/10.1145/2594538.2594547>

999 [39] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-Case
999 Optimal Join Algorithms. *J. ACM* 65, 3, Article 16 (March 2018), 40 pages.
999 <https://doi.org/10.1145/3180143>

999 [40] Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. *SIGMOD Rec.*
999 45, 2 (Sept. 2016), 5–16. <https://doi.org/10.1145/3003665.3003667>

999 [41] Dan Olteanu and Jakub Závodný. 2015. Size Bounds for Factorised Representa-
999 tions of Query Results. *ACM Trans. Database Syst.* 40, 1, Article 2 (March 2015),
999 44 pages. <https://doi.org/10.1145/2656335>

999 [42] Anna Pagh and Rasmus Pagh. 2006. Scalable Computation of Acyclic Joins. In
999 *Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on
999 Principles of Database Systems* (Chicago, IL, USA) (PODS '06). Association for Com-
999 puting Machinery, New York, NY, USA, 225–232. <https://doi.org/10.1145/1142351.1142384>

999 [43] S. Russell and P. Norvig. 2010. *Artificial Intelligence: A Modern Approach* (third
999 ed.). Prentice Hall, Upper Saddle River, NJ. <http://aima.cs.berkeley.edu/>

999 [44] Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung,
999 Raghunathan Ramakrishnan, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan.
999 1996. Cost-Based Optimization for Magic: Algebra and Implementation. In *Pro-
999 ceedings of the 1996 ACM SIGMOD International Conference on Management of
999 Data* (Montreal, Quebec, Canada) (SIGMOD '96). Association for Computing
999 Machinery, New York, NY, USA, 435–446. <https://doi.org/10.1145/233269.233360>

999 [45] Lakshminikant Shrinivas, Sreenath Bodagala, Ramakrishna Varadarajan, Ariel
999 Cary, Vivek Bharathan, and Chuck Bear. 2013. Materialization Strategies in the
999 Vertica Analytic Database: Lessons Learned. In *2013 IEEE 29th International
999 Conference on Data Engineering (ICDE)*. IEEE, 1196–1207.

999 [46] Abraham Silberschatz, Henry F. Korth, and Shashank Sudarshan. 2019. *Database
999 System Concepts* (7th ed.). McGraw-Hill New York.

999 [47] K. Stocker, D. Kossmann, R. Braumandl, and A. Kemper. 2001. Integrating Semi-
999 Join-Reducers into State-of-the-Art Query Processors. In *Proceedings 17th Inter-
999 national Conference on Data Engineering*. 575–584. <https://doi.org/10.1109/ICDE.2001.914872>

999 [48] Susan Tu and Christopher Ré. 2015. DunceCap: Query Plans Using Generalized
999 Hypertree Decompositions. In *Proceedings of the 2015 ACM SIGMOD Interna-
999 tional Conference on Management of Data* (Melbourne, Victoria, Australia) (SIG-
999 MOD '15). Association for Computing Machinery, New York, NY, USA, 2077–
999 2078. <https://doi.org/10.1145/2723372.2764946>

999 [49] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal
999 Join Algorithms Meet Top-k. In *Proceedings of the 2020 International Conference
999 on Management of Data, SIGMOD Conference 2020, online conference [Portland,*
999 1044

OR, USA], June 14–19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2659–2665. <https://doi.org/10.1145/3318464.3383132>

[50] Allen Van Gelder. 1993. Multiple Join Size Estimation by Virtual Domains (Extended Abstract). In *Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems* (Washington, D.C., USA) (PODS '93). Association for Computing Machinery, New York, NY, USA, 180–189. <https://doi.org/10.1145/153850.153872>

[51] Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages. In *Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing* (San Francisco, California, USA) (STOC '82). Association for Computing Machinery, New York, NY, USA, 137–146. <https://doi.org/10.1145/800070.802186>

[52] Todd L Veldhuizen. 2014. Leapfrog Triejoin: A Simple, Worst-Case Optimal Join Algorithm. *ICDT* (2014). <https://doi.org/10.5444/002/icdt.2014.13>

[53] Sungheun Wi, Wook-Shin Han, Chuho Chang, and Kihong Kim. 2020. Towards Multi-Way Join Aware Optimizer in SAP HANA. *Proc. VLDB Endow.* 13, 12 (Aug. 2020), 3019–3031. <https://doi.org/10.14778/3415478.3415531>

[54] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In *VLDB*, Vol. 81. 82–94.

[55] C. T. Yu and C. C. Chang. 1984. Distributed Query Processing. *ACM Comput. Surv.* 16, 4 (Dec. 1984), 399–433. <https://doi.org/10.1145/3872.3874>

[56] Clement T. Yu, Z. Meral Ozsoyoglu, and K. Lam. 1984. Optimization of Distributed Tree Queries. *J. Comput. System Sci.* 29, 3 (1984), 409–445. [https://doi.org/10.1016/0022-0000\(84\)90007-2](https://doi.org/10.1016/0022-0000(84)90007-2)

[57] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking Ahead Makes Query Plans Robust: Making the Initial Case with in-Memory Star Schema Data Warehouse Workloads. *Proc. VLDB Endow.* 10, 8 (April 2017), 889–900. <https://doi.org/10.14778/3090163.3090167>

A PROOF OF THEOREM 3.1

Proof by induction on the height of G_Q . Base case. Suppose the height of G_Q is 0. Claim trivially holds. Suppose the claim holds for all queries whose height of $G_Q < h$. We want to show the claim holds for height of G_Q equals h . We want to show $J_1 = R_1 \bowtie \dots \bowtie R_k$ and there is no dangling tuples in any intermediate result during computation. $(\dots ((R_1^* \bowtie R_2') \bowtie R_3') \dots \bowtie R_m')$ equals to $R_1 \bowtie R_2' \bowtie \dots \bowtie R_m'$.

$$\begin{aligned}
J_1 &= (\dots ((R_1^* \bowtie R_2') \bowtie R_3') \dots \bowtie R_m') \bowtie J_2 \bowtie \dots \bowtie J_m \\
&= R_1 \bowtie R_2' \bowtie \dots \bowtie R_m' \bowtie J_2 \bowtie \dots \bowtie J_m \\
&= R_1 \bowtie (R_2' \bowtie J_2) \bowtie (R_3' \bowtie J_3) \bowtie \dots \bowtie (R_m' \bowtie J_m) \\
&= R_1 \bowtie J_2 \bowtie J_3 \bowtie \dots \bowtie J_m \\
&= R_1 \bowtie R_2 \bowtie \dots \bowtie R_L
\end{aligned}$$

The last step because J_2, \dots, J_m are subtrees of G_Q and they are disjoint. To show there is no dangling tuple, pick R_1, R_j and R_i where R_j is a child of R_1 and R_i is a child of R_j . During $P_{Q,1}$, $R_1 \bowtie (R_j \bowtie R_i)$ is executed. Because G_Q is a join tree, R_1, R_j, R_i share common attributes. If there is a dangling tuple, it has to happen after $R_1 \bowtie R_j$. However this is not possible because $R_1 \bowtie R_j$ after $P_{Q,1}$ equals to $(R_1 \bowtie (R_j \bowtie R_i)) \bowtie (R_j \bowtie R_i)$, which is $(R_1 \bowtie R_j) \bowtie R_i$. By induction assumption, no dangling tuple when join relations in subtree rooted in R_i . Since R_j and R_i are picked arbitrarily, the theorem holds.

B PROOF OF LEMMA 5.5

Since the plan is in clean state, by Lemma 5.1, we have $R'_{u-1} \subseteq H'_{u-1}$. The query plan is created from a join tree, and by Theorem 3.1 there has to be some tuple in R'_{u-1} that can join with some tuple(s) in J_u^* . To show the resulting tuple is not a dangling tuple, we proceed with a proof by contradiction. Let $J_{u-1} = J_u^* \bowtie H'_{u-1}$ and $J = R_1 \bowtie \dots \bowtie R_k$. Suppose a dangling tuple exists. That is, there exists $t_1 \in J_{u-1}$ such that there is no $t_2 \in J$ with $t_1[\text{attr}(J_{u-1})] \cap$

$attr(J) = t_2[attr(J_{u-1}) \cap attr(J)]$. Since $attr(J_{u-1}) \cap attr(J) = attr(J_{u-1})$, there is no $t_2 \in J$ with $t_1[attr(J_{u-1})] = t_2[attr(J_{u-1})]$. Then, it is sufficient to show there is no $t_2 \in J_u^* \bowtie R_{u-1}$ with the condition holding. Since $t_1 \in J_u^* \bowtie H_{u-1}'$, the assumption implies that there exists $t_1 \in J_u^* \bowtie H_{u-1}'$ such that $t_1 \notin J_u^* \bowtie R_{u-1}$. However, this is not true because $J_u^* \bowtie H_{u-1}' \subseteq J_u^* \bowtie R_{u-1}$.

C PROOF OF LEMMA 5.6

We will consider three possible cases.

Case 1. Suppose the query execution is already in the clean state at the beginning of the evaluation. Base case $u = k$. By Lemma 5.1, $R_k = R_k^*$ and the tuple returned from \bowtie_k is in J_k^* . Assume the lemma holds for $u = i$. We show that lemma holds for $u = i - 1$. By induction, the assumption implies that \bowtie_{i-1} 's *router* belongs to J_i^* . By Lemma 5.5, the joined tuple between *router* and a tuple in H'_{i-1} cannot be dangling tuple. Thus, tuple produced by \bowtie_{i-1} from Algorithm 5.3 Line 12 is in J_{i-1}^* . In addition, with Lemma 5.3, the tuple returned from Algorithm 5.3 Line 6 is in J_{i-1}^* . The lemma holds.

Case 2. Suppose the clean state happens at $u = k$. Consider the base case $u = k$. The assumption indicates that the clean state is formed right after Algorithm 5.5 Line 2 is executed. By Lemma 5.1, $R_k = R_k^*$ and the tuple returned from \bowtie_k is in J_k^* . Assume the lemma holds for $u = i$. We show the lemma holds for $u = i - 1$. Since the clean state happens at $u = k$, Algorithm 5.5 Line 3 will eventually cause \bowtie_{i-1} 's r_{router} reassigned. By induction assumption, \bowtie_{i-1} 's r_{router} will be from J_i^* . By Lemma 5.3, l will be initialized and by Lemma 5.5, we know the joined tuple returned from \bowtie_{i-1} is in J_{i-1}^* .

Case 3. Suppose the clean state happens at $u = i$ where $i \in [k-1]$. This happens after Algorithm 5.4 Line 3 is executed. Base case $u = k$. The assumption indicates that the tuple returned by \bowtie_k is already in J_k^* because otherwise, the clean state will happen at $u = k$. Assume the lemma holds for $u = j$. We show the lemma holds for $u = j-1$. Using a similar argument as Case 2, the lemma holds.