20
21
22
23
24
25
26
27
28
29
30
31
32

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49

TreeTracker Join: A Composable Join Algorithm that Yields
Optimal Acyclic Multi-Way Joins

Anonymous Author(s)

ABSTRACT

Improving the speed of a relational join is of constant interest. In
database theory, continual refinements of applicable algorithmic
complexity models serve to focus attention on different fundamen-
tals of the computation and have led to new optimal algorithms.
Yet these formal algorithmic improvements rarely make their way
into fielded general purpose relational query systems.

TreeTracker Join (TTJ) is a join algorithm that enables the op-
timal execution of acyclic conjunctive queries and that embodies
a solution to two impediments to the practical deployment of op-
timal join algorithms. First, unlike k-way optimal join algorithms
that have k inputs, TT]J takes two relations as input and produces
a third relation as output making it compatible with traditional re-
lational query systems. Only upon considering a query plan com-
posed of k — 1 instances of TTJ can one determine that the en-
semble computes the result of an acyclic k-way join in O(n + r)
data complexity, where n and r are the input and output sizes. This
matches the optimal bound first established by Yannakakis’s algo-
rithm. Second, TTJ accomplishes this without introducing semi-
join operators. Introducing semi-join operators enlarges the query
plan and commonly results in a net reduction of execution speed
despite improving the algorithmic complexity.
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1 INTRODUCTION

Improving join performance is of ongoing interest to the entire
database community. In database theory, forward progress with
respect to formal algorithmic measures has been continually made
but, typically, only in association with refinements of the optimal-
ity condition. Yannakakis [54] was the first to show that acyclic
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conjunctive queries can be evaluated optimally with respect to in-
put and output size. More recently, Ngo et al. [39] proved that the
same bound is unattainable for cyclic queries under tuple-based bi-
nary join query plan. This result is motivated by a bound proposed
by Atserias et al. [6] on the worst-case output size of a k-way join.
Subsequently, Ngo et al. [39] proposed a new optimality measure
with respect to input and worst-case output size. A new class of
optimal join algorithms followed [37, 39, 52] coined worst-case op-
timal join algorithms (WCO7FAs). Further advances concern output-
sensitive join algorithms [4, 20, 41] and algorithms with stronger
optimality [32, 38].

Despite these algorithmic advances, the techniques struggle with
respect to their integration with, and impact on, existing relational
query systems. For example, Yannakakis’s Algorithm plays a cen-
tral role in hypertree decomposition based join algorithms [4, 20]
and related systems [1, 31]. However, to implement Yannakakis’s
Algorithm in an actual query system, it is necessary to introduce
semi-join operators in the query plan. Extensive study [13, 47, 55,
56] has been done on optimizing queries by introducing semi-join
operators. However, as noted by Stocker et al. [47], introducing
semi-joins into query optimization increases plan search space dra-
matically and, quite often, the goal of removing dangling tuples
clashes with finding good plans. In addition, the introduction of
semi-join reduction complicates intermediate result size estima-
tion [23] and even instigates faulty results [50].

Another practical challenge appears when optimal algorithms
are captured by special join operators. For example, WCOJAs are
captured as multi-way join operators [1, 5, 17, 31, 36, 53]. Such
multi-way join operators take k inputs to compute a k-way join.
Query systems must then represent, and optimize query plans con-
taining traditional unary and binary operators then add k-ary op-
erators. At least one effort determined it was best to completely
abandon the relational algebra approach and start from scratch [1].
Even if that direction proves fruitful, existing systems are unlikely
to re-engineer such a large and important aspect of their systems.

These observations provided criteria for the design of TreeTracker
Join (TTJ), a join algorithm that enables the execution of acyclic
conjunctive queries with the same bound as Yannakakis’s algo-
rithm and avoids two impediments that limit the use of optimal
algorithms in practice.

We suggest two algorithmic elements that are practical constraints
and must be attained to achieve integration with current RDBMSs:

(1) the signature of the algorithm (the data type of the inputs
and output) must be consistent with the traditional signa-
ture(s) used to implement binary relational operators. Thus,
the operators can be composed with other relational opera-
tors and represented in conventional query plans.

(2) the algorithm must avoid a multi-phase algorithm structure.
The problematic elements covered by this constraint include
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increasing the number of operators in a query plan and in-
creasing the number of I/O passes on the base relations. These
introduce real costs that are often omitted in algorithmic

complexity models.

TT]J is not the first optimal join algorithm result with a practical
focus. However, the others do not fulfill the aforementioned prac-
tical constraints. Pagh and Pagh [42] developed an I/O efficient
Yannakakis’s algorithm. However, their results retain the full re-
ducer steps of Yannakakis’s algorithm and thus do not fulfill con-
straint (2). Hu and Yi [27] devised worst-case I/O-optimal join al-
gorithms for acyclic queries. Like most WCOJAs, their algorithms
take k relations as input and do not fulfill constraint (1). Ciucanu
and Olteanu [14] observed this problem and developed ternary join
operators to work with a factorized representation [40] of interme-
diate results. They achieved WCO]JA optimality in a join-at-a-time
fashion. However, their design violates constraint (1) due to a dis-
ruptive change to the standard binary/unary operator interfaces.

In this paper, we introduce TTJ that satisfies these practical con-
straints while having the same optimality as Yannakakis’s algo-
rithm. A key insight is that dangling tuples can be identified and
deleted on the fly during query evaluation thereby avoiding prepro-
cessing. As a side effect, the input relations can be incrementally
reduced such that at quiescence, their contents sufficiently approx-
imate the results of running reducing semi-join program [11]. As
a result, we are able to achieve optimal O(n + r)! without intro-
ducing explicit semi-joins.

Example 1. Consider a simple chain query S(x, y)~B(y, z). We
use Algorithm 1.1 to compute the join result. We assume both S
and B are passed to the algorithm by reference.

Algorithm 1.1: Modified Nested-Loop Join to illustrate
TT]J idea

Input: two relations S(x,y) and B(y, z)

Output: join result res

1res «— 0

2 ng <0

3 fors € S(x,y) do

4 dangle « true

5 if s ¢ ng then

6 for b € B(y,z) do

7 if (t « spab) # nil then
8 dangle «— false
9 L add t to res

10 if dangle = true then
1 L ng < ng U {s}
125« S—-ng

13 return res

Algorithm 1.1 is an enhanced nested-loop join: once s is identi-
fied as a dangling tuple, the algorithm can add s to no-good list (ng)
such that if a duplicate tuple of s shows up again, its iteration will

!In this paper, the big-O notation is in data complexity ignoring terms that depending
on query expression not data, and big-O indicates the combined complexity [51].

Anon.

be skipped. Note ng = S X B when Algorithm 1.1 reaches Line 12
and subsequently, S is semi-join reduced with respect to B.

Concisely stated, Algorithm 1.1, is an augmentation of nested-
loop join that simultaneously computes SP<B (i.e., two different
relational operators are computed by a single algorithm). The re-
mainder of the paper evolves this concept into an operator that
satisfies the practical constraints detailed above. Further, we show
a composition of k — 1 TTJ operators computes a k-way acyclic
conjunctive queries in O(n + r), which is optimal.

For those readers familiar with constraint satisfaction problem
(CSP) solving algorithms, we point out that Algorithm 1.1 was de-
rived from the TreeTracker-2 (TT-2) Algorithm for a CSP limited
to two variables [8]. The aspect detailed in Algorithm 1.1 as iden-
tifying and deleting a dangling tuple is called learning a no-good
(Section 6.3 in [43]) in the CSP literature. Given the equivalence be-
tween CSP and query evaluation [33], it is not surprising that, oper-
ationally, a relational operator, semi-join, corresponds to a named
technique in CSP. Bayardo and Miranker [8] showed that TT-2 can
solve tree-structured CSPs optimally and without an explicit pre-
processing step. A primary contribution of this paper is the capture
of that technique to compute all the results of a join and to do so
within the structure of a composable operator.

For pedagogical purposes, the paper develops TT] in steps. After
preliminaries (Section 2), we first prove in Section 3 that limiting
preprocessing of an acyclic conjunctive query to the reducing semi-
join program [11] is sufficient for an algorithm otherwise identical
to Yannakakis’s algorithm to be correct and optimal. We then, in
Section 4, define a join operator that can be composed with itself
and if the inputs of an acyclic conjunctive query have already been
preprocessed by a reducing semi-join program, the set of the com-
posed operators will compute a k-way join optimally. Our main
contribution, TTJ, in Section 5, removes the preprocessing assump-
tion used in Section 4 by integrating the idea of Algorithm 1.1 into
the operator of Section 4, thereby creating a single operator that
computes a join and effects the advantages of semi-join prepro-
cessing. The essence is, if the operator is defined as an object, an
additional method called RemoveDanglingT() is added to the it-
erator interface. RemoveDanglingT() implements the removal of
dangling tuples during join computation by sending information
down the query plan, which is akin to Sideway Information Passing
(SIP) and Magic Sets (Section 6).

2 PRELIMINARIES

Conjuctive queries (CQs) correspond to select-project-join queries
in relational algebra [21]. To simplify the presentation, we discuss
only full CQs, which correspond to a natural join of k relations. A
subclass of CQs is acyclic CQs. Many different definitions of acyclic
CQs have been purposed and shown to be equivalent [2, 9, 34].
Herein, we use the join tree definition of acyclic CQs. A Join tree,
G, is an acyclic query graph [12] with one additional constraint:
for each pair of distinct nodes R, R2 in the tree and for every
common attribute a between R; and Ra, every relation on the path
between Ry and R2 contains a [9].
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Yannakakis’s Algorithm [54] evaluates acyclic CQs optimally
O(n + r) with input size n and output size r. It requires three-
passes over the join tree. The algorithm first runs a reducing semi-
Jjoin program [11] by traversing the join tree bottom-up and ap-
plying RyP<R. where R, is a parent relation and R, is one of its
children. We use Pq ; to denote reducing semi-join program on
Ggq with root R; (when we do not need to emphasize that R; is the
root, we simply writes Pg). The resulting relations after Py are de-
noted R}. In the second pass, the algorithm traverses the join tree
top-down applying R(><Rj, (Rc><Rj, if Rc is a leaf node). The fully
reduced relations are denoted R} for i € [k] 2, The third pass pro-
duces the join output by again traversing join tree bottom-up. The
data complexity [51] of Yannakakis’s algorithm is O(n + r) with
n being the relation size and r being the output size. The key in-
gredient in Yannakakis’s algorithm is the full reducer’s complete
removal of dangling tuples (i.e., those tuples that do not appear in
the final join result).

In practice, a query is translated into a query plan comprising re-
lational algebra operators. Often, query engines are architected as
dataflow systems [25, 26]. That architecture is extensible and effec-
tively supports parallel execution. An implementation characteris-
tic of such systems is the physical implementation of the operators
using iterators [24]. An iterator is a base class inherited by all of the
physical relational operators that includes three methods: Open()
(initialize internal state and set up dataflow), GetNext () (produce
an output tuple from some computation), and Close() (clean up
state) [18, 19]. To evaluate queries, query systems commonly orga-
nize operators as a left-deep query plan (a binary tree with its all
right children base relations [19]) and use a demand-driven pipelin-
ing physical plan evaluation strategy [46] shown in Algorithm 2.1
to obtain query result. In this paper, we use the same strategy to
drive operators in our algorithms to evaluate queries.

Algorithm 2.1: Driver program to evaluate Q

Input: root i of a left-deep query plan
Output: join result res
res < 0
i.0pen()
while (r « i.GetNext()) # nil do
L add r to res

i.Close()
return res

-

[N}

[}

'S

o

o

2.1 Additional Notation

We denote a database schema as D and a database instance of D as
I. We consider an acyclic CQ Q of k relations each with size n. Its
join tree is Gg. To evaluate such Q, we use pre-order traversal of
join tree and place relations in a left-deep query plan in bottom-up
fashion - the root of G is the left-most relation at the bottom. For
a given join operator in the plan, Royter (Rinner) refers to its left
(right) child. Join operators in a plan are labeled top-down as >,
for u € [k—1] in ascending order. The left-most relation, the root of

2[k] is a shorthand for {1, . . ., k} [30].

PODS °22, June 12-17, 2022, Philadelphia, PA

Gq, is ™. Giq,, shall denote the set of relations in the query plan
that below . attr is a function that extracts attributes from a
relation or from each relation in a set of relations and returns their
union. In addition, J,, u € [k] denotes the join result computed by
bdy,. J,, denotes the join of relations in Gpq,, . Thus, for a correct join
algorithm, J,, = J;i. Let j, denote b<;,’s result size. In particular,
Jj1 = r, which is the query result size. For a tuple ¢ of R(a, b), we
use both a named perspective (e.g., (a : 1, b : 2)) and an unnamed
perspective (e.g., R(1, 2)) to represent ¢ interchangeably [2]. t[a] =
7T 4 (¢) for tuple ¢ and attribute a. For tuple ¢ and relations R, S, let
join attribute value jav(t, R, S) = t[attr(R) N attr(S)]. We assume
standard RAM complexity model.

3 REDUCING SEMI-JOIN PROGRAM IS
ENOUGH

Algorithm 1.1 indicates that Py can be interwoven with join com-
putation, which implies two-passes over G is sufficient to com-
pute the join result. Algorithm 1.1 is enumerating output top-down
over Gq and interweavingly, doing bottom-up semi-join opera-
tions. In other words, there is one redundant pass in Yannakakis’s
algorithm, which comes from the full reducer, that makes it im-
practical.

THEOREM 3.1. Given a join tree Gg and root Ry, one can compute
Jjoin with the following two steps:

(1) apply Pq 1 on Gg;

(2) perform pair-wise join from root Ry to leaves recursively.

Any intermediate join result during the computation will not con-
tain any dangling tuples.

The intuition is that after applying Pq 1, R1 = R} (Lemma 4 of
[11]) and each other relation only contains tuples that are joinable
with its child relations. If we start to compute join from this state
in a top-down fashion, it is impossible to produce dangling tuples.
Detailed proof of Theorem 3.1 is in Appendix A. We use Example 2
to illustrate the extra work done by Yannakakis’s algorithm.

Example 2. Suppose there are three relations in Gq: Rp, Rj, and
R;. Rp is the parent of R; and R; is the parent of R;. To evaluate Q
using Yannakakis’s algorithm, the following operations are carried
out:

R} = Rj<R; (1)
R), = RyP<R} )
R} = RI<R), 3)
R} = RP<R} (4)

Theorem 3.1 executes (1) and (2). Join is executed starting at RI/F’
For R1/7 NR}, tuples in ij X R;O will not be selected. Thus, (3) is not
needed. Similarly, (4) is not needed. The reason that Yannakakis’s
algorithm requires (3) and (4) is because the join is performed in
a bottom-up fashion. Without first removing dangling tuples in
R; and R;, Yannakakis’s algorithm may produce an unjoinable in-
termediate result. Thus, the additional semi-joins are needed to
achieve the complexity bound but not the correctness of the al-
gorithm.
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COROLLARY 3.2. The algorithm in Theorem 3.1 runs O(n + r),
which is the same as Yannakakis’s algorithm.

Corollary 3.2 immediately follows from Theorem 3.1 because in-
termediate result size is smaller than the final result size.

Empirically and without proof of correctness of the system, Emp-
tyHeaded [1] (Section 3.5) eliminates the top-down pass of Yan-
nakakis’s algorithm and demonstrates a 10% performance improve-
ment for tested workload.

4 TREETRACKER-y JOIN

We first define the TreeTracker-y (TT-y) Join (Algorithm 4.1, 4.2,
and 4.3) that assumes step (1) of Theorem 3.1 is done and computes
step (2) of Theorem 3.1 in Yannakakis bound. TT-y forms the basis
of TTJ and plays an important role in TTJ runtime analysis.

Algorithm 4.1: Open() of Join Operator (TT-y & TT))

Global variables: rinner, routers Rinner> Router, L, I
Output: One joined tuple of Royrer, Rinner (i€., one row

of Router™Rinner)
1 Function Open():
2 | « nil
3 I} « nil
4 Tinner < nil
5 Touter < nil

6 H « empty hash table
7 Rinner.Open()
8 while (rinner < Rinner-GetNext()) # nil do
9 H[jav] « H[jav] U {rinner} where
L jav = jav(rinner, Rinner» Router)

10 Router.Open()

Algorithm 4.2: GetNext() of Join Operator in TT-y

1 Function GetNext():

2 if [ # nil then

3 advance I;

4 if I; # nil then

5 L return join of element pointed by I; with
Touter

6 Touter < Rou;er.GetNeXt()

7 lf Youter = rlll then

8 L return nil

9 return LookUpH()

Here are a few remarks on the algorithm details:

e Consider Algorithm 4.1, 4.2, and 4.3 to be methods asso-
ciated with operators. Thus, global variables first listed in
Algorithm 4.1 are within the scope of all three algorithms.
Methods associated with the operator can change the state
of those variables during the runtime. Further, those vari-
ables are not accessible by other operator instances.

Anon.

Algorithm 4.3: LookUpH() of Join Operator in TT-y

1 Function LookUpH():

2 I « HJjav] with jav computed from royser

3 if | # nil then

4 initialize I; pointing to the first element of |

5 L return join of the element pointed by I; with royzer

6 return nil

e H is a hash table with jav computed from rjpper as its key
and its value is a list of tuples from Rj,per sharing the same
jav.

e LoopUpH() is a private method that is invoked by GetNext ().

Thus, no modification is made to the iterator interface.

TT-y join algorithm is very similar to hash join (Table 1 in [24]).
The only difference between TT-y and hash join happens inside
GetNext () starting at Line 6. Since Py is already applied and rela-
tions are ordered in pre-order traversal, by Theorem 3.1, any non-
nil 754 ¢er returned from Line 6 is joinable. Thus, algorithm can call
LookUpH() to compute the join result.

THEOREM 4.1. TT+y Join Algorithm (Algorithm 4.1, 4.2, and 4.3)
computes the correct join result.

PRrOOF. Proof by induction on the join operator u. Base case,
u = k. Because py is the root of Gg and Py has been applied,
the claim holds following Theorem 3.1. Assume the claim holds for
u=1i(e,Ji = ]l.*), we want to show it holds for u = i — 1. Let

r

outer

for each new royter from <;. Thus, for each non-nil rfmte,

denote the jth value assigned to royter. LookUpH() is called
with

J € [i] from Ji, I = Rj_1P< {,J

outer}' Since I; is never reset until

{r(]mter} 1] is computed, Thus, tuples returned by »4;_1 equals to
Ji ) )
U (Ri_1b< {réuter})b<1 {r(]mter}
j=1
, which is JI ;. O

THEOREM 4.2. The runtime complexity of evaluating Q assuming
application of Pq using TT-y Join Algorithm (Algorithm 4.1, 4.2, 4.3)
driven by Algorithm 2.1is O(n+r).

Proor. There are k relations and k — 1 join operators, Open()
takes O(kn) as each operator is called once and takes O(n) to build
H. By Theorem 3.1, It takes O(k) GetNext() calls to compute a
tuple in J;. Since each GetNext() call takes O(1), it takes O(k) to
compute one join result and O(kr) for J;. Thus, in total, we have
O(kn+kr) =0(n+r). m]

5 TREETRACKER JOIN

To define TTJ (Algorithms 4.1, 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6), we
integrate the removal of dangling tuples into the TT-y algorithm,
thereby eliminating the preprocessing reduction step assumed to
have occurred in the previous section.

Intuitively, to eliminate the explicit preprocessing step, we are
integrating the concept first shown in Algorithm 1.1. The proper

407
408
409
410
411
412
413

414

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

454

456
457
458
459
460
461
462
463

464



465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500

502
503
504
505
506
507
508
509

510

512

513

515
516
517
518
519
520
521

522

TreeTracker Join: A Composable Join Algorithm that Yields Optimal Acyclic Multi-Way Joins

algorithmic changes are actually accomplished by interweaving
step (1) and step (2) of Theorem 3.1. Yet, like Algorithm 1.1, TTJ
takes a fine-grained approach. Instead of doing join and semi-join
on sets of tuples, the same results are achieved in a tuple-by-tuple
fashion. The number of dangling tuples removed by TT]J is no greater
than the number removed by Pg> and they may be removed prior
to the completion of TTJ’s execution. If so, at that point, TT]J will
have the same behavior as TT-y. TT]J takes no more than the time
Pq takes to remove dangling tuples, O(n). Since TT-y meets Yan-
nakakis’s algorithm optimality, TTJ also achieves the desired bound.

Algorithm 5.1: GetNext() of Join Operator in TTJ

1 Function GetNext():
2 L return GetOuter (getNewOQuterTuple = true)

Algorithm 5.2: LookUpH() of Join Operator in TTJ

1 Function LookUpH():

2 if | = nil then

3 I « HJjav] with jav = jav(routers Rinners Router)
4 if [ # nil then

5 initialize I; to point to the first element of [

6 return join of the element pointed by I; with

Touter

7 else

8 advance I; pointing to the next element of /

9 return the join of element pointed by I; with royzer
10 return nil

Example 3. Let D = {T(x), S(x,y,z2), B(z), R(y,2)},
I = {T(green), T(red), S(red,1,2), S(red,3,2), B(2), R(3,2)},
and Gg = {(T.S), (S.B), (S,R)} in edge list representation with

root T. Q over D has exactly one result: (x : red, y : 3, z : 2). Start-
ing with the driver (Algorithm 2.1), GetNext() makes recursive

calls to itself ending with a call to T’s table scan operator (Algo-

rithm 5.6). The table scan operator’s ng value is empty, so T (green)
is returned (indicated by — in Figure 1 (A)). LookUpH() is called
by operator instance »3 (Algorithm 5.3 Line 12). Figure 1 (A) illus-
trates the resulting state.

Since none of the tuples in S can join with T(green), nil is re-

turned (Algorithm 5.2 Line 10). »3 calls RemoveDanglingT () (Al-
gorithm 5.3 Line 15). For 43, Royter references T and Rjpper refer-

ences S. Thus, T.RemoveDanglingT(S) is called (indicated by « in

Figure 1 (B)). The call to the table scan operator’s RemoveDanglingT ()
(Algorithm 5.5) results in T(green) being added to ng. The next tu-
ple thatis not in ng, T(red), is returned. Figure 1 (B) illustrates this

state.
Operator M3’s royrer input contains T'(red). LookUpH() is called

by »a3 from Algorithm 5.3 Line 12. A lookup on hash table H, which

contains S, returns {(x : red, y : 1, z : 2)} asI (Algorithm 5.2 Line 3).
LookUpH() in »a3 per Algorithm 5.3 Line 14 returns (x : red, y :

3See Lemma 5.1 and Corollary 5.2.
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Algorithm 5.3: GetOuter() of Join Operator in TT]

1 Function GetOuter (getNewOuterTuple):

2 if getNewOuterTuple = true then

3 if [ # nil then

4 advance I;

5 if I; # nil then

6 L return join of element pointed by I; with
Touter

7 Touter < Router.GetNext()

8 | [« nil

9 if router = nil then

10 L return nil

11 while true do

12 Finner <— LookUpH()

13 if ripner # nil then

14 L return ripner

15 Youter < Rourer-RemoveDanglingT (Rinner)

16 if router = nil then

17 L return nil

18 | |« nil

Algorithm 5.4: RemoveDanglingT() of Join Operator in
TTJ

1 Function RemoveDanglingT (relation):

2 if Rinner is the parent of relation in Gg then

3 Remove tuple pointed by I

4 if H is empty then

5 L return nil

6 else

7 Fouter < Router.RemoveDanglingT(relation)
8 B | « nil

s | return GetOuter(getNewOuterTuple = false)

Algorithm 5.5: RemoveDanglingT() of Table Scan Opera-
tor in TTJ
1 Function RemoveDanglingT (relation):
// ng is a set of tuples.
2 put the tuple last returned in ng
3 return GetNext ()

Algorithm 5.6: GetNext() of Table Scan Operator in TT]

1 Function GetNext():
2 L return the next tuple that is not in ng

1, z : 2). The value of royrer in operator instance Mg is set to
(x:red, y:1, z:2)by Algorithm 5.3 Line 7. The call to LookUpH()
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Anon.
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Figure 1: The figure shows four execution states of TT] when evaluating T(x)»S(x, y, z)<B(z)»R(y, z) over I in Example 3.

returns (x : red, y : 1, z : 2) and set as >1’s royrer value. Opera-
tor pa7 then calls LookUpH(). Figure 1 (C) illustrates this state.

Looking up R tuples in H of 1 returns nothing because y =
1 in tuple (x : red, y : 1, z : 2) fails to join. Thus, operator
a7 calls RemoveDanglingT() (Algorithm 5.3 Line 15) with argu-
ment R. Royter is referencing pas. Since B is not the parent of R in
Gq, RemoveDanglingT() is recursively called from Algorithm 5.4
Line 7 with Roy e references p3. S is the parent of R in Gg. The al-
gorithm removes S(red, 1, 2), which is pointed by I; (Algorithm 5.4
Line 3). Figure 1 (D) illustrates that state.

Looking into H of R in »47 returns nothing because y = 1 from
(x : red, y: 1, z : 2) fails the join. »a; calls RemoveDanglingT ()
(Algorithm 5.3 Line 15) with argument R. Ry e in 1 references
pd2. Since B is not the parent of R in Gg, RemoveDanglingT() is re-
cursively called from Algorithm 5.4 Line 7 with Ry ¢er references
3. S is the parent of R in Gg. The algorithm removes S(red, 1, 2),
which is pointed by I; (Algorithm 5.4 Line 3). Figure 1 (D) illus-
trates the state of operators at this moment.

The algorithm calls GetOuter (false) from Algorithm 5.4 Line 9
so that H of S can be checked again to see if there is another tu-
ple joining with T(red). In this case, (red, 3, 2) does and the join
result is computed.

TTJ has similar structure as TT-y but adds the method
RemoveDanglingT(). Technically, RemoveDanglingT() is a third
input to the operator. However it is strictly additive to existing
interfaces, does not need to be implemented by other operators
and thus, as a practical matter, does not pose a challenge to con-
straint (1).

TTJ implements the concept presented as Algorithm 1.1 but does
so in the form of a composable operator. Algorithm 1.1 achieves
semi-join reduction by removing dangling tuples from a base rela-
tion, which is not possible if the algorithm is embedded in a rela-
tional query system. To achieve the same effect, TTJ, like a hash
join, reads one of its relational arguments and initializes a local
hash index, H;, per the contents of the relation R; for i € [k — 1].
As dangling tuples are identified, they can be removed from fur-
ther consideration by removing them from H;, limiting the scope
of the side effect to inside the operator. Similar mechanism for Ry
is a deny list ng, which works the same as shown in Algorithm 1.1.

In Example 1, S is the parent of R. In Algorithm 1.1, once s € S
is detected as a dangling tuple, the execution flow can switch from
inner loop associated with B to outer loop associated with S and
modify its ng value. However, in query plan, this mechanism is
not built-in. Thus, RemoveDanglingT() is needed to change eval-
uation execution flow; just like GoTo in programming languages.
When a dangling tuple is detected by R;, the execution should di-
rectly jump back to R;’s parent, R, and remove R;’s tuple pointed
by I; because by G definition, R; is the source of the failure. Thus,
RemoveDanglingT() is invoked with argument R; and execution
flow restarts from R;. This disruption with respect to flow of con-
trol skips executing unnecessary operations in the operators skipped.
This idea is the same as backjumping in CSP [43]. Broadly speak-
ing, information of joined tuple flows up in the query plan whereas
RemoveDanglingT() sends a dangling tuple signal down.

Lemma 5.1 speaks to how TT]J reflects step (1) of Theorem 3.1 in
its join computation.

LEmMma 5.1. W.L.O.G, let Ry be the root of Gq with k relations.
Let H] with i € [k — 1] denote the initial contents of H; minus the
entries removed by Line 3 in RemoveDanglingT() (Algorithm 5.4)
after evaluating Q with TTJ. We have two families of sets:

(1) A={Ry —ng,H;_,,....H{}

(2) B=A{R,R,_,....,R}} after running Pq } onGq

Then, Ry —ng = R} and R} C H] fori € [k - 1].

Proor. For each R; for i € [k], Denote the set from A that built
from R; as R‘? (e.g., R‘? = Hj and R‘I/: = R;j — ng). Similarly, the set
from B denoted as R? . We first show R? c R{‘.

Case 1. R; is a leaf node of Gg. By the definition of Pg, R? =
R} = R;. On the other hand, R? = H] = H; = R; because H;
contains all tuples of R; and is modified only when R; is the parent
of some node in Gg. Thus, R? = RZB and lemma holds for leaf
nodes.

Case 2. R; is a non-leaf node of Gg. First consider i € [k —
1], R‘i“ = Hj. Suppose t ¢ R;.“. This means ¢ is one of the tuples
removed by Algorithm 5.4 Line 3. Line 3 is executed only when
an intermediate join result, a concatenation of tuples including ¢,
cannot join with one of its child relation R; in the upper part of
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plan. Thus, ¢ ¢ R? because t cannot join with any tuples in R; and
will be removed by R;><R; in Pq . Since t ¢ R? implies ¢ ¢ RIB,
R? c R’l.‘x fori € [k—1]. For i = k, we have R’;‘ C Ry —ng. Suppose
t ¢ Ry —ng. Since ng contains the tuples of Ry that are removed by
RemoveDanglingT(), for the same reason as above, ¢ cannot join
with one of Ry’s child. Thus, ¢ ¢ Rf. Thus, RlB c Rf‘ fori € [k].
Implied by Theorem 3.1, it can be the case that t € R;.q and
t ¢ R? for i € [k — 1]. Specifically, tuples from R; that cannot
join with any tuples from its parent will not be removed by TT]J.
However, some of them can be removed by Pg j if those tuples
cannot join with one of R;’s children. For example, consider D =

{R3(x),Ra(x,y), R1(y)} withI = {R3(4),R2(4,6),R2(3,5), R2(4,7),

R1(7)}. Suppose R3 — Ra — Ry is the Ggq. Then, R2(3, 5) will not
be removed after TTJ but will be by Pq . Thus, R2(3,5) € HJ but
R2(3,5) ¢ R). On the other hand, if tuples from R; that cannot join
with R;’s parent but can join with R;’s children, then RZA C R?.

It remains to show R‘]? c Rf. Suppose t ¢ R]/C' t is removed
because it cannot join with any tuples from Rj, a Ry’s child. t ¢
Ry — ng. Every tuple of Ry will be returned if it doesn’t belong
to ng. Then t will be returned. Since none of R;j can join with t,
RemoveDanglingT() is called. Since Ry is the parent of Rj, ¢ is put
onto ng. Since t ¢ R,’C implies t ¢ Ry —ng, R? c Rf. Since R‘I? 2 RE,
R‘]? = RE. Combining all the cases, the lemma holds under bag
semantics. O

COROLLARY 5.2. If we measure work, W, done by an algorithm as
the number of tuples removed from relations in G, wTT] < wha,

Corollary 5.2 immediately follows from Lemma 5.1. Intuitively,
Pq does redundant work. Reusing Example 2, tuples from R;j X R,
will not fail Theorem 3.1 but some may be removed by Pg because
they cannot join with R;.

5.1 Correctness of TT]

LEMMA 5.3. For every assignment to royter, | is initialized with
values in LookUpH() and]j is reset. Between each pair of assignments
10 rourer, | is never initialized and Ij is never reset.

Proor. Whenever royer is assigned, [ is set to nil. Since [ is
initialized and Ij is reset when [ = nil in LookUpH(), the result
follows. |

THEOREM 5.4. TTJ (Algorithms 4.1, 5.1, 5.2, 5.3, and 5.4, 5.5, 5.6)
driven by Algorithm 2.1 computes the correct join result .

Proor. We need to show J1 = J] with
Ji = {t over attr(Gp,) | tlattr(Ry)] € Ry Vu € [k]}

under bag semantics. We first show J1 C Ji. Let t ¢ J;. There
are two cases.

Case 1. There exists R; such that t[atir(R;)] ¢ R;. In this case,
it is trivial to see that ¢t ¢ Ji.

Case 2. t satisfies: 3R; such that t[attr(R;)] = & € R; but
ti € Ri x Rj for some Rj. We need to show any ¢t satisfying
above condition cannot be in Ji. By Ggq definition, relations on
the path between R; and R; have attributes attr(R;) N attr(R;).
Thus, ¢ also satisfies: IRy such that t[attr(Ry)] = tx € Ry but
tx € Ry X Ry for some relations Ry and R, on the path between
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R; and R;. Further, Ry and R, form parent-child relation and are
connected by an edge in Gq. If R, is the parent and Ry is the child,
t ¢ Ji. Suppose R is the child and Ry is the parent. TTJ will
call RemoveDanglingT() from the join operator connected with
Ry and tx will be deleted from Hy. Thus, ¢ will not be returned
and is not in Ji. Note the same execution applies if t values are
duplicated. Thus, the condition is satisfied under both set and bag
semantics.

To show J{ C Ji, suppose t € J; but ¢ J, for some u € [k].
Since ¢t € J, t[attr(Ry)] can join with all relations from u — 1
to 1 in the plan. Thus, t[attr(Ry,)] € Hj,. Thus, it must be that
tlattr(Gea, )] € J;, | but t ¢ Juit1. The same argument applies
to every operator in the plan. Eventually, we have t[attr(Ry)] € J;
but ¢ ¢ Ji.. However, this is a contradiction. t[attr(Ry)] € J; and
joins with the rest of the relations in plan. Thus, t[attr(Ry)] ¢ ng
and € Ji. Since u is picked arbitrarily, J; C Ji.

Fort € ]f, we need to show the number of tuples ¢ that are in
Ji equals to the number of tuples t shown in J1. This follows from
Lemma 5.3. The proof similar to Theorem 4.1’s proof. O

5.2 Runtime Analysis of TT]

Definition 1 (clean state). The execution of a query plan reaches
a clean state if ng and Hy, for u € [k — 1] are the same as A in
Lemma 5.1.

The moment after the query execution reaches a clean state, TT]J
satisfies Lemma 5.5 and 5.6. The proofs are in Appendix B and Ap-
pendix C, respectively.

LEMMA 5.5. J;aH, _, will not create dangling tuples.

LEMMA 5.6. The tuple produced by »a,, will be an element in J,
forallu € [k].

THEOREM 5.7. The data complexity of evaluating Q using Tree-
Tracker Join Algorithm (Algorithm 4.1, 5.1, 5.2, 5.3, and 5.4, 5.5) driven
by Algorithm 2.1isO(n+r).

Proor. By Lemma 5.1, the execution of a plan is in clean state
when TT]J execution finishes. Thus, the amount of work caused by
backtracking via RemoveDanglingT() is fixed. Suppose the execu-
tion is in clean state after computing the first join result.

We first bound the cost of getting the first join result. Open() is
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Next, we bound the cost of LookUpH(). Each call takes O(1).
Since the total number of LookUpH() calls is bounded by the total
number of loops in GetOuter () no matter the argument, the total
cost of LookUpH() is O(kn).

Next, we need to count the total number of RemoveDanglingT ()
calls: not just calls from Algorithm 5.3 Line 15 (in total, O(kn)) but
also the recursive calls made by RemoveDanglingT () itself at Algo-
rithm 5.4 Line 7. A call to RemoveDanglingT() made in ith opera-
tor from Line 15, RemoveDanglingT() can be recursively called at
most k — i times from Algorithm 5.4 Line 7 and j; 11 + 1 more calls
made in Algorithm 5.3 Line 15 due to additional GetR1(false)
calls from RemoveDanglingT (). Since each relation can be back-
tracked at most n times, the number of RemoveDanglingT() calls
with k — 1 recursive calls is at most n. The same applies to
RemoveDanglingT() calls with k — 2,k — 3, ..., 1 recursive calls.
Thus, the total number of RemoveDanglingT() calls is Zf;% (k-
i) ‘n+jiv1 + 1= O(k2n).

For each RemoveDanglingT () call, GetOuter(false) is called
exactly once. Between two GetOuter(false) calls, O(1) work is
done. Therefore, total amount of work done by GetOuter (false)
is O(k2n).

Summing everything together, it takes O(k2n) to compute the
first join result. From Lemma 5.5 and Lemma 5.6, once execution
reaches a clean state and J,, C J;;, there is no backtracking. Thus,
there will be no more RemoveDanglingT() calls and the result
of LookUpH() can be returned directly. Thus, once the execution
is in a clean state, TTJ behaves exactly the same as TT-y (Sec-
tion 4). Since the execution is in a clean state after the first join
result is computed, the total cost for computing the r join result
is O(k®>n + (r — 1)k) = O(n + r), which is equal to that of Yan-
nakakis’s algorithm. m]

CoRrOLLARY 5.8. TTF and Yannakakis’s algorithm is equivalent
from both scope of applicability and algorithmic complexity.

6 DISCUSSION AND RELATED WORK

From database perspective, RemoveDanglingT () is reminiscent of
Sideways Information Passing (SIP) [7, 10, 28, 45, 57] and Magic Sets
[7, 10,35, 44]. TT]J, SIP, and Magic Sets share the same goal of filter-
ing out dangling tuples as early as possible in the query plan. SIP
and Magic Sets achieve the goal by sending partial results com-
puted from subpart of the query to the other subpart. TT]J is differ-
ent from their approach because TT] never waits for partial results
computed before calling RemoveDanglingT(); once a dangling tu-
ple is identified, information is sent immediately. In addition, TTJ
does not transform query and associated plans; what information
to pass is determined at runtime instead of optimization step. How-
ever, TT] is compatible with many existing SIP approaches. For ex-
ample, Ives and Taylor [28] create a Bloom filter on a computation-
completed subtree of a bushy plan and sends the filter to the other
subtree to semi-join reduce arriving tuples. TTJ can be directly em-
ployed in the subtree computation.

A CSP technique, (hyper)tree decomposition [15, 16, 22], has
been successfully adapted and applied in the context of query eval-
uation [3, 20, 21, 29, 48]. Join algorithms based on hypertree decom-
position handle CQs with complexity form O(nd + r) where d is
a width parameter determined by the topology of query structure

Anon.

[20]. Tziavelis et al. [49] note that those algorithms share the same
algorithmic structure and Yannakakis’s algorithm as the final step
is used to compute the join result on derived relations from the
decomposition. Given the equivalence between Yannakakis’s algo-
rithm and TTJ, TTJ can directly replace Yannakakis’s algorithm to
evaluate cyclic CQs with hypertree decomposition.

Note that TTJ cannot be directly applied to cyclic CQs because
the join failure may be caused by a combination of values of multi-
ple attributes from different relations. Thus, removing a tuple from
arelation that contributes only partial of the combination will lead
to incorrect join result. However, TTJ demonstrates that one oper-
ator can pass information to another operator with method calls
subject to parent-child relation in Gg. In addition, the dangling tu-
ple information is either explicit or implicit maintained in each
operator. It is natural to ask whether it is possible to maintain
no-good combination of attribute values in proper operator(s) to
achieve reasonable bound for evaluating cyclic CQs. We treat this
exploration as part of future work.

7 CONCLUSION AND FUTURE WORK

Being an optimal algorithm for acyclic CQs, Yannakakis’s algo-
rithm is hard to use in practice due to additional semi-joins in-
troduced in the full reducer preprocessing step. In this paper, we
show that preprocessing relations are not needed to reach optimal
evaluation of acyclic CQs. We develop TTJ, a composable join algo-
rithm that has the same bound as the Yannakakis’s algorithm. TTJ]
takes traditional unary and binary operator forms and can be di-
rectly used in existing query plans without introducing any extra
operators. The key ingredient is, with techniques from CSP, TT] re-
moves dangling tuples on the fly during join computation. The im-
plication is that a physical operator can implement two relational
algebra operations at the same time. Thus, as a future work, it is
worth to explore the possibility of mix and match operators shown
in Algorithm 1.1 with existing operators to improve overall query
performance. In addition, TTJ implements learning no-good idea
with the help from object-oriented design pattern: an operator has
private fields that can be changed by a side effect of a method call
at runtime. Thus, it is interesting to see whether such idea enables
the design of practical algorithms that may be seemingly impossi-
ble from relational algebra perspective.
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A PROOF OF THEOREM 3.1

Proof by induction on the height of Gg. Base case. Suppose the
height of Gq is 0. Claim trivially holds. Suppose the claim holds
for all queries whose height of Gg < h. We want to show the
claim holds for height of Gg equals h. We want to show J; =
Ry ... >Ry and there is no dangling tuples in any intermediate
result during computation. (... ((R7R})»RS) ... <R}, equals
to RyROp . .. Ry,

Ji = (... ((RT=RL)™R) ... MRy, )saord ...
= RixRyp .. bRy b4 Jobd ..
= Rya(RGpaJo)pa(REpaJ3)pa . .. 5a(Ry, 4 )
= Ry JoxJ3 ... ]y
= Ri>Ro> ... ™Ry

The last step because Jo, ..., Jm are subtrees of Gg and they are
disjoint. To show there is no dangling tuple, pick R1,R; and R;
where R; is a child of Ry and R; is a child of R;. During Pq 1,
R1P<(Rj><R;) is executed. Because Gq is a join tree, R1,Rj,R;
share common attributes. If there is a dangling tuple, it has to hap-
pen after Ry >R;. However this is not possible because R1 »R; after
Pq,1 equals to (R{><(R;j><R;))>=(Rj><R;), which is (R1>R;)><R;.
By induction assumption, no dangling tuple when join relations
in subtree rooted in R;. Since R;j and R; are picked arbitrarily, the
theorem holds.

B PROOF OF LEMMA 5.5

Since the plan is in clean state, by Lemma 5.1, we have R;_l C
H]_,. The query plan is created from a join tree, and by Theo-
rem 3.1 there has to be some tuple in R}, _, that can join with some
tuple(s) in J;. To show the resulting tuple is not a dangling tuple,
we proceed with a proof by contradiction. Let J,—1 = J, NHl’l—l
and ] = Ry™...=R. Suppose a dangling tuple exists. That is,

there exists t; € J,—1 such that thereisno to € Jwith t1[attr(J,—1)N

10

Anon.

attr(J)] = ta[attr(Ju—1) N attr(J)]. Since attr(Jy—1) N attr(J) =
attr(Jy—1), thereisno to € J with t1 [attr(Jy—1)] = t2latir(Ju—-1)].
Then, it is sufficient to show there is no t2 € J;>R,_1 with the
condition holding. Since t; € Jj=H],_,, the assumption implies
that there exists t; € J;;<H 1; _y such that 1 ¢ J;»Ry,—1. However,
this is not true because J;><H, _; C J;™Ry-1.

C PROOF OF LEMMA 5.6

We will consider three possible cases.

Case 1. Suppose the query execution is already in the clean state
at the beginning of the evaluation. Base case u = k. By Lemma 5.1,
Ry = Ry and the tuple returned from sy is in J;. Assume the
lemma holds for u = i. We show that lemma holds for u = i — 1.
By induction, the assumption implies that >;_1’s royrer belongs
to ]l.*. By Lemma 5.5, the joined tuple between royer and a tuple
in H/_; cannot be dangling tuple. Thus, tuple produced by »<;_1
from Algorithm 5.3 Line 12 is in ];"_1. In addition, with Lemma 5.3,
the tuple returned from Algorithm 5.3 Line 6 is in J;_, . The lemma
holds.

Case 2. Suppose the clean state happens at u = k. Consider the
base case u = k. The assumption indicates that the clean state is
formed right after Algorithm 5.5 Line 2 is executed. By Lemma 5.1,
R, = RZ and the tuple returned from > is in ]Z. Assume the
lemma holds for u = i. We show the lemma holds form u =i - 1.
Since the clean state happens at u = k, Algorithm 5.5 Line 3 will
eventually cause »;_1’s royzer reassigned. By induction assump-
tion, >4;_1’s royter Will be from JI. By Lemma 5.3, [ will be initial-
ized and by Lemma 5.5, we know the joined tuple returned from
baj—1 isin Jf ;.

Case 3. Suppose the clean state happens at u = i where i €
[k — 1]. This happens after Algorithm 5.4 Line 3 is executed. Base
case u = k. The assumption indicates that the tuple returned by
>y is already in J; because otherwise, the clean state will happen
at u = k. Assume the lemma holds for u = j. We show the lemma
holds for u = j— 1. Using a similar argument as Case 2, the lemma
holds.
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