10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Treetracker Join: A Composable Physical Operator
that Simultaneously Computes Join and Semijoin

Anonymous author
Anonymous affiliation

Anonymous author
Anonymous affiliation

—— Abstract

Yannakakis’s seminal algorithm (YA) for the optimal execution of k-way acyclic conjunctive
queries (ACQ) requires executing 2 rounds of k — 1 semijoins to remove dangling tuples, followed
by executing the joins. This paper presents the TreeTracker Join algorithm (TTJ) that removes
the explicit semijoins. TTJ simultaneously implements the functionality of a join operator and a
semijoin operator. In essence, TTJ merges the behavior of two logical operators into a single physical
operator. We prove that by composing k — 1 TTJ operator instances, the result of a k-way acyclic
conjunctive query can be computed in optimal data complexity time, O(n + r), where O(n) and
O(r), are the size of the input and output. No additional operators are needed. A distinctive feature
of TTJ is that it detects dangling tuples during the execution of a binary join and removes them,
rather than removing dangling tuples and then performing joins on the result.

An emperical evaluation of TTJ on two commonly used benchmarks shows that in most cases
TTJ is faster than YA, an improvement to YA as well as two representative filter methods.

2012 ACM Subject Classification Information systems — Join algorithms; Information systems —
Query operators

Keywords and phrases Optimal Join Algorithms, Acyclic Conjunctive Queries

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Improving join performance is perennially important to the database community. Formal
studies of queries with multiple joins commonly use conjunctive queries (CQ) as a model.
Until the development of worst-case optimal join (WCOJ) algorithms, the evaluation of
queries comprising multiple joins focused on the composition of the unary and binary
operators of the relational algebra[27]. In 1981 Yannakakis published his seminal optimal
algorithm for the special case of acyclic conjunctive queries (ACQs)[66]. Hereafter we will
write Yannakakis’s algorithm as YA.

YA comprises the logical composition of joins and semijoins. The practical benefit of
YA is situational. Even though it has been established that an overwhelming majority of
relational queries in real-world applications are acyclic [24] and YA is optimal it is rare that
YA is the basis for the most performant query plan.

YA uses a logical composition of relational joins and semijoins in two phases, the semijoin
reducation phase and the join phase. The semijoin reduction phase, called full reducer Fg,
comprises two passes of k — 1 semijoins totaling 2k — 2 semijoins [12]. The first pass, called
reducing semijoin program H Fg, follows a bottom-up traversal of the query’s join tree 7o,
removing dangling tuples by evaluating a semijoin for each vertex: R,P><R., where R, is
a relation associated with a node in Tg (child relation) and R, is the relation associated
with the parent of the node (parent relation) [12]. The second pass is the same except it
traverses the path in the reverse direction. The two passes remove all dangling tuples from
the input relations. In otherwords a tuple remains as an input argument if and only if it

© Anonymous author(s);
licensed under Creative Commons License CC-BY 4.0
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1-23:32
Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

85

86

TreeTracker Join: Computing Join and Semijoin at the Same Time

appears in the final result. The expression “fully semijoin reduced” is used to describe this
state. We use R to indicate the resulting relations after HFg and R} to represent the
fully semijoin reduced relations. The join phase then enumerates the final results. It is
commonly understood that only one of the semijoin passes in YA is necessary to obtain the
optimal complexity result [62, 31] 1. Hereafter the single pass version of YA will be written
as YAT. The YA is foundational for a preponderance of research and practice that replaces
the goal of achieving algorithmically optimal query plans with a cost assessment of each
opportunity to apply a semijoin and based on the trade-off estimated by the cost assessment
an operation to remove dangling tuples may or may not be included. The compact size
and speed advantage of Bloom filters is sufficient that methods that use Bloom filters [14]
and approximate semijoins in the form of sideways information passing (SIP) dominate
[68, 32, 35, 33, 29, 44, 22, 52, 54, 48, 23, 26, 3.

More recently WCOJs have been developed. One goal, similar to the efforts inspired by
YA, is to eliminate the introduction of additional operators and their concomitant overhead.
Much of this research has met with success. However, WCOJs commonly compute a k-way
join using a single operator of k inputs for all possible k. Recent research on WCOJs includes
determing how a k-way join operator may be introduced into query systems that historically
have only been required to optimize queries composed of unary and binary relational operators
[29, 25, 64].

In this paper, we offer an alternative approach, Treetrack Join (TTJ). TTJ combines the
implementation of a semijoin and join into one physical operator. The conceptual foundation
of the approach is captured by the Datalog program in Example 1. A goal of presenting
TTJ in logical form is to make clear the algorithm takes two relations as inputs and produces
a join result as output. This supports a claim that will be detailed further, that TTJ can be
integrated with conventional join algorithms in a query plan and is downwardly compatible
with many RDBMS query systems. To implement the deletion of dangling tuples TTJ has
an additional input and output. These are the atoms, DDT), () and DDTy () appearing
in Rules (2) and (4). A short-intuitive explanation that TTJ is downwardly compatable
is that semijoin reduction is an optimization and simply ignoring DDTy, () and DDTy ()
does not impact the correctness of the final result.

The definition of the TTJ algorithm follows in Section 4. Proofs of correctness, complexity
and emperical results appear in Sections 5-7.

» Example 1. Consider the query Q = A(z)xoB(z,y, 2)x1C(y, z)X2D(y). The following
Datalog program models the logical behavior of x1 when three instances of TTJ are used to
evaluate the query.

C'(y,2) + Cly, 2)
C'(y,2) + C'(y,2) — DDT, (y, 2)
Joiny (z,y,
DDTy (,y,

Z) A JOin(](xv Y, Z)? C,(yv Z)

z) + Joing(z,y,2),C(y, z) — Joini (z,y, 2)
Queries cannot have side effects on base relations. Rule (1) copies relation C into a

data structure internal and strictly local to an operator instance, enabling the removal of

dangling tuples from further consideration, (2). Rule (3) represents the desired join computed

1 Neither Internet search nor soliciting people active in this research area has identified a published proof.
For completeness we include a proof in Appendix J.

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Anonymous author(s)

rea

1
blue M 4

NGt

z |yl z
blue | 3 2
e M; M6 (z).
ng
red IT(:E) S(x,y, z)
T T 2z (M
blue blue

brown] 3 3

(@) (b

Figure 1 Illustration of the identification and removal of dangling tuples by (a) Yannakakis’s
algorithm (YA) its improvements as (YA™); and (b) TTJ on a left-deep query plan. The labels M;
indicate algorithm execution moments referenced in Example 2 and elsewhere in the paper.

with the reduced version of C, C. DDT), () in Rule (2) represents a subset of C' such that
all tuples in DDTy, () are dangling tuples. The result of Join; is computed by Rule (3)

without considering the removed dangling tuples. Joing in Rule (3) is the result from AxB.

The negation in Rule (3) models determining dangling tuples by set difference. Notice the
identification of a dangling tuple is not done in the same TTJ instance where the dangling
tuple is represented and must be deleted. Thus the formal signature of TTJ comprises three
inputs and two outputs.

As one considers the evaluation of a full query plan based on Example 1 one may anticipate
that on each cycle Rule (3) adds results to Join; then on the next cycle Rule (4) determines
additional dangling tuples and that these are removed from B’ where B’ is analogous to C’
in a Datalog representation of xg. Each cycle of evaluation the number of dangling tuples is
greater than or equal to the number of dangling tuples processed by the previous cycle. We
will show that at fixed point the number of dangling tuples deleted by TTJ can be less than
the number of dangling tuples deleted by YA™.

In summary, this paper makes the following contributions:

1. We design a physical join operator TTJ that computes both semijoins and joins at the
same time (Section 4).

2. We prove TTJ is correct and runs optimally in data complexity for ACQ (Sections 5
and 6).

3. We define a general condition call we call clean state that enables optimal evaluation
of an ACQ while permitting the existence of dangling tuples and show that when TTJ
achieves clean state it may have removed fewer dangling tuples than either YA or YA™
(Section 6.1).

4. We present empirical evidence by comparing TTJ with five baseline algorithms on three
benchmarks and complete our argument that combining two logical operations into one
can provide both formal guarantee and good empirical performance (Section 7).

23:3

CVIT 2016

23:4

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

TreeTracker Join: Computing Join and Semijoin at the Same Time

2 Running Example

To help explain TTJ we name a particular point and state of execution a join failure or join
failure event. In English and the context of simple nested loops join this is when a tuple
in the outer loop has been compared to all the tuples in the relation being processed by
the inner loop and the tuple from the outer loop has not joined with any tuples tested by
the inner loop. Thus the tuple in the outer loop is a dangling tuple. Clarity is gained by
adopting the expression that the tuple has experienced join failure. A formal definition of
join failure is lengthy. More formal than the English definition above but incomplete the
key property is, given Rx S, a join failure event represents the moment in execution that it
is determing that tuple t € R is a member of the relation R D< S. It remains to formaly
define event and moment in execution. When used in context we believe the meaning of
these terms is self-evident.

In a multi-way join evaluation, as we will now illustrate in a physical model that R can
represent intermediate join results from the previous binary join computation. Unlike YA,
TTJ starts join evaluation immediately. Dangling tuples are identified by monitoring for
join failure and the dangling tuples are deleted as they are identified. Thus, TTJ is a join
algorithm augmented to incrementally delete dangling tuples as they are identified. Hence
TTJ avoids equality tests that are executed when evaluating a semijoin and then again when
evaluating a join. When query evaluation terminates the internal data structures of the TTJ
operator instances contain a superset approximation to the reduced arguments created by
the single semijoin pass of the YA, i.e., YAT. This means that TTJ may delete fewer dangling
tuples than the YA or YA™ yet remains data complexity optimal. See Corollary 15.

The reader may find that the programatic expression of the TTJ operator is simple
when presented in isolation in English or Datalog. However since dangling tuples are often
identified in one TTJ operator instance but must then be deleted from a data structure local
to another operator instance the query optimizer must maintain certain constraints and
represent certain consequences in the query plan. These are not simple. The query optimizer
must create a certain graph representation of the query and limit plans to traversals of that
graph that maintain the constraints.(See Definition 6 and Corollary 7). For an ACQ), the
graph is a join tree. Edges in the traversal of the join tree determine the identification of the
relation whose tuple caused a join failure and the communication path that terminates at the
operator instance containing the dangling tuple, thus identifying and enabling its deletion.

» Example 2. Consider a join of 4 relations T'(x), S(z,y,z), B(z), and R(y,z) with the
database instance shown in Figure 1. The illustrations show how dangling tuples are identified
and removed by YA (and YAT) and TTJ enable optimal evaluation.

(a) shows the part of the bottom-up semijoin pass in YA and YA™ and highlights both of
the algorithms remove more dangling tuples than TTJ in a different way. Both YA and YA™
execute a sequence of semijoins prior to starting joins: At M, S = SP<R; both S(red,1,2)
and S(brown, 3,3) are removed. S(brown,3,3) is not removed in TTJ because x = brown
does not match with any possible assignment to z in T. Then, at My, T><S" and T'(red)
is removed. Unlike TTJ that removes dangling tuples while performing join, YA removes
all dangling tuples before join starts. YA™ allows the existence of some dangling tuples by
omitting the top-down pass but, as shown in this example, it still removes more dangling
tuples than TTJ.

(b) illustrates how TTJ evaluates the same query as (a) but on a left-deep query plan
using demand-driven pipelining. TTJ takes the operator form, which is implemented in
iterator interface consisting of open() and getNext (). The evaluation starts with recursive

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

Anonymous author(s)

open() calls on the join operators and builds hash tables on S, B, and R. To obtain the
first query result, the join process first calls x1’s getNext (), which calls its left child xs’s
getNext (), and such pattern repeats until the left most relation T’s getNext () is called and
returns T'(red) (M3). w3 probes into Hg, the hash table on S, and finds a matching tuple
S(red, 1,2). The joined result (red, 1,2) is returned to X5. Then, the matching tuple B(2)
from Hp joins with (red, 1,2) and the joined result (red, 1,2) is returned to ;. No tuples
from Hp join with (red, 1,2) (M,); hence, join fails at R and R is the detection relation.
TTJ makes additional method calls to reset the evaluation flow to S, the guilty relation,
because S is the parent of R in Tg. Subsequently, S(red, 1,2) is removed from Hg (Ms5),
which is logically equivalent to removing the tuple from the instance of S. Since no tuples
from S join with T'(red), TTJ backjumps to T and implicitly removes T'(red) by adding it
to a no-good list ng (Mg). The no-good list will be used in future steps to filter out dangling
tuples from 7T'. From this example, we see that TTJ, like other join operator implementations,
takes in two input relations and produce join result explicitly. However, implicitly as part
of the join computation, it also identifies dangling tuples from some other relations and
send deletion message and takes deletion message from some other TTJ operator to remove
dangling tuples. By the end of the evaluation, dangling tuples are sufficiently removed and is
a subset of the tuples removed by the semijoin passes of YA and YA™.

3 Preliminaries

We examine the relevant background concerning the evaluation of acyclic conjunctive queries,
present baseline algorithms, and introduce additional definitions used in this paper.

3.1 Acyclic Conjunctive Query Evaluation

We consider a relational database consisting of k relations under bag semantics. A full
conjunctive query (CQ) is a natural join of k relations:

Q(a) = Rl(al)NRQ(az)N . NRk(ak) (5

~~

For each relation R;(a;), a; is a tuple of variables called attributes. We define attr(R;) =
a;. Q is full because a includes all the attributes appearing in the relations, i.e., attr(Q) =
Ui:1 attr(Ry,).

Query graph. The literature contains a number of different graph representations of Q.

The most common is the hypergraph [28, 45]. To better emphasize that TTJ leverages the
connection between query evaluation and the constraint satisfaction problem (CSP)[20] , we
use an equivalent alternative, query graph [16] (also known as join graph [65]%, dual constraint
graph [20], or complete intersection graph [41]). The query graph of Q is a graph where there
is a bijection between nodes in the graph and relations in the query. Two nodes vy, v2 are
adjacent if their corresponding relations Ry, Ro satisfy attr(Ry) N attr(Ry) # (). For clarity,
we use the relations to label the nodes in the query graph.

Join Tree. Q is acyclic if its query graph contains a spanning tree called join tree To,
which satisfies the connectedness property [10, 20]: for each pair of distinct nodes R;, R;
in the tree and for every common attribute a between R; and R;, every relation on the
path between R; and R; contains a. For the rest of the paper, we assume Q is a full acyclic

2 Join graph is defined in database theory and constraint satifaction problem with a slightly different
definition: a spanning subgraph of query graph that satisfies the connectedness property [20, 41].

23:5

CVIT 2016

23:6

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

TreeTracker Join: Computing Join and Semijoin at the Same Time

CQ (ACQ). For ACQ, one can find a maximum-weight spanning tree from the query graph,
where the weight of an edge (R;, R;) is |attr(R;) Nattr(R;)|. Such a tree is guaranteed to
be a join tree [41]. A rooted join tree is a join tree converted into a directed tree with one of
the nodes chosen to be the root. We assume 7Ty is a rooted join tree.

Query Plan. Physical evaluation of ACQ is commonly done using query plan. A query
plan is a binary tree, where each internal node is a join operator X, and each leaf node is a
scan operator (we use table scan by default) associated with one of the relations R;(a;) in
Query (5). The plan is a left-deep query plan, or left-deep plan, if the right child of every
join operator is a leaf node [50]. For example, ((T'xS)xB)x R in Figure 4 (c) is a left-deep
plan. Due to the limited space this paper only discusses left-deep plan. Appendix E extends
these results to bushy plans. As shorthand [63] we represent a left-deep plan, labeled from
bottom to top, (... ((RkXRk—1)XRk_2)...)xR; as [Rg, Rg—1,..., R1].

Physical Operators. Operators in the query plan of Q are physical operators, commonly
implemented in an iterator interface [27] consisting of open(), getNext(), and close().
open() prepares resources (e.g., necessary data structures) for the computation of the
operator; getNext () performs the computation and returns the next tuple in the result; and
close () cleans up the used resources. In this paper, evaluation of a query plan is done using
demand-driven pipelining (or pipelining): it first calls open() of each operator and then
keeps calling getNext () of the root join operator of the plan, which further recursively calls
getNext () of the rest of the operators, until no more tuples are returned [55]. Introducing
additional methods, such as the deleteDT () method of TTJ, to the interface requires only
minor adjustments to the current physical operators. A sole default implementation of the
newly introduced methods is adequate for the current physical operators..

Complexity measurement. We speak to multiple complexity models. The data complexity
model (big-O notation) has become the model of choice in the study of conjunctive query
processing [4, 58, 37]. The data complexity model assumes that the size of a query, k, is a
constant, making data size, n, the parameter of interest[7]. The standard RAM complexity
model [5] and combined [61] (big-O notation) consider both k and n as variables. Under
data complexity, the lower bound of any join algorithm is Q(n + r) [58] (r is the output size)
because the algorithm has to read input relations and produce join output.

3.2 Baseline Algorithms

Besides Yannakakis’s algorithm (YA) and its improvement (YA™) introduced in Section 1, we
further compare TTJ with in-memory hash-join (HJ) and two representative filter methods:
Lookahead Information Passing (LIP) and Predicate Transfer (PT). We introduce each of
them in order.

HJ evaluates Q using pipelining on a left-deep plan with in-memory hash-join operators
[29]. In open(), each hash-join operator builds a hash table H from its right child R;pper. In
getNext (), a tuple ¢ from the left child of the join operator, Ryyter, probes into H to find a
set of joinable tuples denoted as MatchingTuples. getNext () returns the join between t and
the first tuple from MatchingTuples. The join between ¢ and the rest of the tuples will be
returned in the subsequent getNext () calls.

LIP [68, 26, 67] leverages a set of Bloom filters to evaluate star schema queries consisting
of a fact table and dimension tables. In open(), LIP computes filters from R;y,,e- of each
join operator and passes those filters downwards along the left-deep plan to the fact table,
which is the left-most relation of the plan. In getNext () of the left-most table scan operator,
LIP checks the tuples from the fact table against the filters and propagates those pass the
check upwards along the plan.

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Anonymous author(s)

PT [65] is the state-of-the-art filter method that generalizes the idea of LIP to queries
not limited to star schema queries. Similar to YA, PT divides query evaluation into two
phases. First, in predicate transfer phase, PT passes filters over the predicate transfer graph,
a directed acyclic graph built from the query graph, of a query in two directions: forward
and backward, which is similar to the first two passes over 7o in YA. Relations are gradually
reduced as filters are being passed. Once the predicate transfer phase is done, the join phase
begins where the reduced relations are joined.

3.3 Additional Definitions

We further define some terminologies used in the paper. We call a relation internal if it
appears as an internal node [19, 51] in Tg. For relations corresponding to non-root internal
nodes of 7o, we call them internal® relations. Similarly, a leaf relation means the relation
appears as a leaf node in 7g. The root relation is defined accordingly. Let Pg be a left-deep
query plan using TTJ. R; for i € [k] are relations in Pg. The left-most relation is Ry. See

Figure 4 (c¢) in Appendix A. x; for i € [k] are join operators in Pg. X is the root operator.

X is the table scan operator of Ry. Rinner and Royter are right child and left child of ;,
respectively. Depending on context, we adopt the following language: If a tuple produced
from X;y1, the Ryyter of X;, cannot join with any tuples from R;, the R;per of X;, we call
it a join fails at X;, a join failure happens at X;, or join fails at R;. Since TTJ determine
dangling tuples while doing the join, we consider join failure and detecting a dangling tuple
during a join are synonymous. In such case, R; is called the detection relation. ; is called
the detection operator. We call the join operator the remowval operator if its Rjnner is the

parent of the detection relation for a join failure in Tg. Such Rjnner is the guilty relation.

For example, for the join failure happens at x; in Figure 1 (b), the detection relation is R
and the detection operator is xy. S is the guilty relation and x3 is the removal operator.
We introduce extra notation in the paper. Suppose a full ACQ Q has k relations with each
size O(n). The output size of evaluating Q on a database instance is r. [Rg, Rg—1,- .., R1]
denotes a query plan (...((RgMRk—1)XRi_2)...)XRy. Let J} denote the join of relations
Ry, Rk—1,...,Ry. Let J, for u € [k] denote the join result computed from x,. Once the
correctness of TTJ is proved, J, = J. |Ju| = ju. R* is R that is free of dangling tuples

w.r.t Q. tla] = m,(t) for tuple ¢, attribute a, and projection 7. ja(R,S) = attr(R) Nattr(S).

R(3,2) means tuple (3,2) € R. jav(t,R,S) = tlattr(R) N attr(S)], which is join-attribute
value. Hr (or H;) is the hash table built from R (or associated with ;). MatchingTuples
is the list of tuples with the same jav in a hash table. ng is the no-good list, a filter in
TTJ scan. R emphasizes the physical aspects of R, i.e., a bag of tuples R contains. We use
standard relational algebra notation, e.g., antijoin D< and semijoin D<.

4 TreeTracker Join Operators

The pseudo-code presented in Algorithms 4.1 and 4.2 contains the full definition of TTJ.

Algorithm 4.1is the primary join algorithm in the context of a left-deep plan. Algorithm 4.2
defines TTJ scan. The join operator proper only removes dangling tuples from it’s right-hand
argument and no changes to a conventional table-scan are needed. However, to attain the
complexity results dangling tuples must be removed from the leftmost argument. Thus, TTJ
scan replaces the scan for the leftmost argument and provides for recording the identity of
dangling tuples from the left-most argument and filters them out. We use Pg to denote the
left-deep plan using TTJ. We are now ready to work out Example 2 in full detail. We expand

23:7

CVIT 2016

23:8

TreeTracker Join: Computing Join and Semijoin at the Same Time

Algorithm 4.1 TTJ Join Operator

2

10

11
12

13
14

15
16
17
18

19

20

21

22
23

24

25

26
27
28

29

Purpose: An iterator returns, one at a time, the join result of Ryyter and Ripner-
Output: A tuple t € Royter X Rinner
1 TTJOperator

—J

void open()

// Touter references a tuple from Router

// MatchingTuples references a set of tuples from Rjnner that are joinable
with 7outer

Initialize royter, MatchingTuples to nil

Rinner-open()

Build hash table H: Insert each tuple, rjnner, from Ripner into H using the

join attribute value(s), jav(rinner, Router, Rinner) as the key

Router-open()

uple getNext()

if MatchingTuples # nil A MatchingTuples # () then

// If there are more matching tuples left, return the join of 7outer and
the next matching tuple
if (aMatchingTuple + Matching Tuples.next ()) # nil then
L return the join of 7,yuter and aMatching Tuple
// No matching tuples are left. Get a new Touter
Touter < Router-getNext ()
if router = nil then return nil

if router = nil then 7router < Router-getNext ()

while 7,yter # nil do
// Find tuples from Rinner joinable with router

Matching Tuples < H.get (jav(router, Router, Rinner))
if MatchingTuples # nil then

aMatchingTuple < Matching Tuples.next ()
return the join of 7,yuser and aMatching Tuple

else
// Join failure identified; start the backjumping to the guilty

relation, parent of Ripner in Tg

| Touter < Router .deleteDT (Rinner)

return nil

uple deleteDT(Detection Relation R)

if Rinner is the parent of R in Tg then

// Rinner is the guilty relation; join failure was identified at R
because the join between 7outer and aMatchingTuple was eventually
returned to R and cannot join with any tuples from R

Remove aMatchingTuple from MatchingTuples and H

else

// Has not reached the guilty relation for R; backjumping continues
Matching Tuples < nil

Touter < Router-deleteDT(R)

if 7outer = nil then return nil

| return getNext ()

291

292

293

294

295

296

297

298

299

300

301

302

303

Anonymous author(s)

Algorithm 4.2 TTJ Table Scan Operator for Ry

Purpose: Table scan operator for Ry that returns tuples not in ng.
1 TTJScan

2 void open()

3 L Initialize ng to an empty set

4 Tuple getNext()

5 while (¢ < Rj.next()) # nil do

6 if jav(t, R, R;) & ng for all children R; of Ry in Tg then
7 L return ¢

8 return nil

9 Tuple deleteDT(Detection Relation R)
// Rj is the guilty relation; ¢ contributes to the tuple that caused the

join failure at R

10 Insert jav(t, Ry, R) into ng
11 return getNext ()
My I

N | |
I%! Join Failure
' 1
(red,1,2) ’ ><y. deleteDT(R) N N
2 M ><i3. deleteDT(R) 2 detection 5 M

relatjon
(Tedv 15 2) ’ /\ R(y, Z) Jjav_|MatchingTuples /\ R(yf ;t)o R(y7 Z)

3 32| 62 3 3
(Ted)’ B(Z) jav_|MatchingTuples \ B(Z) (bluey B(Z)
M 2) guilty relation quilty detection relation
3 T(:I:) § z, Y Z) T(‘T) S(.’E, Y, z) T(w)relalions(-’t, Y, Z)
jav_| MatchingTuples Jjav_| MatchingTuples @ Jjav_[MatchingTuples
| Matching Tuples |
ved | (red,1,2) Ms | red | —fredristi— red
blue | (blue,3,2) blue | (blue,3,2) M blue (blue, 3,2)
brown| (brown,3,3) brown| (brown, 3,3) brown| (brown,3,3)

@ (b) ©
Figure 2 (a) Join fails at x;. (b) A series of deleteDT(R) is called, which leads to the removal
of S(red,1,2) from hash table Hs. (c) Join further fails at x5, which puts T'(red) to ng.

Figure 1 (b) into Figure 2. By default all line numbers reference Algorithm 4.1 unless noted
otherwise.

The following three examples show the execution moments in the first getNext () call

after open() of the pipelining evaluation that leads to the removal of two dangling tuples.

Example 3 shows that TTJ does not schedule any semijoins or semijoin-like filters before
query evaluation. The evaluation flow is identical to HJ when no join failure happens.

» Example 3 (1/; in Figures 1 and 2). After plan evaluation begins, the recursive getNext ()
calls start with x; and end with 7’s TTJ scan operator (Line 4 Algorithm 4.2), which
returns T'(red). The jav (z : red) is used to look up Hg (Line 15). Since T'(red) joins with
S(red,1,2), the resulting tuple (red, 1,2) is further propagated to X9, which probes into Hpg
and finds B(2) joinable. The join result (red, 1,2) is further passed to ;.

On join failure, TTJ needs to reset evaluation flow back to guilty relation as shown
in Examples 2 and 4. To do so, we enhance the iterator interface with one more method

23:9

CVIT 2016

23:10

304

305

306
307
308
309
310

311

312
313
314

315

316
317
318
319
320
321
322
323

324

325
326

327

328
329

330

331
332

333
334

335

336

337

338

339

340

341

TreeTracker Join: Computing Join and Semijoin at the Same Time

deleteDT() and reset the evaluation flow using a series of deleteDT() calls ? from the
detection operator to the removal operator corresponding to a join failure.

» Example 4 (M, and M5 in Figures 1 and 2). Since (red,1,2) cannot join with any tuples
from Hpg, the goal of TTJ is to reset the evaluation flow back to the guilty relation S and
remove the last returned tuple, S(red, 1,2), from Hg. To do so, Xy.deleteDT(R) is called
from Line 20 first. Since X2’S Ripner, B, is not the parent of R in Tg (Line 23), Line 27
is called, e.g., x3.deleteDT(R). In X3’s deleteDT(), since S is the parent of R (Line 23),
Line 24 is executed: S(red,1,2) is removed from Hgs.

4 is implemented by

Example 4 shows that removing tuples from internal® relations
removing them from an index. For the left-most argument TTJ scan simply inserts dangling
tuples into the no-good list (ng). Reads of the left-most argument check for membership in

the no-good list and if a tuple is a member the tuple is simply not returned (Example 5).

» Example 5 (Mg in Figures 1 and 2). Removal of S(red, 1,2) causes T'(red) to become
dangling. TTJ adds it to ng, effectively removing it from T'. After removing S(red, 1,2),
getNext () of X3 is called (Line 29). Since MatchingTuples is now empty and royter = T'(red),
Line 15 is executed. No tuples from S joins with T'(red). Thus, T.deleteDT(8) is called
(Line 20) and Algorithm 4.2 Line 10 adds jav (z : red) to ng. Once ng is non-empty, it will
work like a filter to prevent future dangling tuples with the same jav from returning to xs.
getNext () of T is called (Algorithm 4.2 Line 11). The next tuple T'(blue) then probes into
ng (Algorithm 4.2 Line 6). Since T has only one child S, jav (x : blue) is computed and it is
not in ng. Thus T'(blue) is safe to further propagate upwards towards xs.

From the above examples, we see that TTJ requires both Pg and Tg to work. The key
property that Pg and Tg need to meet is that TTJ can find the guilty relation given a join
failure. The following definition and corollary specifies the property.

» Definition 6 (join tree assumption). Suppose Pg = [Ri, Rk—1,..., R1]. TTJ assumes Tg
satisfies the following property: for a given relation R; in Pg, its parent in To is one of the
relations Ry, Rk—1,...,Rix1. The root of Tg is the left-most relation Ry.

» Corollary 7 (join order view of Definition 6). Given a Tg, TTJ assumes the order of relations
in a left-deep query plan satisfies the following property: for a node R; and its child R; in
To. R; is before R in Pg, i.e., Po =[...,Ri,...,Rj,...].

We use the following lemma to show that Definition 6 is easy to satisfy.

» Lemma 8. For any left-deep plan without cross-product for acyclic queries, there exists a
To satisfies the join tree assumption (Definition 6).

We defer the proof of Lemma 8 and related examples that illustrate Definition 6 and Co-
rollary 7 to Appendix B.

5 Correctness of TTJ

We prove the correctness of TTJ in this section. The main result in this section is the proof
of Theorem 9 which asserts the correctness of TTJ.

3 We omit argument to deleteDT() when reference it generically.
4 No tuples are removed from the leaf relations because they cannot be guilty relations, i.e., by leaf
definition, they are not parent of any relations in 7g.

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

Anonymous author(s)

» Theorem 9 (Correctness of TTJ). Evaluating an ACQ of k relations using Pg, which
consists of k — 1 instances of Algorithm 4.1 as the join operators and 1 instance of TTJ scan
(Algorithm 4.2) for the left-most relation Ry, computes the correct query result.

To prove Theorem 9, we first prove two lemmas that concern identifying join failure.

Let iter be an iterator on MatchingTuples, i.e., when calling next () on MatchingTuples,
iter is advanced and returns the next tuple in MatchingTuples if such tuple exists and nil
otherwise.

» Lemma 10. For every value assignment to Toyter, MatchingTuples is initialized with
tuples from H and implicitly, iter is reset. Between each pair of value assignments to royter,
MatchingTuples is never initialized and iter is never reset.

Proof. 7,y¢er is assigned in four places: Lines 11, 13, 20, and 27. For Lines 11, 13, and 20,
MatchingTuples is initialized on Line 15. For Line 27, since MatchingTuples is set to nil
(Line 26), MatchingTuples is initialized on Line 15 as well. Since MatchingTuples is never
initialized with tuples from # in the rest of Algorithm 4.1, the claim follows. <

» Lemma 11. A tuple, t, is part of the final join result if and only if it is not marked as
dangling during the query evaluation by deleteDT().

Proof. We prove the equivalent statement: a tuple ¢ is marked as dangling by deleteDT()
during the query evaluation if and only if ¢ is not part of the final join result. Whenever
deleteDT() is called, a tuple is removed from a hash table or added to ng. deleteDT() is
initiated if and only if MatchingTuples = nil, which means 7,y contains a dangling tuple,
i.e., some tuple is not part of the final join result. |

We are ready to prove our main theorem Theorem 9.
Proof. We show J; = J; under bag semantics. We first show J; C J;. Let t ¢ J;. Recall
Ji = {t over attr(Py,) | tlattr(R,)] € Ry Yu € [k]} .

If there doesn’t exist a relation R in Q such that t[attr(R)] € R, it is trivial to see that
t ¢ Ji. Suppose tlattr(R,)] € Ry for v = {k,k—1,...,i+ 1} but t[attr(R,)] ¢ R, for
uw = {i,i—1,...,1}. By default join order (Definition 6), R; must be a child of some
relation R; with ¢ < j such that t[attr(R;)] € R; and t[attr(R;)] € R;. By To definition,
attr(R;) N attr(R;) # 0. The only non-trivial reason that t[attr(R;)] ¢ R; is because
tlattr(R;) N attr(R;)] € Tastr(r,)nattr(r;) (1) In such case, TTJ will call deleteDT() from
the join operator connected with R; and t[attr(R;)] will be deleted from Hp; or put onto ng.
Thus, t is not in Jy. If there is a relation R, with k¥ < u < i+ 1 such that t[attr(R,)] € R,
t ¢ J; by the definition of join. The same argument applies to any ¢ whose value is duplicated.
To show J; C Jy, suppose ¢t € J; but & Jy. t[attr(Ry)] is part of the join result and
with Lemma 11, t[attr(R;)] is never deleted. Thus, it must be that t[attr(Py,)] € J5 but
t ¢ Jy. The same argument applies to every operator in the plan. Eventually, we have
tlattr(Ry)] € Ji but t € J,. However, this is a contradiction. t[attr(Rg)] € J; and joins
with the rest of the relations in plan. Thus, with Lemma 11, t[attr(Ry)] & ng and € Jj.
Next, we show |J;| = |J5|. That is, for a given t € J;, we show the number of tuples ¢
that are in Jy equals to the number of tuples ¢t in J;. By Lemma 11, TTJ will not falsely
remove a tuple ¢t that is in J; and if ¢ is a dangling tuple, it is removed by deleteDT().
Further, by Lemma 10, each tuple from x, xR, _; is enumerated once. The claim holds. =

23:11

CVIT 2016

23:12

384

385
386
387
388
389
390
391

392

393

394
395
396
397
398

399

400

401

402
403
404

405

406
407

408

409
410
411
412
413
414

415

416
417
418
419
420
421
422
423
424
425

426

TreeTracker Join: Computing Join and Semijoin at the Same Time

6 Optimality of TTJ

The runtime analysis of evaluating Pg is done in two steps. First, we propose a general
condition for any left-deep plan without cross-product for ACQ called clean state. Clean
state specifies what tuples can be left in the input relations without breaching the O(n + r)
evaluation time guarantee. Clean state permits the existence of more dangling tuples than
what is allowed by YAT. Second, we show Pg reaches the clean state and the work done by
TTJ between the beginning of the query evaluation and reaching the clean state (cleaning
cost) is no more than the work done after reaching the clean state. The former takes O(n)
and the latter takes O(n + r).

6.1 Clean State

» Definition 12 (clean state). For a left-deep plan without cross-product for ACQ, we denote
the contents of R; that satisfy the following conditions by R;:

1. R; = R; for all the leaf relations R; of To;

2. (Ry><Jf) D>< @u =0 for internal® relations R; and their child relations R, ; and

3. R, < Hiu = for the root of To, Ri and its children qu.
The plan reaches clean state if the contents of all R; equal R;.

» Lemma 13. When the left-deep plan without cross-product for ACQ is in clean state, Ry,
1s fully reduced and free of dangling tuples.

Proof. Suppose Pg is in clean state. Assume there is a dangling tuple d € Ri. Suppose
{d} MRy_1 ... xR; but cannot join with R;;, with j € {k —1,...,2}. Given Pg satisfying
Definition 6, parent of R;y1, R;, must be one of the relations joinable with {d}. Thus, R; is
not in clean state. Contradiction. |

» Theorem 14 (Clean state implies optimal evaluation). Once the left-deep plan without
cross-product is in clean state, any intermediate results generated from the plan evaluation
will contribute to the final join result and the plan can be evaluated optimally.

Proof. Proof by induction on the height of 7o, h. Base case h = 0. Claim trivially holds.
Suppose the claim holds for height of 7o < h. Let R be the root of 7o with height h.
Let R; be a child of R,. With Lemma 13, no dangling tuples produced when R}, join with
R;. By induction assumption, no dangling tuple produced when further join RyxR; with
relations in subtree rooted in R;. Repeat the same argument for each child of R; and the
result follows. Notice the order of ;s that invoke proof arguments is specified by the order
in Pg, which satisfies Corollary 7. |

Comparison with full reducer and reducing semijoin program. Relations that are free from
dangling tuples are in clean state. Thus, relations after Fg are in clean state. Relations
after HFg are in clean state as well. Leaf relations after HFg satisfy Item 1 (by definition
of HFg) and the root relation after H Fg satisfies Item 3 (by Lemma 13 and Lemma 4 of
[12]). For an internal® relation R;, it satisfies R; D< R, = (0, which implies the satisfaction
of Item 2. However, the state of relations after HFg or Fyg is stricter than what is required
by clean state, i.e., more than necessary tuples are removed for optimal evaluation. Tuples
of R; that are not joinable with J7 ; will be removed by both Fg and HFg if such tuples
are not joinable with tuples from any child relation of R;. For example, S(brown,3,3) in
Example 2. But, those dangling tuples are allowed to present in clean state. We provide one
more example in Appendix C.

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Anonymous author(s)

» Corollary 15. The set of dangling tuples removed by TTJ is a subset of the set of dangling
tuples removed by both YA and YA™T .

We also perform empirically measurements on two standard benchmarks to illustrate
Corollary 15. The result is in Appendix I.

6.2 Complexity Analysis

» Lemma 16. Algorithm 4.2 Line 10 is evecuted whenever Ry, DX R, # () for child relation
R, of Ry. Similarly, Line 24 is executed whenever R; >< R, # () for internal® relations R;
and its child R,. R, indicates the content of R, can change during TTJ execution.

Proof. We prove the claim on Algorithm 4.2 Line 10; claim on Line 24 can be proved similarly.

t € Ry can be dangling for two reasons. First, t is dangling at the very beginning of the
execution, i.e., {t} >< R, = {t}. Then, during the execution with ¢ from Xy, join fails at x,,
and deleteDT() is initiated (Line 20). Since Ry is the parent of R,,, Algorithm 4.2 Line 10
is executed. Second, ¢ becomes dangling after all tuples from R, ><{t} are removed. After

the last tuple in R, P><{t} is removed by Line 24, MatchingTuples becomes empty at X,,.

Line 29 is then called. Since MatchingTuples = () and R, ><{t} = 0, Line 15 is executed
and returns nil. deleteDT() is initiated and Algorithm 4.2 Line 10 will be executed. |

» Lemma 17. When TTJ finishes execution, Pg is in clean state.

Proof. Satisfaction of Item 1. Suppose R; is a leaf relation. Since relations that have tuples
removed or put into ng are parent of some other relations in 7o, condition holds.

Satisfaction of Item 2. Start with internal® relations R; that are parent of leaf relations R,,.

Then, R, = R,. By Lemma 11 and parent-child relation between R; and R, (R; ><J,) ><
I@u is empty. Thus, R; = I@l when TTJ finishes execution. Now, let R; be an internal®
relation and R, be its child, which is also an internal® relation. Start R, be the parent of
leaf relations and apply the same argument from the previous case. R; = If@l Repeat the
same argument all the way till R, be the grandchild of Rj.

Satisfaction of Item 3. By Lemma 13, equivalently, we show Ry — ng = R}. First,
Ry € Ry —ng. Suppose t ¢ Ry — ng. This means ¢ is one of the tuples removed by

Algorithm 4.2 Line 10. With Lemma 16, ¢t ¢ R}.. Second, R} D Ry, — ng. Suppose ¢ € Rj.

Then, t has to be a dangling tuple causes a join failure at some relation R. By the proof of
Lemma 16, either deleteDT() is called directly (R is a child of Ry) or indirectly (R causes
all tuples from R, a child of Ry, joining with ¢ removed). Thus, ¢t & Ry — ng. <

» Lemma 18. TTJ evaluates Pg in O(n +) once it is in clean state.

Proof. By Theorem 14, once Pg reaches clean state, no dangling tuple is produced by x,,
for u € [k]. Thus, no more calls on deleteDT(). There are k relations and £ — 1 join

operators, open() takes O(kn) as each operator is called once and takes O(n) to build H.

It takes O(k) getNext () calls to compute a tuple in J;. Since each getNext () call takes
O(1), it takes O(k) to compute one join result and O(kr) for J;. Thus, in total, we have
O(kn+kr)=0mn+r). <

Next, we prove the optimality guarantee of TTJ by bounding the cleaning cost. The key
idea is to leverage the fact that whenever a dangling tuple is detected, some tuple has to be
removed and there can be at most kn tuples removed. The cost to remove each tuple is O(1)
under data complexity.

23:13

CVIT 2016

23:14

469
470
471

472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

500

501
502
503
504
505
506

507

508

509
510
511
512

513

TreeTracker Join: Computing Join and Semijoin at the Same Time

» Theorem 19 (Data complexity optimality of TTJ). Evaluating an ACQ of k relations
using Po, which consists of k — 1 instances of Algorithm 4.1 as the join operators and 1
instance of TTJ scan (Algorithm 4.2) for the left-most relation Ry, has runtime O(n +r),
meeting the optimality bound for ACQ in data complexity.

Proof. By Lemma 17, the execution of a plan is in clean state when TTJ execution finishes.
The amount of work that makes Pg clean, i.e., cleaning cost, is fixed despite the distribution
of dangling tuples in the relations. Suppose the execution is in clean state after computing
the first join result.

To bound the cleaning cost, we bound the cost of getting the first join result. Cleaning
cost of TTJ includes the following components: (1) the cost of open(), which is O(kn); (2)
the cost of getNext(); and (3) the cost of deleteDT(), which is bounded by the cost of
getNext () as well.

The total cost of getNext () is bounded by the total number of loops (starting at Line 14).
Within the loop, hash table lookup (Line 15) is O(1). The total number of loops equals the
total number of times that r,ys., is assigned with a value. 7,y assignment happens on
Lines 11, 13, 20, and 27. Line 13 is called when getNext () is recursively called from x; to
start computing the first join result, which in total happens k times. Afterwards, whenever
Touter Decomes nil, execution terminates by returning nil (Lines 12, 21, and 28) and Line 13
never gets called.

Each time deleteDT() is called from Line 20, exactly one tuple is removed. Thus, 7oyter
is assigned O(kn) times on Line 20. After a call to deleteDT() made in the ith operator
(i € [k — 2]) from Line 20, deleteDT() can be recursively called at most k — ¢ times from
Line 27. The number of deleteDT() calls with k — ¢ recursive calls is at most n because
each relation has size n and each initiation of deleteDT() removes a tuple. Thus, the total
number of assignment to 7,y¢er from Line 27 is < Zf:_f(k —i)-n=0(k?n).

If deleteDT() is never called during the computation of the first join result, Line 11
is not called. Line 11 can only be called from Line 29 when Line 23 is evaluated to true;
any getNext () calls (Line 29) from recursive deleteDT() calls triggered by Line 20 will not
call Line 11 because MatchingTuples is set to nil on Line 26. Thus, the number of calls on
Line 11 equals to the number of deleteDT() calls from Line 20, which is O(kn).

Summing everything together, cleaning cost is O(k?n). Since Pg is clean after computing
the first join result, with Lemma 18, the result follows. <

The combined complexity of TTJ is O(k?n + kr), which can be further reduced to
O(nklogk + kr) by imposing an additional constraint on Pg. We defer the details to
Appendix D. In Appendix E we show how to use TTJ on plan that is no longer degenerate.
We further analyze its performance and formulate a graph mapping problem that can lead
to optimality. Lastly, besides the hypertree decomposition approach, TTJ can be easily
extended to cyclic queries using the spanning tree approach described in [21], which we detail
in Appendix F.

7 Empirical Results

So far, we have shown that by combining two logical operations into one, we maintain the
optimality guarantee. To finish our argument, we need to supplement empirical evidence to
show our approach gives better overall performance compared to the existing approaches. In
this section, we compare the performance of TTJ with the baseline algorithms (Section 3.2)
on two standard benchmarks: TPC-H [57], and Star Schema Benchmark (SSB) [46]. We defer

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

Anonymous author(s)

64
= 77T = PT
5] = YA EEE LIP
mmE YAt
Q]
=
T
Q 34
o
Qo
v 24
| u u]]
H{| u L L = u L = - -
i N N N i § u § u
] |] |]]]]]
| 1 | | | | | | | |
1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3

Figure 3 Speedup of TTJ, YA, YAT, PT, and LIP over HJ on all 13 SSB queries

the details of our experimental setup such as algorithm implementation details, workload,
environment, and cost models to Appendix G. We present our SSB results and defer TPC-H
result to Appendix H.

We present SSB results because star schema queries eliminate the impact of join order and
join tree on algorithms’ performance; all algorithms share the identical 7o and plan, where

the fact table is Ry and the dimension tables are the children of Ry ordered from left to right.

Figure 3 illustrates that TTJ has the largest speedup, 3.2x on average, for all SSB queries
and LIP comes in second with average of 2.8x. The performance difference between TTJ
and LIP shows that lazily building and probing ng works better than proactively building
and probing a set of Bloom filters. Probing Bloom filters at Ry in LIP can be viewed as
performing a bottom-up pass of 7g. The comparison result between TTJ and LIP supports
our argument that the users do not need to trade-off optimality guarantee for empirical
performance; they can have both at the same time. Furthermore, in this setup, TTJ is indeed
reduced to combining the bottom-up semijoin pass and join pass into one ®, which makes
TTJ equivalent to YAT. However, TTJ outperforms YA™, which shows that TTJ is more
empirical efficient than YA™' despite the equivalent formal runtime guarantee. Compared
with LIP and YA™, YA and PT perform an additional top-down pass of To. PT has extra pass
compared to YAT but still outperforms YA™ in most cases; such results reflect using Bloom
filter is much more cost-effective than using semijoin. Additional results on the number of
dangling tuples removed by each algorithm is in Appendix I.

8 Limitations and Future Work

In this paper, we use TTJ to argue that two separate logical operations: semijoin and join,
is the fundamental reason that users have had to pick between theoretical guarantee and
good empircal performance. Theoretical gaps remain when consider TTJ with additional
requirements, which we discuss next. First, the combined complexity of TTJ can be improved
because it has an additional logk term compared with the complexity of YA. Second,
optimality of TTJ under bushy plan is contingent upon the resolution of a graph mapping
problem that maps Tg into query plan.

—— References

1 Java Microbenchmark Harness (JMH). URL: https://github.com/openjdk/jmh.

5 For other ACQs, reduction does not hold.

23:15

CVIT 2016

https://github.com/openjdk/jmh

23:16

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
502
593
594

595

TreeTracker Join: Computing Join and Semijoin at the Same Time

10

11

12

13

14

15

16

17

Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Notzli, Kunle Olukotun, and
Christopher Ré. EmptyHeaded: A Relational Engine for Graph Processing. ACM Trans.
Database Syst., 42(4), October 2017. URL: https://doi-org.ezproxy.lib.utexas.edu/10.
1145/3129246, doi:10.1145/3129246.

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases, volume 8.
Addison-Wesley Reading, 1995.

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What Do Shannon-Type Inequal-
ities, Submodular Width, and Disjunctive Datalog Have to Do with One Another? In
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 17, page 429-444, New York, NY, USA, 2017. Association for Computing
Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/3034786.3056105,
doi:10.1145/3034786.3056105.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

Molham Aref, Balder ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic,
Todd L Veldhuizen, and Geoffrey Washburn. Design and Implementation of the LogicBlox
System. In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pages 1371-1382, 2015.

Marcelo Arenas, Pablo Barcelé, Leonid Libkin, Wim Martens, and Andreas Pieris. Database
Theory. Open source at https://github.com/pdm-book/community, 2022.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic Sets and
Other Strange Ways to Implement Logic Programs (Extended Abstract). In Proceedings of
the Fifth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, PODS ’86,
page 1-15, New York, NY, USA, 1985. Association for Computing Machinery. URL: https:
//doi-org.ezproxy.lib.utexas.edu/10.1145/6012.15399, doi:10.1145/6012.15399.
Roberto J. Bayardo Jr and Daniel P. Miranker. An Optimal Backtrack Algorithm for Tree-
Structured Constraint Satisfaction Problems. Artificial Intelligence, 71(1):159-181, 1994.
Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desirability
of Acyclic Database Schemes. J. ACM, 30(3):479-513, July 1983. URL: https://doi-org.
ezproxy.lib.utexas.edu/10.1145/2402.322389, doi:10.1145/2402.322389.

Edmon Begoli, Jestis Camacho-Rodriguez, Julian Hyde, Michael J. Mior, and Daniel Lemire.
Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogen-
eous Data Sources. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD ’18, page 221-230, New York, NY, USA, 2018. Association for Computing
Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/3183713.3190662,
doi:10.1145/3183713.3190662.

Philip A. Bernstein and Dah-Ming W. Chiu. Using Semi-Joins to Solve Relational Queries. J.
ACM, 28(1):25-40, January 1981. doi:10.1145/322234.322238.

Philip A Bernstein and Nathan Goodman. Power of Natural Semijoins. SIAM Journal on
Computing, 10(4):751-771, 1981.

Burton H. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Commun.
ACM, 13(7):42274267 jul 1970. doi:10.1145/362686.362692.

Ashok K. Chandra and Philip M. Merlin. Optimal Implementation of Conjunctive Queries
in Relational Data Bases. In Proceedings of the Ninth Annual ACM Symposium on Theory
of Computing, STOC ’77, page 77-90, New York, NY, USA, 1977. Association for Comput-
ing Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/800105.803397,
doi:10.1145/800105.803397.

Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems. In Proceedings
of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 34-43, 1998.

Ming-Syan Chen and Philip S. Yu. Using Join Operations as Reducers in Distributed Query
Processing. In Proceedings of the Second International Symposium on Databases in Parallel

https://doi-org.ezproxy.lib.utexas.edu/10.1145/3129246
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3129246
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3129246
https://doi.org/10.1145/3129246
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3034786.3056105
https://doi.org/10.1145/3034786.3056105
https://github.com/pdm-book/community
https://doi-org.ezproxy.lib.utexas.edu/10.1145/6012.15399
https://doi-org.ezproxy.lib.utexas.edu/10.1145/6012.15399
https://doi-org.ezproxy.lib.utexas.edu/10.1145/6012.15399
https://doi.org/10.1145/6012.15399
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2402.322389
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2402.322389
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2402.322389
https://doi.org/10.1145/2402.322389
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3183713.3190662
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/322234.322238
https://doi.org/10.1145/362686.362692
https://doi-org.ezproxy.lib.utexas.edu/10.1145/800105.803397
https://doi.org/10.1145/800105.803397

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

Anonymous author(s)

18

19

20
21

22

23

24

25

26

27

28

29

30

31

and Distributed Systems, DPDS 90, page 116123, New York, NY, USA, 1990. Association for
Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/319057.
319074, doi:10.1145/319057.319074.

Sophie Cluet and Guido Moerkotte. On the Complexity of Generating Optimal Left-Deep
Processing Trees with Cross Products. In Georg Gottlob and Moshe Y. Vardi, editors, Database
Theory — ICDT ’95, pages 54—67, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT press, 3rd edition, 2009.

Rina Dechter. Constraint Processing. Morgan Kaufmann, USA, 2003.

Kyle Deeds, Dan Suciu, Magda Balazinska, and Walter Cai. Degree Sequence Bound For Join
Cardinality Estimation. CoRR, abs/2201.04166, 2022. URL: https://arxiv.org/abs/2201.
04166, arXiv:2201.04166.

Bailu Ding, Surajit Chaudhuri, and Vivek Narasayya. Bitvector-Aware Query Optimization
for Decision Support Queries. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, page 2011-2026, New York, NY, USA,
2020. Association for Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.
edu/10.1145/3318464.3389769, doi:10.1145/3318464.3389769.

Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li, Ying Li,
Donald Kossmann, Johannes Gehrke, and Tim Kraska. Instance-Optimized Data Layouts
for Cloud Analytics Workloads. In Proceedings of the 2021 International Conference on
Management of Data, SIGMOD ’21, page 418-431, New York, NY, USA, 2021. Association for
Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/3448016.
3457270, doi:10.1145/3448016.3457270.

Wolfgang Fischl, Georg Gottlob, Davide Mario Longo, and Reinhard Pichler. HyperBench: A
Benchmark and Tool for Hypergraphs and Empirical Findings. ACM J. Exp. Algorithmics,
26, jul 2021. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/3440015, doi:10.
1145/3440015.

Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann.
Adopting Worst-Case Optimal Joins in Relational Database Systems. Proc. VLDB Endow.,
13(12):1891-1904, July 2020. URL: https://doi-org.ezproxy.lib.utexas.edu/10.14778/
3407790.3407797, doi:10.14778/3407790.3407797.

Kevin P. Gaffney, Martin Prammer, Larry Brasfield, D. Richard Hipp, Dan Kennedy, and
Jignesh M. Patel. SQLite: Past, Present, and Future. Proc. VLDB Endow., 15(12):3535 —
3547, August 2022.

Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database Systems: The
Complete Book. Prentice Hall Press, USA, 2nd edition, 2008.

Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. Hypertree Decompos-
itions: Questions and Answers. In Proceedings of the 85th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’16, page 57-74, New York, NY, USA,
2016. Association for Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.
edu/10.1145/2902251.2902309, doi:10.1145/2902251.2902309.

Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Comput.
Surv., 25(2):73-169, June 1993. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/
152610.152611, doi:10.1145/152610.152611.

Thomas Mueller Graf and Daniel Lemire. Binary Fuse Filters: Fast and Smaller Than Xor
Filters. ACM J. Exp. Algorithmics, 27, mar 2022. doi:10.1145/3510449.

Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. The Dynamic Yannakakis Al-
gorithm: Compact and Efficient Query Processing Under Updates. In Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD ’17, page 1259-1274, New
York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3035918.3064027.

23:17

CVIT 2016

https://doi-org.ezproxy.lib.utexas.edu/10.1145/319057.319074
https://doi-org.ezproxy.lib.utexas.edu/10.1145/319057.319074
https://doi-org.ezproxy.lib.utexas.edu/10.1145/319057.319074
https://doi.org/10.1145/319057.319074
https://arxiv.org/abs/2201.04166
https://arxiv.org/abs/2201.04166
https://arxiv.org/abs/2201.04166
https://arxiv.org/abs/2201.04166
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3318464.3389769
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3318464.3389769
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3318464.3389769
https://doi.org/10.1145/3318464.3389769
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3448016.3457270
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3448016.3457270
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3448016.3457270
https://doi.org/10.1145/3448016.3457270
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3440015
https://doi.org/10.1145/3440015
https://doi.org/10.1145/3440015
https://doi.org/10.1145/3440015
https://doi-org.ezproxy.lib.utexas.edu/10.14778/3407790.3407797
https://doi-org.ezproxy.lib.utexas.edu/10.14778/3407790.3407797
https://doi-org.ezproxy.lib.utexas.edu/10.14778/3407790.3407797
https://doi.org/10.14778/3407790.3407797
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2902251.2902309
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2902251.2902309
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2902251.2902309
https://doi.org/10.1145/2902251.2902309
https://doi-org.ezproxy.lib.utexas.edu/10.1145/152610.152611
https://doi-org.ezproxy.lib.utexas.edu/10.1145/152610.152611
https://doi-org.ezproxy.lib.utexas.edu/10.1145/152610.152611
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/3510449
https://doi.org/10.1145/3035918.3064027

23:18

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

TreeTracker Join: Computing Join and Semijoin at the Same Time

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Zachary G. Ives and Nicholas E. Taylor. Sideways Information Passing for Push-Style Query
Processing. In 2008 IEEE 2/th International Conference on Data Engineering, pages 774-783.
IEEE, 2008.

Guodong Jin and Semih Salihoglu. Making RDBMSs Efficient on GraphWorkloads Through
Predefined Joins. PVLDB 15, 2022.

Oren Kalinsky, Yoav Etsion, and Benny Kimelfeld. Flexible Caching in Trie Joins. EDBT,
2017. URL: https://openproceedings.org/2017/conf/edbt/paper-131.pdf.

Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. Pushing Data-Induced Predic-
ates through Joins in Big-Data Clusters. Proc. VLDB Endow., 13(3):252-265, nov
2019. URL: https://doi-org.ezproxy.lib.utexas.edu/10.14778/3368289.3368292, doi:
10.14778/3368289.3368292.

H. Kang and N. Roussopoulos. A Pipeline N-Way Join Algorithm Based on the 2-Way Semijoin
Program. IEEE Transactions on Knowledge € Data Engineering, 3(04):486-495, oct 1991.
doi:10.1109/69.109109.

Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via Geometric
Resolutions: Worst Case and Beyond. ACM Trans. Database Syst., 41(4), November 2016. URL:
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2967101, doi:10.1145/2967101.
Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-Query Containment and Constraint
Satisfaction. In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS 98, page 205—213, New York, NY, USA, 1998.
Association for Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/
10.1145/275487.275511, doi:10.1145/275487.275511.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neu-
mann. How Good Are Query Optimizers, Really? Proc. VLDB Endow., 9(3):204-215, Novem-
ber 2015. URL: https://doi-org.ezproxy.lib.utexas.edu/10.14778/2850583.2850594,
doi:10.14778/2850583.2850594.

Zhe Li and Kenneth A. Ross. PERF Join: An Alternative to Two-Way Semijoin and Bloom-
join. In Proceedings of the Fourth International Conference on Information and Knowledge
Management, CIKM ’95, page 137-144, New York, NY, USA, 1995. Association for Comput-
ing Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/221270.221360,
doi:10.1145/221270.221360.

David Maier. The Theory of Relational Databases. Computer Science Press, 1983. URL:
http://web.cecs.pdx.edu/7Emaier/TheoryBook/TRD .html.

Inderpal Singh Mumick and Hamid Pirahesh. Implementation of Magic-Sets in a Relational
Database System. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’94, page 103-114, New York, NY, USA, 1994. Association for
Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/191839.
191860, doi:10.1145/191839.191860.

Yoon-Min Nam Nam, Donghyoung Han Han, and Min-Soo Kim Kim. SPRINTER: A Fast n-Ary
Join Query Processing Method for Complex OLAP Queries. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, page 2055-2070,
New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi-org.
ezproxy.lib.utexas.edu/10.1145/3318464.3380565, doi:10.1145/3318464.3380565.
Thomas Neumann and Gerhard Weikum. Scalable Join Processing on Very Large RDF
Graphs. In Proceedings of the 2009 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’09, page 627-640, New York, NY, USA, 2009. Association for Computing
Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/1559845.1559911,
doi:10.1145/1559845.1559911.

Hung Q. Ngo, Dung T. Nguyen, Christopher Ré, and Atri Rudra. Beyond Worst-Case Analysis
for Joins with Minesweeper. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 14, page 234-245, New York, NY, USA,

https://openproceedings.org/2017/conf/edbt/paper-131.pdf
https://doi-org.ezproxy.lib.utexas.edu/10.14778/3368289.3368292
https://doi.org/10.14778/3368289.3368292
https://doi.org/10.14778/3368289.3368292
https://doi.org/10.14778/3368289.3368292
https://doi.org/10.1109/69.109109
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2967101
https://doi.org/10.1145/2967101
https://doi-org.ezproxy.lib.utexas.edu/10.1145/275487.275511
https://doi-org.ezproxy.lib.utexas.edu/10.1145/275487.275511
https://doi-org.ezproxy.lib.utexas.edu/10.1145/275487.275511
https://doi.org/10.1145/275487.275511
https://doi-org.ezproxy.lib.utexas.edu/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi-org.ezproxy.lib.utexas.edu/10.1145/221270.221360
https://doi.org/10.1145/221270.221360
http://web.cecs.pdx.edu/%7Emaier/TheoryBook/TRD.html
https://doi-org.ezproxy.lib.utexas.edu/10.1145/191839.191860
https://doi-org.ezproxy.lib.utexas.edu/10.1145/191839.191860
https://doi-org.ezproxy.lib.utexas.edu/10.1145/191839.191860
https://doi.org/10.1145/191839.191860
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3318464.3380565
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3318464.3380565
https://doi-org.ezproxy.lib.utexas.edu/10.1145/3318464.3380565
https://doi.org/10.1145/3318464.3380565
https://doi-org.ezproxy.lib.utexas.edu/10.1145/1559845.1559911
https://doi.org/10.1145/1559845.1559911

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

Anonymous author(s)

46

47

48

49

50

51
52

53

54

55

56

57

58

59

60

61

2014. Association for Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.

edu/10.1145/2594538.2594547, doi:10.1145/2594538.2594547.

Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The Star Schema
Benchmark and Augmented Fact Table Indexing. In Raghunath Nambiar and Meikel Poess,
editors, Performance Evaluation and Benchmarking, pages 237-252, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

Felix Putze, Peter Sanders, and Johannes Singler. Cache-, Hash-, and Space-Efficient Bloom
Filters. ACM J. Exp. Algorithmics, 14, jan 2010. doi:10.1145/1498698.1594230.

Wilson Qin and Stratos Idreos. Adaptive Data Skipping in Main-Memory Systems.
In Proceedings of the 2016 International Conference on Management of Data, SIG-
MOD ’16, page 2255-2256, New York, NY, USA, 2016. Association for Computing Ma-
chinery. URL: https://doi-org.ezproxy.lib.utexas.edu/10.1145/2882903.2914836, doi:
10.1145/2882903.2914836

Mark Raasveldt and Hannes Miihleisen. DuckDB: An Embeddable Analytical Database.
In Proceedings of the 2019 International Conference on Management of Data, SIGMOD
’19, page 1981-1984, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3299869.3320212

Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-Hill,
2nd edition, 2000.

Kenneth Rosen. Discrete Mathematics and Its Applications. McGraw Hill, 7th edition, 2011.
Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung, Raghu Ramakrish-
nan, Divesh Srivastava, Peter J. Stuckey, and S. Sudarshan. Cost-Based Optimization for
Magic: Algebra and Implementation. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’96, page 435-446, New York, NY, USA, 1996.
Association for Computing Machinery. URL: https://doi-org.ezproxy.lib.utexas.edu/
10.1145/233269.233360, doi:10.1145/233269.233360

Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian Sun,
Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and Christopher Berner. Presto:
SQL on Everything. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 1802-1813, 2019. doi:10.1109/ICDE.2019.00196

Lakshmikant Shrinivas, Sreenath Bodagala, Ramakrishna Varadarajan, Ariel Cary, Vivek
Bharathan, and Chuck Bear. Materialization Strategies in the Vertica Analytic Database:
Lessons Learned. In 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pages 1196-1207. IEEE, 2013.

Abraham Silberschatz, Henry F. Korth, and Shashank Sudarshan. Database System Concepts.
McGraw-Hill New York, 7th edition, 2019.

Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and randomized op-
timization for the join ordering problem. The VLDB Journal, 6:191-208, 1997. URL:
https://doi-org.ezproxy.lib.utexas.edu/10.1007/s007780050040.

Transaction Processing Performance Council (TPC). TPC-H Benchmark. Online. Accessed

on 11-18-2021. URL: http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.

0.pdf.

Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Optimal Join Algorithms
Meet Top-k. page 2659-2665, 2020. doi:10.1145/3318464.3383132.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems Vol. 2: The New
Technologies. Computer Science Press, USA, first edition, 1989.

Patrick Valduriez and Georges Gardarin. Join and Semijoin Algorithms for a Multiprocessor
Database Machine. ACM Trans. Database Syst., 9(1):133-161, mar 1984. URL: https:
//doi-org.ezproxy.lib.utexas.edu/10.1145/348.318590, doi:10.1145/348.318590
Moshe Y. Vardi. The Complexity of Relational Query Languages. In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, STOC 82, page 137-146,

23:19

CVIT 2016

https://doi-org.ezproxy.lib.utexas.edu/10.1145/2594538.2594547
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2594538.2594547
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2594538.2594547
https://doi.org/10.1145/2594538.2594547
https://doi.org/10.1145/1498698.1594230
https://doi-org.ezproxy.lib.utexas.edu/10.1145/2882903.2914836
https://doi.org/10.1145/2882903.2914836
https://doi.org/10.1145/2882903.2914836
https://doi.org/10.1145/2882903.2914836
https://doi.org/10.1145/3299869.3320212
https://doi-org.ezproxy.lib.utexas.edu/10.1145/233269.233360
https://doi-org.ezproxy.lib.utexas.edu/10.1145/233269.233360
https://doi-org.ezproxy.lib.utexas.edu/10.1145/233269.233360
https://doi.org/10.1145/233269.233360
https://doi.org/10.1109/ICDE.2019.00196
https://doi-org.ezproxy.lib.utexas.edu/10.1007/s007780050040
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://doi.org/10.1145/3318464.3383132
https://doi-org.ezproxy.lib.utexas.edu/10.1145/348.318590
https://doi-org.ezproxy.lib.utexas.edu/10.1145/348.318590
https://doi-org.ezproxy.lib.utexas.edu/10.1145/348.318590
https://doi.org/10.1145/348.318590

23:20

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

768

TreeTracker Join: Computing Join and Semijoin at the Same Time

62

63

64

65

66

67

68

New York, NY, USA, 1982. Association for Computing Machinery. URL: https://doi-org.
ezproxy.lib.utexas.edu/10.1145/800070.802186, doi:10.1145/800070.802186.

Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. Change Propagation Without Joins. Proc.
VLDB Endow., 16(5):1046—1058, jan 2023. doi:10.14778/3579075.3579080.

Yisu Remy Wang, Max Willsey, and Dan Suciu. Free Join: Unifying Worst-Case Optimal and
Traditional Joins. Proc. ACM Manag. Data, 1(2), jun 2023. doi:10.1145/3589295.
Sungheun Wi, Wook-Shin Han, Chuho Chang, and Kihong Kim. Towards Multi-Way Join
Aware Optimizer in SAP HANA. Proc. VLDB Endow., 13(12):3019-3031, August 2020.
doi:10.14778/3415478.3415531.

Yifei Yang, Hangdong Zhao, Xiangyao Yu, and Paraschos Koutris. Predicate Transfer: Efficient
Pre-Filtering on Multi-Join Queries. Conference on Innovative Data Systems Research (CIDR),
2024. arXiv:2307.15255.

Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. In VLDB, volume 81, pages
82-94, 1981.

Yunjia Zhang, Yannis Chronis, Jignesh M. Patel, and Theodoros Rekatsinas. Simple Adaptive
Query Processing vs. Learned Query Optimizers: Observations and Analysis. Proc. VLDB
Endow., 16(11):2962-2975, jul 2023. doi:10.14778/3611479.3611501.

Jiangiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. Looking Ahead Makes
Query Plans Robust: Making the Initial Case with in-Memory Star Schema Data Warehouse
Workloads. Proc. VLDB Endow., 10(8):889-900, April 2017. URL: https://doi-org.ezproxy.
lib.utexas.edu/10.14778/3090163.3090167, doi:10.14778/3090163.3090167.

https://doi-org.ezproxy.lib.utexas.edu/10.1145/800070.802186
https://doi-org.ezproxy.lib.utexas.edu/10.1145/800070.802186
https://doi-org.ezproxy.lib.utexas.edu/10.1145/800070.802186
https://doi.org/10.1145/800070.802186
https://doi.org/10.14778/3579075.3579080
https://doi.org/10.1145/3589295
https://doi.org/10.14778/3415478.3415531
https://arxiv.org/abs/2307.15255
https://doi.org/10.14778/3611479.3611501
https://doi-org.ezproxy.lib.utexas.edu/10.14778/3090163.3090167
https://doi-org.ezproxy.lib.utexas.edu/10.14778/3090163.3090167
https://doi-org.ezproxy.lib.utexas.edu/10.14778/3090163.3090167
https://doi.org/10.14778/3090163.3090167

769

770

771

772

773

775

776

e

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

Anonymous author(s)

A lllustration of Notation

T 2 N/\
s @ /\ngy,

(a) Query Graph (b) Join Tree (C) Query Plan
Figure 4 (a) query graph, (b) join tree , and (c) query plan of Q of four relations in (c). Ry, ..., R4
show the relation numbering and 1, X, X3, X4 denote the join operator numbering. x4 represents
the table scan operator associated with the left-most relation R4, which is T in this example.

B Understanding TTJ Requirements on Pg and 7o

TTJ operates on a left-deep query plan, which represents the join order of the input relations
of the query. In addition, TTJ requires a Tg to find the parent of the detection relation, i.e.,
the guilty relation, for a join failure. Thus, if either the plan or the 7o is missing, we need
to construct it from the other one. A constraint exists for such construction to ensure TTJ
can function correctly. Since deleteDT() always sends a reference of the detection relation
downwards along the plan, when the plan is missing, we need to construct a plan such that
the guilty relation must sit below the detection relation. For the same reason, when Tg is
missing, we need to construct a Tg such that for any detection relation in a plan, exactly
one of the relations below it must be its parent in the tree. In this section we formalize the
constraint and describe how to properly construct a 7o or a plan given the other input.
Given Pg, Definition 6 defines the aforementioned constraint on the 7g. calling

» Example 20. Consider Pg in Figure 4 (c), B is labeled as Rs. TTJ expects that B’s
parent in 7o has to be either Rs or Ry. As shown in Figure 4 (b), B’s parent is S, which
corresponds to Rs. Thus, Tg in (b) satisfies the assumption.

Lemma 8 states that we can easily construct a required 7o from any left-deep query plan
that does not have cross-product. The key idea is as follows: We construct 7g following the
order of relations in Pg from left to right. Suppose Ry, ..., R;11 are already added to Tg. For
R;, we want to find a relation R; that is already in Tg such that attr(R;)N (Uk_j+1 attr(R,))
C attr(R;). Left-deep query plan without cross-product for acyclic queries guarantees such
R; exists. We add R; in Tg through an edge (R;, R;).

» Example 21. Suppose Pg = [R3(z,y), Ra(z,y, 2), R1(y, z)]. The left-most relation Rs(x,y)
has to be the root of Tg. For the next relation Rs(z,y,z), since only Rz is in Tg and
attr(Rg) Nattr(Rs) C attr(R3), we add edge (Rs, R2). Now, both Rs and Ry are in Tg
and union of their attributes is {z,y, z}. Since attr(R1) N {zx,y, 2} C attr(R2), we add edge
(R2, R1). The final Tg is R3 — Ry — Rj.

» Example 22. Counsider a cyclic query, Pg = [Rs(a,b), Ra(b,c), Ri(c,a)], the classic

triangle query. Let us try to construct Tg. Rs(a,b) is the root. Ra(b,c) connects Rj.

23:21

CVIT 2016

23:22

798
799

800

801
802

803

804
805
806
807
808
809
810
811
812
813
814
815

816

817
818

819

820

821

822

823
824
825

826

827

828
829
830

831

832
833

834

835
836
837

838

TreeTracker Join: Computing Join and Semijoin at the Same Time

attr(Rs) U attr(Rs) = {a, b, c}. But, attr(R1) N{a,b,c} Z attr(Rz) and attr(Ry) N {a,b,c}
& attr(R3). Ry cannot be placed in Tg to satisfy the connectedness property while keeping
To being a tree.

» Example 23. Po = [T(z),R(y,z),B(z),S(z,y,2)] contains a cross-product due to
T(z), R(y, z). We cannot construct Tg because 7o is a subgraph of the query graph and the
query graph does not contain (7', R) edge.

Proof. For a left-deep plan without cross-product for an acyclic CQ [Sg, Sk—1, . - -, S1], our
proof proceeds by showing the plan permits a rooted join tree that satisfies Definition 6.
That is, Sy is Ry, the root of some 7o, and for any relation S;, its parent in 7g is S;
with j € {k,k—1,...,i+ 1}. For a relation S;, let attribute set as(S;) denote the set of
attributes appear before it in the plan, i.e., as(S;) = attr(Sk) U --- U attr(S;+1). The plan
has the property that attr(S;) Nas(S;) # 0. We want to show there is some relation S; with
je{k,k—1,...,i4 1} such that attr(S;) D (attr(S;) Nas(S;)). If the statement is true, we
can construct 7o by adding edge (S;,S;). To prove the statement, for a relation S,,, suppose
relations before S, already form a join tree, i.e., we are about to attach S, to the tree.
Suppose the statement is not true and there are two more relations S;, S; (i > j > u) in the
plan such that attr(S,) Nas(S,) = (attr(S;) U attr(S;)) and attr(S,) Nas(Sy,) € attr(S;)
(correspondingly for attr(S;) as well). S; and S; are connected via a path. To satisfy join
tree requirement, one must add two edges (5;,.5,) and (S;, S,), which form a cycle. <

Definition 6 can be interpreted as a join order assumption, which defines the constraint
on the plan (Corollary 7). Construction of Pg is straightforward: performing a top-down
pass (not necessarily from left to right) of To.

» Example 24. For Tg in Figure 4 (b) with 7' as the root, both P} = [T, S, B, R] and
Pg = [T, S, R, B] are valid plans for TTJ.

C An Additional Example on

» Example 25. Consider a Tg R3(x) — Ra(z,y) — Ri(y) with the following database
instance: R3(4), R2(4,6), R2(3,5), R2(3,7), R2(4,7), and Ry(7). Clean state only requires
the removal of one tuple R2(4,6). HFg removes two tuples Ro(4,6) and Ry(3,5). Fg
removes three tuples: Ry(4,6), R2(3,5), and Ra(3,7).

D Improving TTJ Combined Complexity

Theorem 19 gives O(k*n+kr) combined complexity. We can further improve it to O(nk log k+
kr) by constraining the join order (Corollary 7). In particular, to decide join order, one
pre-order traverses 7o and when multiple subtrees exist for a given relation in 7o, one breaks
ties by visting the largest subtree of any relation last [9]. Figure 5 shows an example.

» Theorem 26 (Improving combined complexity of TTJ). Combined complezity of TTJ
can be improved to O(nklogk + kr) (log is base 2) if one performs pre-order traversal over
To and break ties by visiting the largest subtree of any relation last.

Proof. The new order strategy only changes the total number of deleteDT() calls (Line 27)
in Theorem 19 proof. For a given 7o, let b; be the backjumping distance where the join
failure relation is R;. Note that b; is exactly the same as the number of deleteDT() calls
generated (Line 27) when join fails at x;. b; < k — i for the default join order. Let d; denote

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

Anonymous author(s)

NS
SN\
(r) SO\ -
(5) (®) [><]&SB
OIOFAN

@) (b)
Figure 5 Given 7o in (a), one decides join order by pre-order traversing over 7o and breaking
ties via visiting the largest subtree of any relation last. The resulting order (b) satisfies Corollary 7.

the number of descendents of an internal relation R; and m; denotes the number of relations

in the largest subtree rooted at one of i’s children, e.g., in Figure 5, dr = 4 and my = 3.

Since the new order satisfies Definition 6, when join fails at R;, only descendents of R; (the
parent of R;) could exist between R; and R; in the order. The largest number of deleteDT()
generated when join fails at the root relation of the largest subtree of a relation. Thus,

Next, we prove Zf:_ll b; < klogk. Proof by induction on the size of Tg. Base case k = 1,
the claim holds. Assuming the claim holds for k£ — 1. Suppose there are s subtrees of Ry and
each with size kq,...,ks. Let k,, denote the largest subtree. Then b, < (k —1) — k,,, + 1 =
k — k,,. Thus, Zf;ll by <30 kilogk; + (k — km) < klogky, + (k — km) < klogk (the last
inequality follows Lemma A.1 in [9]). Then, the total number of deleteDT() calls on Line 27
is < S2¥ b = O(nklog k). <

E Bushy Plan

A common approach to evaluate a bushy plan, query plan that is no longer degenerate, is
to decompose it into a sequence of left-deep subplans: right child of every join operator
forms a left-deep subplan and is evaluated first before proceeding with the join [63, 55]. In
particular, for in-memory hash-join, build side is a blocking operation, i.e., hash tables can
be constructed not just from base relations but also from intermediate results computed from
subplans, which are buffered inside the memory [55, 32]. TTJ works with bushy plan exactly
as above. The only issue to address is to transform 7o into a bushy plan satisfying Corollary 7
6 so that when join fails at R, deleteDT() can find its parent. We use Algorithm E.1 to
control the construction of a bushy plan for TTJ. Such algorithm can be easily adapted into
a “reverse-engineer" procedure where one can construct a T from the given bushy plan: we
construct a join tree for each left-deep subplan using Lemma 8 and concatenate all the trees
to form the final join tree.

Fragment group FG is a set of nodes in Tg constituting a subplan. We use F'G and
subplan interchangeably. Any node from Tg only belongs to one group. The key idea to form
a bushy plan is that we create a TTJ-compatible subplan for each group and connect them
altogether using TTJ join operators again. Fragment groups are formed with the property

6 We use join order view of Definition 6.

23:23

CVIT 2016

23:24

868
869

870

871
872
873
874
875
876
877
878

879
880

881

882

TreeTracker Join: Computing Join and Semijoin at the Same Time

FGy T

@ (b)
Figure 6 Given 7o in (a), there are two fragment groups FG1 and FG2. (b) is a bushy plan
constructed from the two fragment groups. Join failures can be categorized into two cases: within
FG (Mi3) and across F'Gs (Mi4).

Algorithm E.1 Construct bushy plan for TTJ

Input: To
Output: A bushy plan that can be evaluated by TTJ

1 Starting from the root of Tg, visit each node in pre-order traversal.

2 For each node, decide whether create a new fragment group F'G;41 or put it to the
fragment group F'G; where its parent node belongs. If for a node R and its left
sibling node S has attr(R) Nattr(S) = (), R has to be in the same group as its
parent. Suppose there are fragment groups F'G; for i € [m] at the end of this step.

3 For each FG; for i € [m], create a subplan satisfying the default join order .

4 Start from F'G,, and connect it with the subplan from FG,,_1 with a TTJ join
operator. The resulting subplan, a new FG,,_1, is connected with the subplan
FG,,_2 and continue. When connecting two subplans F'G; and FG;_1, we always
put FG;_; as the left child of TTJ join operator. The step repeats until all the
subplans are connected.

that parent node belongs to the same or lower-numbered group than its child node(s) in Tg.
Line 2 checks sibling node to avoid cross-product when join two subplans. The resulting plan
satisfies Corollary 7 and can be evaluated by TTJ directly.

» Example 27. Consider Q represented in Figure 6 (a). There are two fragment groups
FGy ={T,S,R} and FGo = {U, D,V}. The whole plan is being evaluated by TTJ operators:
every join operator is TTJ join operator; T and U are TTJ table scan operators and the
rest are normal table scan operators. deleteDT() happens for two cases. First, deleteDT()
happens inside the subplan. For example, join fails at x4 (M7). Since U is the parent
of V, a tuple from U is added to ng. Second, deleteDT() happens at the join operator
connecting two subplans. For example, join fails at 17 (Mg). In this case, deleteDT() sends
the reference to the root of FGs, U, downward. The rest of the evaluation is the same as
the left-deep plan case in the previous sections.

» Lemma 28. The bushy plan constructed from Algorithm E.1 satisfies Corollary 7.

Proof. Let S be a node and R, U be its children. There are three possible cases. First, if
R and U are all within the same F'G as S, by Line 3, the claim holds. Second, if one of

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

Anonymous author(s)

its children is in a different F'G, say, U. Since S is in the F'G with smaller numbering, by
Line 4, S is to the left of U. S is to the left of R because they are in the same F'G. Third, if
all of its children are in different F'Gs, by a similar argument as the previous case, the claim
holds. <

» Theorem 29 (Correctness). TTJ evaluates Q correctly under the bushy plan constructed
from Algorithm E.1.

Proof. By Lemma 28 and Theorem 9, TTJ evaluates relations associated with each F'G
correctly. We only need to focus on TTJ operators that join two different F'Gs and show
it generates the correct join result. W.l.o.g., the two F'Gs are denoted F'G; and FGy. We
want to show F'G1XFG> is correct. If all tuples from F'G; are joinable with some tuple from
F@Gs join result, the claim holds. Suppose t € F'G; cannot join with any tuple from FGs

and thus dangling. By Lemma 28, the parent of the node where join fails must be in F'G;.

Applying the same arguments in Theorem 9, the claim holds. <
Let r; denote the size of the join result computed from FG;.

» Theorem 30 (Data complexity of TTJ on bushy plan). Suppose there are m FGs and
each has result size 11, ..., 1, respectively. TTJ runs O(n + max(ry,...,mm)).

Proof. Note that m < k. Proof by induction on the number of F'Gs in the plan. Base case
FG,,. It takes O(n+r,,) to evaluate it. Suppose the claim holds for all the fragment groups
until . To evaluate the plan associated with FG;_1, it takes O(n + max(r;11,...,7m)) to
evaluate the subplan associated with F'G;. By Line 4, FG; appears as I'jnner, which TTJ
builds the hash table. TTJ takes r; to build ‘H corresponding to FG;. Result follows. |

Effectively, Algorithm E.1 maps Tg into a bushy plan, another tree. Together with
Theorem 30, we can see that if r; < r for i € [m]. TTJ can provide optimality guarantee
under bushy plan. Thus, it is an open question whether we can construct a bushy plan such
that the output size of each fragment is bounded by the final output size r. If such algorithm
exists, TTJ is optimal under bushy plan as well.

F Handle Cyclic CQ

We show a simple approach to allow TTJ to work with cyclic CQs as well. The key challenge
for cyclic CQs is that the query does not permit Tg, i.e., a graph that has to contain cycles
to satisfy the connectedness property. Let Gg denote the graph that contain cycles but
satisfies the connectedness property. As an example, (a) in Figure 7 shows Gg for a query
joining T'(a,b), S(b,c), B(a,c), and R(b). The query is a simple extension to the classic
triangle query R(a,b)xS(b,c)xT (¢, a), which makes the query being cyclic. Our solution to
the challenge is simple: conceptually, we remove edges from Gg to obtain Tg by renaming
necessary attributes. Then, we introduce a select operator at the root of the plan for the query

to filter out redundant tuples so that the final result satisfies the original query semantics.

The idea is the same as the spanning tree approach described in [21].

» Example 31. Consider the cyclic query shown in Figure 7. Red color indicates the new
operations introduced to handle cyclic CQs.

In the example, we remove edge (T, B). Since attr(B) Nattr(T) = {a}, we rename
attribute a in one of these two relations. In this case, we rename a in B to d. Thus, in the
query plan, we introduce pp . 4B right above B. The resulting query joining 7'(a, b), S(b, c),

23:25

CVIT 2016

23:26

925
926

927

928
929
930
931
932
933
934
935

936

937

938

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954

955

TreeTracker Join: Computing Join and Semijoin at the Same Time

aadf&
T(a,b) l

S(b,c) 3D pB(cl,d)B
B(c,a)
B(c,a) R(b) T(a,b) S(b,c)

(@) (b)

Figure 7 (a) Gg (b) query plan of T'(a,b)xS (b, c)xB(a, c)xR(b).

B(c,d), and R(b) is acyclic and can be evaluated using TTJ. Since cycle in Ggo contains T,
S, and B, we add 0,-4J> right above X5 to filter out those tuples that their a attribute
values and d attribute values are different, i.e., adding the removed edge back.

Clearly the simple solution computes the correct join result: the correct join result is
subset of the join result compute from ;. To find G for a given join order, one can build
To and introduce necessary extra edges (and thus, form cycles) to satisfy the connectedness
property. Those extra edges will be temporarily removed as illustrated in the example above.

Essentially, the approach uses an acyclic query to contain a given cyclic query (in query
containment sense [15]) to compute a superset of the cyclic query result set and removes
redundant tuples with selections. Thus, the runtime performance of this approach ties to
the runtime performance of evaluating the acyclic query, which is O(n + ') where 1/ is the
output size of the acyclic query.

G Experiment Setup

G.1 Algorithms and Implementation

We compare TTJ with the baseline algorithms (Section 3.2) in an apples-to-apples fashion,
where we implement all these methods within the same query engine built from scratch in
Java. The engine architecture is similar to the architecture of recent federated database
systems [53, 11]. The engine optimizes each algorithm using the same DP procedure [27]
with an algorithm-specific cost model (Appendix G.4). The engine connects two data sources:
PostgreSQL 13, which provides the estimation to the terms in the cost models, and DuckDB
[49], which serves as the storage manager. All data are stored on disk.

We detail the implementation of ng here. Suppose Ry has m children Si,...,5S,.
Physically, ng is implemented as a hash table (S;, ¢;) where ¢; is a set containing jav(t, Ry, S;)
for dangling tuple t from Ry detected by .S;.

We provide additional implementation details of the baseline algorithms that are not
described in Section 3.2. To implement YA, we introduce a k-ary physical operator full
reducer operator that executes Fg. The fully reduced relations, which already reside in
memory, are then evaluated by HJ. PT is implemented similarly to YA with a k-ary operator
for the predicate transfer phase. PT originally works on the predicate transfer graph, which
contains redundant edges compared with To. Redundant edges may lead to additional
unnecessary passes of Bloom filters that may negatively impact PT performance 7. Thus, we

7 We conducted an empirical study by comparing PT on the predicate transfer graph with the same PT

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Anonymous author(s)

show the results of PT on Tg. We use the blocked Bloom filter [47] implementation from
[30].

G.2 \Workload and Environment

Workload. We use three workloads: Join Ordering Benchmark (JOB) [39], TPC-H [57] (scale
factor = 1), and Star Schema Benchmark (SSB) [46] (scale factor = 1). We focus on ACQs
in the benchmarks, i.e., we omit cyclic queries, single-relation queries, and queries with
correlated subqueries. All 113 JOB queries, 13 TPC-H queries, and all 13 SSB queries meet
the criteria.

Environment. For all our experiments, we use a single machine with one AMD Ryzen
9 5900X 12-Core Processor @ 3.7Hz CPU and 64 GB of RAM. We only use one logical
core. We set the size of the JVM heap to 20 GB. All the data structures are stored on
JVM heap. Benchmarks are orchestrated by JMH [1], which includes 5 warmup forks and
10 measurement forks for each query and algorithm. Each fork contains 3 warmup and 5
measurement iterations.

G.3 TTJ Cost Model

Given Pg is a transformation of Tg, costing TTJ is the same as costing evaluation of Tgo
under TTJ. One simple but effective cost model is the sum of the sizes of intermediate results
[39, 22, 18, 56], which comprises two components: the dangling tuples produced and the
size of intermediate results that are part of final join result. The former corresponds to the
cleaning cost in the optimality proof, which can be estimated based on the clean state. Using
clean state, the latter can be estimated easily as well. Since TTJ reduces internal® relation
sizes, like [22], TTJ cost includes the size of inner relations that are in clean state as well.

» Theorem 32. The cost of TTJ, i.e., the cost of To when evaluated by TTJ, is

m |AY-1 N
> D b (R o<) BRI (®)
i=1 t=0
s |BY-1 B
P33 @) B R ™
=1 t=0
ICl—1
+ Z bt s |0 ja s (R B< R (8)

+ Z 1£(S5)] 9)
j=k

k
+ Z IR;| (10)

Equations (6)—(8) give the number of dangling tuples. Equation (9) gives the size of
intermediate results (including the size of Rj) that are part of final join result. Equation (10)
is the summation of size of internal® and leaf relations that are in clean state.

on Tg to verify our conclusion. Result shows PT on 7o outperforms PT on the predicate transfer graph
by 1x (Appendix G.5).

23:27

CVIT 2016

23:28

987
988
989
990

991

992
993
994
995
996

997

998

999
1000
1001

1002

1003

1004
1005
1006
1007
1008
1009
1010

1011

1012

1013
1014
1015
1016
1017
1018
1019
1020

1021

1022
1023
1024
1025
1026

1027

TreeTracker Join: Computing Join and Semijoin at the Same Time

bi; counts the number of additional dangling tuples generated given a dangling tuple
from guilty relation R and detection relation S. We define the following three sets over the
relations in 7. First, A consists of all the leaf relations R, such that internal® relation R;
are their parent. We partition A by leaf relations’ parents, A!, ..., A™ where A’ is the set
of leaf relations that have the parent R;. Thus, |A?| represents the number of leaf relations

in Tg that are children of R;. Let us label those leaf relations R.,... RLAll. Second, B
consists of internal® relations R, that their parents R; are internal® relations. Similarly to
Al . A™ we partition B by the parent of R,: we have B!,... B*. |B| and R.,..., RIF
are defined similarly as above. Third, C comprises all the relations R, that are children of
Ry. The children of Ry, are labeled R., ..., RIEI. Equation (11) defines Rgﬂ, which reflects
the gradual discovery of dangling tuples of R; during plan evaluation.

R — Rf}_u - o ifr=0 "
Ry — (R ~'D><Jf ;) P<R!) otherwise

Suppose the join order (w.r.t. 7o) determined either syntactically from 7 or from the
DP algorithm is [S, ..., S1] where S; = R; for some i € [k]. f(S;) in Equation (12) computes
the size of intermediate results that are part of the final join result. Given Definition 6, the
first relation to apply f is always Ry, root of Tg, and its content, per Lemma 13, is R}.

R} ifj=k
F8)=9&") (12)
S f(Sj41) otherwise

» Example 33. Using Example 2, we illustrate how to compute Equations (6)—(8), the most
complex terms in the cost equation. Assume Pg = [T, S, B, R]. Start with Equation (6).
A = {B,R}. Since both B and R have the same parent, S, m = 1. Thus, the cost is
1-[(SB<T) B< B| 4 2 - |(SMp<T) B< R|. In particular, |(S><T) >< B| = 0. Therefore,
S = 5. |(SB<T) B< R| = 1 due to S(red,1,2). Thus, S = {(red,3,2)}. Since B = 0,
we do not need to compute Equation (7). To compute Equation (8), due to C = {S}, we
have 1 - |6(m,(T B< S))| = 1. Thus, the number of dangling tuples produced by TTJ is
0+2+1=3.

G.4 Baseline Algorithms’ Cost Models

The cost model of HJ is the summation of intermediate results [39, 27]. Query plan and Tgo
are fixed for all compared algorithms on star schema queries. Thus, we do not cost LIP. PT
shares the same 7o as YA. We detail the cost model of YA below.

The central idea of costing YA is exactly identical to how we cost TTJ in Appendix G.3.
We first deduce the state of relations after Fg called full reducer state (Definition 34), which
is similar to clean state (Definition 12). Then, we compute the number of intermediate
results produced by Fg (Equations (13)—(15)), the size of the intermediate results that are
part of the final join result (Equation (16)), and the size of the relations that are in full
reducer state (Equation (17)) in YA cost equation (Theorem 35).

» Definition 34 (full reducer state). Query plan using Fg reaches full reducer state if the

following conditions hold:

1. R, < Hiu = for the root of Tg, Ry and its children R,,. The content of Ry satisfying
the condition is denoted by R} ;

2. R, D< R} =0 for all the leaf relations R, of Tg and their parent R;. The content of R,
satisfying the condition is denoted by R}. Furthermore, I@u =Ry,; and

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

Anonymous author(s)

3. (R; D<]ﬁu) U (R; < R%) = 0 for internal® relation R;, its child relations R, and its
parent R;. The content of R; satisfying the condition is denoted by RY. If content of R;
satisfies R; DX R, = 0 only, we denote the content of R; as R;.

» Theorem 35. The cost of To under YA is
||

> IR (13)

1B°|-1

+3 (R + Y RI<RE) (14)
=1 t=0
[C]-1

+ 3 R e<RYH (15)
t=0

+ 3158 (16)
1=k

k
+ > IR} (17)
i=2

We define the following three sets over the relations in 7. First, A consists of all the leaf
relations R,,. Second, B consists of R,, whose parents R; are internal® relations. We partition
B by the parent of R,s. Then, we have B!,..., B*. |B!| indicates the number of relations
in T that are children of R;. We label those relations R!, ... 7R‘fﬁl, Third, C comprises
all the relations R, that are children of Rj. The children of R; are labeled R}u .. ,RLCI.
Equation (18) defines Rgt], which reflects the gradual removal of dangling tuples of R; during
semijoins.

R; ift=20
R[t] — v N 18
' {Rgt_u D><RR! otherwise (18)

Suppose the join order (w.r.t. 7o) determined either syntactically from 7o or from
the DP algorithm is [Sk, ..., S1] where S; = R; for some ¢ € [k]. f(S;) in Equation (19)
computes the size of intermediate results that are part of the final join result.

Sy ifi=k
f(Si) = . (19)
Simf(Siy1) otherwise

G.5 Empirical study of PT performance on the predicate transfer graph
versus 7o

Predicate transfer graph is a directed query graph. PT construct the predicate transfer graph
from the query graph using a simple heuristic: for an edge of two relations, the head of
the edge is the relation with bigger size. For star schema queries in our setup where Ry is
the fact table, predicate transfer graph is identical to Tg: query graph is identical to the
undirected join tree and the heuristic applied on the query graph leads to To. Thus, PT on
the predicate transfer graph (denoted by PTO) has identical performance as PT on Tg on
star schema queries. PTO can have a different performance compared with PT when one
of the following conditions happen: (1) the query graph is not identical to an undirected
join tree; (2) when undirected join tree and the query graph are identical, T created from

23:29

CVIT 2016

23:30

1060
1061

1062

1063
1064
1065

1066

1067

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

1081

1082

1083
1084
1085

1086

TreeTracker Join: Computing Join and Semijoin at the Same Time

N 77 EE YAT
B YA B3 P

||
|} — —
|| || |
|| || |
- - -
8 9 10 11 12 14 15 16

Figure 8 Speedup of TTJ, YA, YAT, PT over HJ on 13 TPC-H queries

costing is different from the predicate transfer graph created by the heuristics; and (3) both
To and the predicate transfer graph are identical but the order of passing Bloom filters are
different.
Table 1 Speedup of PT and PTO compared with HJ on Q7 and Q8 in TPC-H
Method | Q7 | Q8

PT 1.6x | 1.6x

PTO 0.6x | 0.7x

We empirically compare PT and PTO on Q7 and Q8 in TPC-H. The performance result
is shown in Table 1. In Q7, condition (2) happens where PT and PTO have different tree
structures. In Q8, condition (3) happens where both PT and PTO share the same Tg but
Bloom filters are applied in different orders.

H TPC-H Results

Figure 8 shows the comparison result on TPC-H. TTJ has the maximum speedup 2.4x on
Q8, the largest query with £ = 8 in TPC-H. 2.4x is also the largest speedup among the four
algorithms: the maximum speedup of YA, YAT, and PT is 1.4x, 1.5x, 1.7x, respectively.
TTJ has steady speedup over the benchmarked TPC-H queries with average (geometric mean)
1.2x compared with 0.69x from YA, 0.78x from YA™, and 0.84x from PT. The minimum
speedup of TTJ, YA, YAT, and PT is 1.0x, 0.4x, 0.5x, 0.5x, respectively. From the aggregate
statistics we can see: First, TTJ has more steady speedup than YA, YA, and PT on the entire
workload: TTJ has higher average and minimum speedup than the other three algorithms.
Second, YA, YAT and PT outperform TTJ when the full reducer can be executed quickly.
Consider Q7: A fragment of YA join tree is a chain orders — lineitem — supplier — nation.
The first semijoin supplier ><nation already removes more than 90% of tuples from supplier
because |nation| = 1. The largely reduced supplier speeds up the subsequent semijoin
lineitem D><<supplier and starts a chain reaction on the remaining semijoins. As a result, YA
removes close to 100% of the tuples of the input relations in a small amount of time.

I Measurement of the Number of Dangling Tuples Removed

Figures 9 and 10 empirically measure the amount of tuples removed by TTJ and all the
algorithms we compared on TPC-H and SSB. From the figures we see that TTJ always
remove the least amount of dangling tuples because TTJ reaches the clean state and the
clean state requires the least amount of dangling tuples removed compared with YA and

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

Anonymous author(s)

100% 4 BN 77/ O vA EEEm YA*
w77 B YAt EEE P B PT

100% { =3-YA
80% 98% A
95% 1
92% 4
40%

90%

88% 1

Fraction of input tuples removed

20%

Fraction of input tuples removed

85%

0% 82%
3 7 8 9 10 11 12 14 15 16 18 19 20 i

1M1
1m0
111 (1T
1m0
111 (11T
15 WV
111 (011
1m0
111 (11T
15 WV
111 (011
(R (| (I
11\ (011
1m0V
111 (011
1m0
111 (1]
(R (| (]
111 (011
1m0V
11\ (01111
15 W m
111 (011
15 WV
11\ (011
1m0V
111 (011
15 WV
111 (011
1m0
3.2 3.3 3.

iJ il i3 il él 23 SJ 72 73 4 41 42 43
Figure 9 Fraction of tuples removed from the
input relations by TTJ, YA, YAT and PT on

TPC-H

Figure 10 Fraction of tuples removed from the
input relations by TTJ, YA, YA™, LIP, and PT on
SSB

YA™ (Corollary 15). This confirms that TTJ, although intuitively combining the bottom-up
semijoin pass with the join pass, is different from YA™.

J Proof of YA
YA™ states that bottom-up semijoin pass and top-down join pass over Tg is sufficient to
provide O(n + r) guarantee. We formalize the statement into Theorem 36.

» Theorem 36. Given a join tree To and root Ry, one can compute join with the following
two steps:

1. apply bottom-up semijoin pass HFg on To;
2. perform pair-wise join from root Ry to leaves recursively.

Any intermediate join result during the computation will not contain any dangling tuples.

The intuition is that after applying HFg, Ry = R} (Lemma 4 of [12]) and each other
relation only contains tuples that are joinable with its child relations. If we start to compute
join from this state in a top-down fashion, it is impossible to produce dangling tuples.

Proof. Proof by induction on the height of 7o. Base case. Suppose the height of 7o is

0. Claim trivially holds. Suppose the claim holds for all queries whose height of 7o < h.

We want to show the claim holds for height of 7o equals h. We want to show J; =

Ryx ... xRy and there is no dangling tuples in any intermediate result during computation.

(...((RixR4Y)™RS)...xR),) equals to RyMRIX ... XR).
Ji = (.. ((RiXRY)XRS) ... xR,)Xo ... Xy,

= RiXRYX ... xR XJoX ... X,

= Ry X (RyxJo) X (REXJ3) X ...)(R,) Jp)
= RixJoxJ3X ... xJ,,

= RiXRox ... xRy

23:31

CVIT 2016

23:32

1110
1111
1112
1113
1114
1115

1116
1117

1118

1119

1120

1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

1137

TreeTracker Join: Computing Join and Semijoin at the Same Time

The last step because Js, ..., J,, are subtrees of Tg and they are disjoint. To show there
is no dangling tuple, pick R;, R; and R; where R; is a child of R; and R; is a child of
R;. During HFg, Ry P<(R; P<R;) is executed. Because Tg is a join tree, Ri, R;, R; share
common attributes. If there is a dangling tuple, it has to happen after B, xR;. However this
is not possible because R;xR; after Pg 1 equals to (R P<(R; P<R;))x(R; ><R;), which is
(R1xR;)P><R;. By induction assumption, no dangling tuple when join relations in subtree
rooted in R;. Since R; and R; are picked arbitrarily, the theorem holds. <

» Corollary 37. The algorithm in Theorem 36 runs O(n +), which is the same as YA.

Corollary 37 immediately follows from Theorem 36 because intermediate result size is
smaller than the final result size.

K Discussion and Related Work

We organize the related work in four categories. First,CSP. The equivalence between CQ
evaluation and CSP is established by [38, 15]. TreeTracker in [9] solves a CSP for one
solution without preprocessing the CSP. TTJ extends TreeTracker into query evaluation by
(1) returning all possible solutions, and (2) blending the ideas from TreeTracker into physical
operators in a query plan. Second, Semijoin reduction. An intensive research has been done
on using semijoin to improve query evaluation speed [12, 59, 36, 13, 60, 40, 17, 66]. TTJ
achieves a similar effect (clean state) as performing semijoin reduction without explicitly
using semijoins. Third, SIP. deleteDT() of TTJ takes the form of SIP [68, 32, 35, 33, 8,
29, 42, 44, 22, 52, 54, 48, 23, 26, 67]. TTJ is different from the prior approaches in one or
more of the following aspects: (1) TTJ does not introduce any preprocessing steps; (2) TTJ
does not use Bloom filters, bitmaps, or semijoins; and (3) TTJ provides optimality guarantee.
Third, Worst-Case Optimal Join (WCOJ) algorithms. A related line of work is to implement
WCOJ algorithms efficiently [43, 6, 34, 25, 2, 64, 63]. TTJ is orthogonal to such direction as
TTJ focuses on ACQ evaluation with query-specific output size r whereas WCOJ focuses on
worst-case optimal join problem with worst-case output size bounded by AGM. In addition,
comparing to WCOJ algorithms, which commonly use multi-way join operators, TTJ uses
binary physical operators in iterator interface.

	1 Introduction
	2 Running Example
	3 Preliminaries
	3.1 Acyclic Conjunctive Query Evaluation
	3.2 Baseline Algorithms
	3.3 Additional Definitions

	4 TreeTracker Join Operators
	5 Correctness of TTJ
	6 Optimality of TTJ
	6.1 Clean State
	6.2 Complexity Analysis

	7 Empirical Results
	8 Limitations and Future Work
	A Illustration of Notation
	B Understanding TTJ Requirements on PQ and TQ
	C An Additional Example on
	D Improving TTJ Combined Complexity
	E Bushy Plan
	F Handle Cyclic CQ
	G Experiment Setup
	G.1 Algorithms and Implementation
	G.2 Workload and Environment
	G.3 TTJ Cost Model
	G.4 Baseline Algorithms' Cost Models
	G.5 Empirical study of PT performance on the predicate transfer graph versus TQ

	H TPC-H Results
	I Measurement of the Number of Dangling Tuples Removed
	J Proof of YA+
	K Discussion and Related Work

