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Abstract7

Yannakakis’s seminal algorithm (YA) for the optimal execution of k-way acyclic conjunctive8

queries (ACQ) requires executing 2 rounds of k − 1 semijoins to remove dangling tuples, followed9

by executing the joins. This paper presents the TreeTracker Join algorithm (TTJ) that removes10

the explicit semijoins. TTJ simultaneously implements the functionality of a join operator and a11

semijoin operator. In essence, TTJ merges the behavior of two logical operators into a single physical12

operator. We prove that by composing k − 1 TTJ operator instances, the result of a k-way acyclic13

conjunctive query can be computed in optimal data complexity time, O(n + r), where O(n) and14

O(r), are the size of the input and output. No additional operators are needed. A distinctive feature15

of TTJ is that it detects dangling tuples during the execution of a binary join and removes them,16

rather than removing dangling tuples and then performing joins on the result.17

An emperical evaluation of TTJ on two commonly used benchmarks shows that in most cases18

TTJ is faster than YA, an improvement to YA as well as two representative filter methods.19
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1 Introduction24

Improving join performance is perennially important to the database community. Formal25

studies of queries with multiple joins commonly use conjunctive queries (CQ) as a model.26

Until the development of worst-case optimal join (WCOJ) algorithms, the evaluation of27

queries comprising multiple joins focused on the composition of the unary and binary28

operators of the relational algebra[27]. In 1981 Yannakakis published his seminal optimal29

algorithm for the special case of acyclic conjunctive queries (ACQs)[66]. Hereafter we will30

write Yannakakis’s algorithm as YA.31

YA comprises the logical composition of joins and semijoins. The practical benefit of32

YA is situational. Even though it has been established that an overwhelming majority of33

relational queries in real-world applications are acyclic [24] and YA is optimal it is rare that34

YA is the basis for the most performant query plan.35

YA uses a logical composition of relational joins and semijoins in two phases, the semijoin36

reducation phase and the join phase. The semijoin reduction phase, called full reducer FQ,37

comprises two passes of k − 1 semijoins totaling 2k − 2 semijoins [12]. The first pass, called38

reducing semijoin program HFQ, follows a bottom-up traversal of the query’s join tree TQ,39

removing dangling tuples by evaluating a semijoin for each vertex: Rp ><Rc, where Rc is40

a relation associated with a node in TQ (child relation) and Rp is the relation associated41

with the parent of the node (parent relation) [12]. The second pass is the same except it42

traverses the path in the reverse direction. The two passes remove all dangling tuples from43

the input relations. In otherwords a tuple remains as an input argument if and only if it44
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appears in the final result. The expression “fully semijoin reduced” is used to describe this45

state. We use R′
i to indicate the resulting relations after HFQ and R∗

i to represent the46

fully semijoin reduced relations. The join phase then enumerates the final results. It is47

commonly understood that only one of the semijoin passes in YA is necessary to obtain the48

optimal complexity result [62, 31] 1. Hereafter the single pass version of YA will be written49

as YA+. The YA is foundational for a preponderance of research and practice that replaces50

the goal of achieving algorithmically optimal query plans with a cost assessment of each51

opportunity to apply a semijoin and based on the trade-off estimated by the cost assessment52

an operation to remove dangling tuples may or may not be included. The compact size53

and speed advantage of Bloom filters is sufficient that methods that use Bloom filters [14]54

and approximate semijoins in the form of sideways information passing (SIP) dominate55

[68, 32, 35, 33, 29, 44, 22, 52, 54, 48, 23, 26, 3].56

More recently WCOJs have been developed. One goal, similar to the efforts inspired by57

YA, is to eliminate the introduction of additional operators and their concomitant overhead.58

Much of this research has met with success. However, WCOJs commonly compute a k-way59

join using a single operator of k inputs for all possible k. Recent research on WCOJs includes60

determing how a k-way join operator may be introduced into query systems that historically61

have only been required to optimize queries composed of unary and binary relational operators62

[29, 25, 64].63

In this paper, we offer an alternative approach, Treetrack Join (TTJ). TTJ combines the64

implementation of a semijoin and join into one physical operator. The conceptual foundation65

of the approach is captured by the Datalog program in Example 1. A goal of presenting66

TTJ in logical form is to make clear the algorithm takes two relations as inputs and produces67

a join result as output. This supports a claim that will be detailed further, that TTJ can be68

integrated with conventional join algorithms in a query plan and is downwardly compatible69

with many RDBMS query systems. To implement the deletion of dangling tuples TTJ has70

an additional input and output. These are the atoms, DDT⋊⋉2
() and DDT⋊⋉0

() appearing71

in Rules (2) and (4). A short-intuitive explanation that TTJ is downwardly compatable72

is that semijoin reduction is an optimization and simply ignoring DDT⋊⋉2
() and DDT⋊⋉0

()73

does not impact the correctness of the final result.74

The definition of the TTJ algorithm follows in Section 4. Proofs of correctness, complexity75

and emperical results appear in Sections 5–7.76

▶ Example 1. Consider the query Q = A(x)⋊⋉0B(x, y, z)⋊⋉1C(y, z)⋊⋉2D(y). The following77

Datalog program models the logical behavior of ⋊⋉1 when three instances of TTJ are used to78

evaluate the query.79

C ′(y, z)← C(y, z) (1)80

C ′(y, z)← C ′(y, z)−DDT⋊⋉2
(y, z) (2)81

Join1(x, y, z)← Join0(x, y, z), C ′(y, z) (3)82

DDT⋊⋉0
(x, y, z)← Join0(x, y, z), C(y, z)− Join1(x, y, z) (4)83

Queries cannot have side effects on base relations. Rule (1) copies relation C into a84

data structure internal and strictly local to an operator instance, enabling the removal of85

dangling tuples from further consideration, (2). Rule (3) represents the desired join computed86

1 Neither Internet search nor soliciting people active in this research area has identified a published proof.
For completeness we include a proof in Appendix J.
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(b)(a)
Figure 1 Illustration of the identification and removal of dangling tuples by (a) Yannakakis’s

algorithm (YA) its improvements as (YA+); and (b) TTJ on a left-deep query plan. The labels Mi

indicate algorithm execution moments referenced in Example 2 and elsewhere in the paper.

with the reduced version of C, C’. DDT⋊⋉2
() in Rule (2) represents a subset of C such that87

all tuples in DDT⋊⋉2
() are dangling tuples. The result of Join1 is computed by Rule (3)88

without considering the removed dangling tuples. Join0 in Rule (3) is the result from A⋊⋉B.89

The negation in Rule (3) models determining dangling tuples by set difference. Notice the90

identification of a dangling tuple is not done in the same TTJ instance where the dangling91

tuple is represented and must be deleted. Thus the formal signature of TTJ comprises three92

inputs and two outputs.93

As one considers the evaluation of a full query plan based on Example 1 one may anticipate94

that on each cycle Rule (3) adds results to Join1 then on the next cycle Rule (4) determines95

additional dangling tuples and that these are removed from B′ where B′ is analogous to C ′
96

in a Datalog representation of ⋊⋉0. Each cycle of evaluation the number of dangling tuples is97

greater than or equal to the number of dangling tuples processed by the previous cycle. We98

will show that at fixed point the number of dangling tuples deleted by TTJ can be less than99

the number of dangling tuples deleted by YA+.100

In summary, this paper makes the following contributions:101

1. We design a physical join operator TTJ that computes both semijoins and joins at the102

same time (Section 4).103

2. We prove TTJ is correct and runs optimally in data complexity for ACQ (Sections 5104

and 6).105

3. We define a general condition call we call clean state that enables optimal evaluation106

of an ACQ while permitting the existence of dangling tuples and show that when TTJ107

achieves clean state it may have removed fewer dangling tuples than either YA or YA+
108

(Section 6.1).109

4. We present empirical evidence by comparing TTJ with five baseline algorithms on three110

benchmarks and complete our argument that combining two logical operations into one111

can provide both formal guarantee and good empirical performance (Section 7).112

CVIT 2016
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2 Running Example113

To help explain TTJ we name a particular point and state of execution a join failure or join114

failure event. In English and the context of simple nested loops join this is when a tuple115

in the outer loop has been compared to all the tuples in the relation being processed by116

the inner loop and the tuple from the outer loop has not joined with any tuples tested by117

the inner loop. Thus the tuple in the outer loop is a dangling tuple. Clarity is gained by118

adopting the expression that the tuple has experienced join failure. A formal definition of119

join failure is lengthy. More formal than the English definition above but incomplete the120

key property is, given R⋊⋉S, a join failure event represents the moment in execution that it121

is determing that tuple t ∈ R is a member of the relation R Ď>< S. It remains to formaly122

define event and moment in execution. When used in context we believe the meaning of123

these terms is self-evident.124

In a multi-way join evaluation, as we will now illustrate in a physical model that R can125

represent intermediate join results from the previous binary join computation. Unlike YA,126

TTJ starts join evaluation immediately. Dangling tuples are identified by monitoring for127

join failure and the dangling tuples are deleted as they are identified. Thus, TTJ is a join128

algorithm augmented to incrementally delete dangling tuples as they are identified. Hence129

TTJ avoids equality tests that are executed when evaluating a semijoin and then again when130

evaluating a join. When query evaluation terminates the internal data structures of the TTJ131

operator instances contain a superset approximation to the reduced arguments created by132

the single semijoin pass of the YA, i.e., YA+. This means that TTJ may delete fewer dangling133

tuples than the YA or YA+ yet remains data complexity optimal. See Corollary 15.134

The reader may find that the programatic expression of the TTJ operator is simple135

when presented in isolation in English or Datalog. However since dangling tuples are often136

identified in one TTJ operator instance but must then be deleted from a data structure local137

to another operator instance the query optimizer must maintain certain constraints and138

represent certain consequences in the query plan. These are not simple. The query optimizer139

must create a certain graph representation of the query and limit plans to traversals of that140

graph that maintain the constraints.(See Definition 6 and Corollary 7). For an ACQ, the141

graph is a join tree. Edges in the traversal of the join tree determine the identification of the142

relation whose tuple caused a join failure and the communication path that terminates at the143

operator instance containing the dangling tuple, thus identifying and enabling its deletion.144

▶ Example 2. Consider a join of 4 relations T (x), S(x, y, z), B(z), and R(y, z) with the145

database instance shown in Figure 1. The illustrations show how dangling tuples are identified146

and removed by YA (and YA+) and TTJ enable optimal evaluation.147

(a) shows the part of the bottom-up semijoin pass in YA and YA+ and highlights both of148

the algorithms remove more dangling tuples than TTJ in a different way. Both YA and YA+
149

execute a sequence of semijoins prior to starting joins: At M1, S′ = S ><R; both S(red, 1, 2)150

and S(brown, 3, 3) are removed. S(brown, 3, 3) is not removed in TTJ because x = brown151

does not match with any possible assignment to x in T . Then, at M2, T ><S′ and T (red)152

is removed. Unlike TTJ that removes dangling tuples while performing join, YA removes153

all dangling tuples before join starts. YA+ allows the existence of some dangling tuples by154

omitting the top-down pass but, as shown in this example, it still removes more dangling155

tuples than TTJ.156

(b) illustrates how TTJ evaluates the same query as (a) but on a left-deep query plan157

using demand-driven pipelining. TTJ takes the operator form, which is implemented in158

iterator interface consisting of open() and getNext(). The evaluation starts with recursive159
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open() calls on the join operators and builds hash tables on S, B, and R. To obtain the160

first query result, the join process first calls ⋊⋉1’s getNext(), which calls its left child ⋊⋉2’s161

getNext(), and such pattern repeats until the left most relation T ’s getNext() is called and162

returns T (red) (M3). ⋊⋉3 probes into HS , the hash table on S, and finds a matching tuple163

S(red, 1, 2). The joined result (red, 1, 2) is returned to ⋊⋉2. Then, the matching tuple B(2)164

from HB joins with (red, 1, 2) and the joined result (red, 1, 2) is returned to ⋊⋉1. No tuples165

from HR join with (red, 1, 2) (M4); hence, join fails at R and R is the detection relation.166

TTJ makes additional method calls to reset the evaluation flow to S, the guilty relation,167

because S is the parent of R in TQ. Subsequently, S(red, 1, 2) is removed from HS (M5),168

which is logically equivalent to removing the tuple from the instance of S. Since no tuples169

from S join with T (red), TTJ backjumps to T and implicitly removes T (red) by adding it170

to a no-good list ng (M8). The no-good list will be used in future steps to filter out dangling171

tuples from T . From this example, we see that TTJ, like other join operator implementations,172

takes in two input relations and produce join result explicitly. However, implicitly as part173

of the join computation, it also identifies dangling tuples from some other relations and174

send deletion message and takes deletion message from some other TTJ operator to remove175

dangling tuples. By the end of the evaluation, dangling tuples are sufficiently removed and is176

a subset of the tuples removed by the semijoin passes of YA and YA+.177

3 Preliminaries178

We examine the relevant background concerning the evaluation of acyclic conjunctive queries,179

present baseline algorithms, and introduce additional definitions used in this paper.180

3.1 Acyclic Conjunctive Query Evaluation181

We consider a relational database consisting of k relations under bag semantics. A full182

conjunctive query (CQ) is a natural join of k relations:183

Q(a) = R1(a1)⋊⋉R2(a2)⋊⋉ . . .⋊⋉Rk(ak) (5)184

For each relation Ri(ai), ai is a tuple of variables called attributes. We define attr(Ri) =185

ai. Q is full because a includes all the attributes appearing in the relations, i.e., attr(Q) =186 ⋃k
u=1 attr(Ru).187

Query graph. The literature contains a number of different graph representations of Q.188

The most common is the hypergraph [28, 45]. To better emphasize that TTJ leverages the189

connection between query evaluation and the constraint satisfaction problem (CSP)[20] , we190

use an equivalent alternative, query graph [16] (also known as join graph [65]2, dual constraint191

graph [20], or complete intersection graph [41]). The query graph of Q is a graph where there192

is a bijection between nodes in the graph and relations in the query. Two nodes v1, v2 are193

adjacent if their corresponding relations R1, R2 satisfy attr(R1) ∩ attr(R2) ̸= ∅. For clarity,194

we use the relations to label the nodes in the query graph.195

Join Tree. Q is acyclic if its query graph contains a spanning tree called join tree TQ,196

which satisfies the connectedness property [10, 20]: for each pair of distinct nodes Ri, Rj197

in the tree and for every common attribute a between Ri and Rj , every relation on the198

path between Ri and Rj contains a. For the rest of the paper, we assume Q is a full acyclic199

2 Join graph is defined in database theory and constraint satifaction problem with a slightly different
definition: a spanning subgraph of query graph that satisfies the connectedness property [20, 41].

CVIT 2016
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CQ (ACQ). For ACQ, one can find a maximum-weight spanning tree from the query graph,200

where the weight of an edge (Ri, Rj) is |attr(Ri) ∩ attr(Rj)|. Such a tree is guaranteed to201

be a join tree [41]. A rooted join tree is a join tree converted into a directed tree with one of202

the nodes chosen to be the root. We assume TQ is a rooted join tree.203

Query Plan. Physical evaluation of ACQ is commonly done using query plan. A query204

plan is a binary tree, where each internal node is a join operator ⋊⋉, and each leaf node is a205

scan operator (we use table scan by default) associated with one of the relations Ri(ai) in206

Query (5). The plan is a left-deep query plan, or left-deep plan, if the right child of every207

join operator is a leaf node [50]. For example, ((T⋊⋉S)⋊⋉B)⋊⋉R in Figure 4 (c) is a left-deep208

plan. Due to the limited space this paper only discusses left-deep plan. Appendix E extends209

these results to bushy plans. As shorthand [63] we represent a left-deep plan, labeled from210

bottom to top, (. . . ((Rk⋊⋉Rk−1)⋊⋉Rk−2) . . . )⋊⋉R1 as [Rk, Rk−1, . . . , R1].211

Physical Operators. Operators in the query plan of Q are physical operators, commonly212

implemented in an iterator interface [27] consisting of open(), getNext(), and close().213

open() prepares resources (e.g., necessary data structures) for the computation of the214

operator; getNext() performs the computation and returns the next tuple in the result; and215

close() cleans up the used resources. In this paper, evaluation of a query plan is done using216

demand-driven pipelining (or pipelining): it first calls open() of each operator and then217

keeps calling getNext() of the root join operator of the plan, which further recursively calls218

getNext() of the rest of the operators, until no more tuples are returned [55]. Introducing219

additional methods, such as the deleteDT() method of TTJ, to the interface requires only220

minor adjustments to the current physical operators. A sole default implementation of the221

newly introduced methods is adequate for the current physical operators..222

Complexity measurement. We speak to multiple complexity models. The data complexity223

model (big-O notation) has become the model of choice in the study of conjunctive query224

processing [4, 58, 37]. The data complexity model assumes that the size of a query, k, is a225

constant, making data size, n, the parameter of interest[7]. The standard RAM complexity226

model [5] and combined [61] (big-O notation) consider both k and n as variables. Under227

data complexity, the lower bound of any join algorithm is Ω(n + r) [58] (r is the output size)228

because the algorithm has to read input relations and produce join output.229

3.2 Baseline Algorithms230

Besides Yannakakis’s algorithm (YA) and its improvement (YA+) introduced in Section 1, we231

further compare TTJ with in-memory hash-join (HJ) and two representative filter methods:232

Lookahead Information Passing (LIP) and Predicate Transfer (PT). We introduce each of233

them in order.234

HJ evaluates Q using pipelining on a left-deep plan with in-memory hash-join operators235

[29]. In open(), each hash-join operator builds a hash table H from its right child Rinner. In236

getNext(), a tuple t from the left child of the join operator, Router, probes into H to find a237

set of joinable tuples denoted as MatchingTuples. getNext() returns the join between t and238

the first tuple from MatchingTuples. The join between t and the rest of the tuples will be239

returned in the subsequent getNext() calls.240

LIP [68, 26, 67] leverages a set of Bloom filters to evaluate star schema queries consisting241

of a fact table and dimension tables. In open(), LIP computes filters from Rinner of each242

join operator and passes those filters downwards along the left-deep plan to the fact table,243

which is the left-most relation of the plan. In getNext() of the left-most table scan operator,244

LIP checks the tuples from the fact table against the filters and propagates those pass the245

check upwards along the plan.246
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PT [65] is the state-of-the-art filter method that generalizes the idea of LIP to queries247

not limited to star schema queries. Similar to YA, PT divides query evaluation into two248

phases. First, in predicate transfer phase, PT passes filters over the predicate transfer graph,249

a directed acyclic graph built from the query graph, of a query in two directions: forward250

and backward, which is similar to the first two passes over TQ in YA. Relations are gradually251

reduced as filters are being passed. Once the predicate transfer phase is done, the join phase252

begins where the reduced relations are joined.253

3.3 Additional Definitions254

We further define some terminologies used in the paper. We call a relation internal if it255

appears as an internal node [19, 51] in TQ. For relations corresponding to non-root internal256

nodes of TQ, we call them internal◦ relations. Similarly, a leaf relation means the relation257

appears as a leaf node in TQ. The root relation is defined accordingly. Let PQ be a left-deep258

query plan using TTJ. Ri for i ∈ [k] are relations in PQ. The left-most relation is Rk. See259

Figure 4 (c) in Appendix A. ⋊⋉i for i ∈ [k] are join operators in PQ. ⋊⋉1 is the root operator.260

⋊⋉k is the table scan operator of Rk. Rinner and Router are right child and left child of ⋊⋉i,261

respectively. Depending on context, we adopt the following language: If a tuple produced262

from ⋊⋉i+1, the Router of ⋊⋉i, cannot join with any tuples from Ri, the Rinner of ⋊⋉i, we call263

it a join fails at ⋊⋉i, a join failure happens at ⋊⋉i, or join fails at Ri. Since TTJ determine264

dangling tuples while doing the join, we consider join failure and detecting a dangling tuple265

during a join are synonymous. In such case, Ri is called the detection relation. ⋊⋉i is called266

the detection operator. We call the join operator the removal operator if its Rinner is the267

parent of the detection relation for a join failure in TQ. Such Rinner is the guilty relation.268

For example, for the join failure happens at ⋊⋉1 in Figure 1 (b), the detection relation is R269

and the detection operator is ⋊⋉1. S is the guilty relation and ⋊⋉3 is the removal operator.270

We introduce extra notation in the paper. Suppose a full ACQ Q has k relations with each271

size O(n). The output size of evaluating Q on a database instance is r. [Rk, Rk−1, . . . , R1]272

denotes a query plan (. . . ((Rk⋊⋉Rk−1)⋊⋉Rk−2) . . . )⋊⋉R1. Let J∗
u denote the join of relations273

Rk, Rk−1, . . . , Ru. Let Ju for u ∈ [k] denote the join result computed from ⋊⋉u. Once the274

correctness of TTJ is proved, Ju = J∗
u. |Ju| = ju. R∗ is R that is free of dangling tuples275

w.r.t Q. t[a] = πa(t) for tuple t, attribute a, and projection π. ja(R, S) = attr(R)∩ attr(S).276

R(3, 2) means tuple (3, 2) ∈ R. jav(t, R, S) = t[attr(R) ∩ attr(S)], which is join-attribute277

value. HR (or Hi) is the hash table built from R (or associated with ⋊⋉i). MatchingTuples278

is the list of tuples with the same jav in a hash table. ng is the no-good list, a filter in279

TTJ scan. R emphasizes the physical aspects of R, i.e., a bag of tuples R contains. We use280

standard relational algebra notation, e.g., antijoin Ď>< and semijoin ><.281

4 TreeTracker Join Operators282

The pseudo-code presented in Algorithms 4.1 and 4.2 contains the full definition of TTJ.283

Algorithm 4.1is the primary join algorithm in the context of a left-deep plan. Algorithm 4.2284

defines TTJ scan. The join operator proper only removes dangling tuples from it’s right-hand285

argument and no changes to a conventional table-scan are needed. However, to attain the286

complexity results dangling tuples must be removed from the leftmost argument. Thus, TTJ287

scan replaces the scan for the leftmost argument and provides for recording the identity of288

dangling tuples from the left-most argument and filters them out. We use PQ to denote the289

left-deep plan using TTJ. We are now ready to work out Example 2 in full detail. We expand290

CVIT 2016
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Algorithm 4.1 TTJ Join Operator

Purpose: An iterator returns, one at a time, the join result of Router and Rinner.
Output: A tuple t ∈ Router⋊⋉Rinner

1 TTJOperator
2 void open()

// router references a tuple from Router

// MatchingTuples references a set of tuples from Rinner that are joinable

with router

3 Initialize router, MatchingTuples to nil

4 Rinner.open()
5 Build hash table H: Insert each tuple, rinner, from Rinner into H using the

join attribute value(s), jav(rinner, Router, Rinner) as the key
6 Router.open()

7 Tuple getNext()
8 if MatchingTuples ̸= nil ∧MatchingTuples ̸= ∅ then

// If there are more matching tuples left, return the join of router and

the next matching tuple

9 if (aMatchingTuple← MatchingTuples.next() ) ̸= nil then
10 return the join of router and aMatchingTuple

// No matching tuples are left. Get a new router

11 router ← Router.getNext()
12 if router = nil then return nil

13 if router = nil then router ← Router.getNext()
14 while router ̸= nil do

// Find tuples from Rinner joinable with router

15 MatchingTuples← H.get(jav(router, Router, Rinner))
16 if MatchingTuples ̸= nil then
17 aMatchingTuple← MatchingTuples.next()
18 return the join of router and aMatchingTuple
19 else

// Join failure identified; start the backjumping to the guilty

relation, parent of Rinner in TQ

20 router ← Router.deleteDT(Rinner)

21 return nil

22 Tuple deleteDT(Detection Relation R)
23 if Rinner is the parent of R in TQ then

// Rinner is the guilty relation; join failure was identified at R

because the join between router and aMatchingTuple was eventually

returned to R and cannot join with any tuples from R

24 Remove aMatchingTuple from MatchingTuples and H
25 else

// Has not reached the guilty relation for R; backjumping continues

26 MatchingTuples← nil

27 router ← Router.deleteDT(R)
28 if router = nil then return nil

29 return getNext()
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Algorithm 4.2 TTJ Table Scan Operator for Rk

Purpose: Table scan operator for Rk that returns tuples not in ng.
1 TTJScan
2 void open()
3 Initialize ng to an empty set
4 Tuple getNext()
5 while (t← Rk.next()) ̸= nil do
6 if jav(t, Rk, Ri) ̸∈ ng for all children Ri of Rk in TQ then
7 return t

8 return nil

9 Tuple deleteDT(Detection Relation R)
// Rk is the guilty relation; t contributes to the tuple that caused the

join failure at R

10 Insert jav(t, Rk, R) into ng

11 return getNext()

3

2

1

3

2

1

detection
relation

(a) (b)

Join Failure

3

2

1

(c)

MatchingTuples

MatchingTuples

2

MatchingTuples

MatchingTuples MatchingTuples

guilty relation detection relationguilty
relation

Figure 2 (a) Join fails at ⋊⋉1. (b) A series of deleteDT(R) is called, which leads to the removal
of S(red, 1, 2) from hash table HS . (c) Join further fails at ⋊⋉3, which puts T (red) to ng.

Figure 1 (b) into Figure 2. By default all line numbers reference Algorithm 4.1 unless noted291

otherwise.292

The following three examples show the execution moments in the first getNext() call293

after open() of the pipelining evaluation that leads to the removal of two dangling tuples.294

Example 3 shows that TTJ does not schedule any semijoins or semijoin-like filters before295

query evaluation. The evaluation flow is identical to HJ when no join failure happens.296

▶ Example 3 (M3 in Figures 1 and 2). After plan evaluation begins, the recursive getNext()297

calls start with ⋊⋉1 and end with T ’s TTJ scan operator (Line 4 Algorithm 4.2), which298

returns T (red). The jav (x : red) is used to look up HS (Line 15). Since T (red) joins with299

S(red, 1, 2), the resulting tuple (red, 1, 2) is further propagated to ⋊⋉2, which probes into HB300

and finds B(2) joinable. The join result (red, 1, 2) is further passed to ⋊⋉1.301

On join failure, TTJ needs to reset evaluation flow back to guilty relation as shown302

in Examples 2 and 4. To do so, we enhance the iterator interface with one more method303
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deleteDT() and reset the evaluation flow using a series of deleteDT() calls 3 from the304

detection operator to the removal operator corresponding to a join failure.305

▶ Example 4 (M4 and M5 in Figures 1 and 2). Since (red, 1, 2) cannot join with any tuples306

from HR, the goal of TTJ is to reset the evaluation flow back to the guilty relation S and307

remove the last returned tuple, S(red, 1, 2), from HS . To do so, ⋊⋉2.deleteDT(R) is called308

from Line 20 first. Since ⋊⋉2’s Rinner, B, is not the parent of R in TQ (Line 23), Line 27309

is called, e.g., ⋊⋉3.deleteDT(R). In ⋊⋉3’s deleteDT(), since S is the parent of R (Line 23),310

Line 24 is executed: S(red, 1, 2) is removed from HS .311

Example 4 shows that removing tuples from internal◦ relations 4 is implemented by312

removing them from an index. For the left-most argument TTJ scan simply inserts dangling313

tuples into the no-good list (ng). Reads of the left-most argument check for membership in314

the no-good list and if a tuple is a member the tuple is simply not returned (Example 5).315

▶ Example 5 (M6 in Figures 1 and 2). Removal of S(red, 1, 2) causes T (red) to become316

dangling. TTJ adds it to ng, effectively removing it from T . After removing S(red, 1, 2),317

getNext() of ⋊⋉3 is called (Line 29). Since MatchingTuples is now empty and router = T (red),318

Line 15 is executed. No tuples from S joins with T (red). Thus, T .deleteDT(S) is called319

(Line 20) and Algorithm 4.2 Line 10 adds jav (x : red) to ng. Once ng is non-empty, it will320

work like a filter to prevent future dangling tuples with the same jav from returning to ⋊⋉3.321

getNext() of T is called (Algorithm 4.2 Line 11). The next tuple T (blue) then probes into322

ng (Algorithm 4.2 Line 6). Since T has only one child S, jav (x : blue) is computed and it is323

not in ng. Thus T (blue) is safe to further propagate upwards towards ⋊⋉3.324

From the above examples, we see that TTJ requires both PQ and TQ to work. The key325

property that PQ and TQ need to meet is that TTJ can find the guilty relation given a join326

failure. The following definition and corollary specifies the property.327

▶ Definition 6 (join tree assumption). Suppose PQ = [Rk, Rk−1, . . . , R1]. TTJ assumes TQ328

satisfies the following property: for a given relation Ri in PQ, its parent in TQ is one of the329

relations Rk, Rk−1, . . . , Ri+1. The root of TQ is the left-most relation Rk.330

▶ Corollary 7 (join order view of Definition 6). Given a TQ, TTJ assumes the order of relations331

in a left-deep query plan satisfies the following property: for a node Ri and its child Rj in332

TQ, Ri is before Rj in PQ, i.e., PQ = [. . . , Ri, . . . , Rj , . . . ].333

We use the following lemma to show that Definition 6 is easy to satisfy.334

▶ Lemma 8. For any left-deep plan without cross-product for acyclic queries, there exists a335

TQ satisfies the join tree assumption (Definition 6).336

We defer the proof of Lemma 8 and related examples that illustrate Definition 6 and Co-337

rollary 7 to Appendix B.338

5 Correctness of TTJ339

We prove the correctness of TTJ in this section. The main result in this section is the proof340

of Theorem 9 which asserts the correctness of TTJ.341

3 We omit argument to deleteDT() when reference it generically.
4 No tuples are removed from the leaf relations because they cannot be guilty relations, i.e., by leaf

definition, they are not parent of any relations in TQ.
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▶ Theorem 9 (Correctness of TTJ). Evaluating an ACQ of k relations using PQ, which342

consists of k − 1 instances of Algorithm 4.1 as the join operators and 1 instance of TTJ scan343

(Algorithm 4.2) for the left-most relation Rk, computes the correct query result.344

To prove Theorem 9, we first prove two lemmas that concern identifying join failure.345

Let iter be an iterator on MatchingTuples, i.e., when calling next() on MatchingTuples,346

iter is advanced and returns the next tuple in MatchingTuples if such tuple exists and nil347

otherwise.348

▶ Lemma 10. For every value assignment to router, MatchingTuples is initialized with349

tuples from H and implicitly, iter is reset. Between each pair of value assignments to router,350

MatchingTuples is never initialized and iter is never reset.351

Proof. router is assigned in four places: Lines 11, 13, 20, and 27. For Lines 11, 13, and 20,352

MatchingTuples is initialized on Line 15. For Line 27, since MatchingTuples is set to nil353

(Line 26), MatchingTuples is initialized on Line 15 as well. Since MatchingTuples is never354

initialized with tuples from H in the rest of Algorithm 4.1, the claim follows. ◀355

▶ Lemma 11. A tuple, t, is part of the final join result if and only if it is not marked as356

dangling during the query evaluation by deleteDT().357

Proof. We prove the equivalent statement: a tuple t is marked as dangling by deleteDT()358

during the query evaluation if and only if t is not part of the final join result. Whenever359

deleteDT() is called, a tuple is removed from a hash table or added to ng. deleteDT() is360

initiated if and only if MatchingTuples = nil, which means router contains a dangling tuple,361

i.e., some tuple is not part of the final join result. ◀362

We are ready to prove our main theorem Theorem 9.363

Proof. We show J1 = J∗
1 under bag semantics. We first show J1 ⊆ J∗

1 . Let t ̸∈ J∗
1 . Recall364

J∗
1 =

{
t over attr(P⋊⋉1

) | t[attr(Ru)] ∈ Ru ∀u ∈ [k]
}

.365

If there doesn’t exist a relation R in Q such that t[attr(R)] ∈ R, it is trivial to see that366

t ̸∈ J1. Suppose t[attr(Ru)] ∈ Ru for u = {k, k − 1, . . . , i + 1} but t[attr(Ru)] ̸∈ Ru for367

u = {i, i− 1, . . . , 1}. By default join order (Definition 6), Ri must be a child of some368

relation Rj with i < j such that t[attr(Rj)] ∈ Rj and t[attr(Ri)] ̸∈ Ri. By TQ definition,369

attr(Ri) ∩ attr(Rj) ̸= ∅. The only non-trivial reason that t[attr(Ri)] ̸∈ Ri is because370

t[attr(Ri) ∩ attr(Rj)] ̸∈ πattr(Ri)∩attr(Rj)(Ri). In such case, TTJ will call deleteDT() from371

the join operator connected with Ri and t[attr(Rj)] will be deleted from HRj or put onto ng.372

Thus, t is not in J1. If there is a relation Ru with k ≤ u ≤ i + 1 such that t[attr(Ru)] ̸∈ Ru,373

t ̸∈ J1 by the definition of join. The same argument applies to any t whose value is duplicated.374

To show J∗
1 ⊆ J1, suppose t ∈ J∗

1 but ̸∈ J1. t[attr(R1)] is part of the join result and375

with Lemma 11, t[attr(R1)] is never deleted. Thus, it must be that t[attr(P⋊⋉2
)] ∈ J∗

2 but376

t ̸∈ J2. The same argument applies to every operator in the plan. Eventually, we have377

t[attr(Rk)] ∈ J∗
k but t ̸∈ Jk. However, this is a contradiction. t[attr(Rk)] ∈ J∗

k and joins378

with the rest of the relations in plan. Thus, with Lemma 11, t[attr(Rk)] ̸∈ ng and ∈ Jk.379

Next, we show |J1| = |J∗
1 |. That is, for a given t ∈ J∗

1 , we show the number of tuples t380

that are in J∗
1 equals to the number of tuples t in J1. By Lemma 11, TTJ will not falsely381

remove a tuple t that is in J∗
1 and if t is a dangling tuple, it is removed by deleteDT().382

Further, by Lemma 10, each tuple from ⋊⋉u⋊⋉Ru−1 is enumerated once. The claim holds. ◀383
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6 Optimality of TTJ384

The runtime analysis of evaluating PQ is done in two steps. First, we propose a general385

condition for any left-deep plan without cross-product for ACQ called clean state. Clean386

state specifies what tuples can be left in the input relations without breaching the O(n + r)387

evaluation time guarantee. Clean state permits the existence of more dangling tuples than388

what is allowed by YA+. Second, we show PQ reaches the clean state and the work done by389

TTJ between the beginning of the query evaluation and reaching the clean state (cleaning390

cost) is no more than the work done after reaching the clean state. The former takes O(n)391

and the latter takes O(n + r).392

6.1 Clean State393

▶ Definition 12 (clean state). For a left-deep plan without cross-product for ACQ, we denote394

the contents of Ri that satisfy the following conditions by R̃i:395

1. R̃i = Ri for all the leaf relations Ri of TQ;396

2. (Ri ><J∗
i+1) Ď>< R̃u = ∅ for internal◦ relations Ri and their child relations Ru; and397

3. Rk
Ď>< R̃u = ∅ for the root of TQ, Rk and its children Ru.398

The plan reaches clean state if the contents of all Ri equal R̃i.399

▶ Lemma 13. When the left-deep plan without cross-product for ACQ is in clean state, Rk400

is fully reduced and free of dangling tuples.401

Proof. Suppose PQ is in clean state. Assume there is a dangling tuple d ∈ Rk. Suppose402

{d}⋊⋉Rk−1⋊⋉ . . .⋊⋉Rj but cannot join with Rj+1 with j ∈ {k − 1, . . . , 2}. Given PQ satisfying403

Definition 6, parent of Rj+1, Ri, must be one of the relations joinable with {d}. Thus, Ri is404

not in clean state. Contradiction. ◀405

▶ Theorem 14 (Clean state implies optimal evaluation). Once the left-deep plan without406

cross-product is in clean state, any intermediate results generated from the plan evaluation407

will contribute to the final join result and the plan can be evaluated optimally.408

Proof. Proof by induction on the height of TQ, h. Base case h = 0. Claim trivially holds.409

Suppose the claim holds for height of TQ < h. Let Rh be the root of TQ with height h.410

Let Rj be a child of Rh. With Lemma 13, no dangling tuples produced when Rh join with411

Rj . By induction assumption, no dangling tuple produced when further join Rh⋊⋉Rj with412

relations in subtree rooted in Rj . Repeat the same argument for each child of Rh and the413

result follows. Notice the order of Rjs that invoke proof arguments is specified by the order414

in PQ, which satisfies Corollary 7. ◀415

Comparison with full reducer and reducing semijoin program. Relations that are free from416

dangling tuples are in clean state. Thus, relations after FQ are in clean state. Relations417

after HFQ are in clean state as well. Leaf relations after HFQ satisfy Item 1 (by definition418

of HFQ) and the root relation after HFQ satisfies Item 3 (by Lemma 13 and Lemma 4 of419

[12]). For an internal◦ relation Ri, it satisfies Ri
Ď>< R̃u = ∅, which implies the satisfaction420

of Item 2. However, the state of relations after HFQ or FQ is stricter than what is required421

by clean state, i.e., more than necessary tuples are removed for optimal evaluation. Tuples422

of Ri that are not joinable with J∗
i+1 will be removed by both FQ and HFQ if such tuples423

are not joinable with tuples from any child relation of Ri. For example, S(brown, 3, 3) in424

Example 2. But, those dangling tuples are allowed to present in clean state. We provide one425

more example in Appendix C.426
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▶ Corollary 15. The set of dangling tuples removed by TTJ is a subset of the set of dangling427

tuples removed by both YA and YA+.428

We also perform empirically measurements on two standard benchmarks to illustrate429

Corollary 15. The result is in Appendix I.430

6.2 Complexity Analysis431

▶ Lemma 16. Algorithm 4.2 Line 10 is executed whenever Rk
Ď>< Ru ≠ ∅ for child relation432

Ru of Rk. Similarly, Line 24 is executed whenever Ri
Ď>< Ru ̸= ∅ for internal◦ relations Ri433

and its child Ru. Ru indicates the content of Ru can change during TTJ execution.434

Proof. We prove the claim on Algorithm 4.2 Line 10; claim on Line 24 can be proved similarly.435

t ∈ Rk can be dangling for two reasons. First, t is dangling at the very beginning of the436

execution, i.e., {t} Ď>< Ru = {t}. Then, during the execution with t from ⋊⋉k, join fails at ⋊⋉u,437

and deleteDT() is initiated (Line 20). Since Rk is the parent of Ru, Algorithm 4.2 Line 10438

is executed. Second, t becomes dangling after all tuples from Ru >< {t} are removed. After439

the last tuple in Ru >< {t} is removed by Line 24, MatchingTuples becomes empty at ⋊⋉u.440

Line 29 is then called. Since MatchingTuples = ∅ and Ru >< {t} = ∅, Line 15 is executed441

and returns nil. deleteDT() is initiated and Algorithm 4.2 Line 10 will be executed. ◀442

▶ Lemma 17. When TTJ finishes execution, PQ is in clean state.443

Proof. Satisfaction of Item 1. Suppose Ri is a leaf relation. Since relations that have tuples444

removed or put into ng are parent of some other relations in TQ, condition holds.445

Satisfaction of Item 2. Start with internal◦ relations Ri that are parent of leaf relations Ru.446

Then, Ru = R̃u. By Lemma 11 and parent-child relation between Ri and Ru, (Ri ><J∗
i+1) Ď><447

R̃u is empty. Thus, Ri = R̃i when TTJ finishes execution. Now, let Ri be an internal◦448

relation and Ru be its child, which is also an internal◦ relation. Start Ru be the parent of449

leaf relations and apply the same argument from the previous case. Ri = R̃i. Repeat the450

same argument all the way till Ru be the grandchild of Rk.451

Satisfaction of Item 3. By Lemma 13, equivalently, we show Rk − ng = R∗
k. First,452

R∗
k ⊆ Rk − ng. Suppose t ̸∈ Rk − ng. This means t is one of the tuples removed by453

Algorithm 4.2 Line 10. With Lemma 16, t ̸∈ R∗
k. Second, R∗

k ⊇ Rk − ng. Suppose t ̸∈ R∗
k.454

Then, t has to be a dangling tuple causes a join failure at some relation R. By the proof of455

Lemma 16, either deleteDT() is called directly (R is a child of Rk) or indirectly (R causes456

all tuples from Ru, a child of Rk, joining with t removed). Thus, t ̸∈ Rk − ng. ◀457

▶ Lemma 18. TTJ evaluates PQ in O(n + r) once it is in clean state.458

Proof. By Theorem 14, once PQ reaches clean state, no dangling tuple is produced by ⋊⋉u459

for u ∈ [k]. Thus, no more calls on deleteDT(). There are k relations and k − 1 join460

operators, open() takes O(kn) as each operator is called once and takes O(n) to build H.461

It takes O(k) getNext() calls to compute a tuple in J∗
1 . Since each getNext() call takes462

O(1), it takes O(k) to compute one join result and O(kr) for J∗
1 . Thus, in total, we have463

O(kn + kr) = O(n + r). ◀464

Next, we prove the optimality guarantee of TTJ by bounding the cleaning cost. The key465

idea is to leverage the fact that whenever a dangling tuple is detected, some tuple has to be466

removed and there can be at most kn tuples removed. The cost to remove each tuple is O(1)467

under data complexity.468
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▶ Theorem 19 (Data complexity optimality of TTJ). Evaluating an ACQ of k relations469

using PQ, which consists of k − 1 instances of Algorithm 4.1 as the join operators and 1470

instance of TTJ scan (Algorithm 4.2) for the left-most relation Rk, has runtime O(n + r),471

meeting the optimality bound for ACQ in data complexity.472

Proof. By Lemma 17, the execution of a plan is in clean state when TTJ execution finishes.473

The amount of work that makes PQ clean, i.e., cleaning cost, is fixed despite the distribution474

of dangling tuples in the relations. Suppose the execution is in clean state after computing475

the first join result.476

To bound the cleaning cost, we bound the cost of getting the first join result. Cleaning477

cost of TTJ includes the following components: (1) the cost of open(), which is O(kn); (2)478

the cost of getNext(); and (3) the cost of deleteDT(), which is bounded by the cost of479

getNext() as well.480

The total cost of getNext() is bounded by the total number of loops (starting at Line 14).481

Within the loop, hash table lookup (Line 15) is O(1). The total number of loops equals the482

total number of times that router is assigned with a value. router assignment happens on483

Lines 11, 13, 20, and 27. Line 13 is called when getNext() is recursively called from ⋊⋉1 to484

start computing the first join result, which in total happens k times. Afterwards, whenever485

router becomes nil, execution terminates by returning nil (Lines 12, 21, and 28) and Line 13486

never gets called.487

Each time deleteDT() is called from Line 20, exactly one tuple is removed. Thus, router488

is assigned O(kn) times on Line 20. After a call to deleteDT() made in the ith operator489

(i ∈ [k − 2]) from Line 20, deleteDT() can be recursively called at most k − i times from490

Line 27. The number of deleteDT() calls with k − i recursive calls is at most n because491

each relation has size n and each initiation of deleteDT() removes a tuple. Thus, the total492

number of assignment to router from Line 27 is ≤
∑k−2

i=1 (k − i) · n = O(k2n).493

If deleteDT() is never called during the computation of the first join result, Line 11494

is not called. Line 11 can only be called from Line 29 when Line 23 is evaluated to true;495

any getNext() calls (Line 29) from recursive deleteDT() calls triggered by Line 20 will not496

call Line 11 because MatchingTuples is set to nil on Line 26. Thus, the number of calls on497

Line 11 equals to the number of deleteDT() calls from Line 20, which is O(kn).498

Summing everything together, cleaning cost is O(k2n). Since PQ is clean after computing499

the first join result, with Lemma 18, the result follows. ◀500

The combined complexity of TTJ is O(k2n + kr), which can be further reduced to501

O(nk log k + kr) by imposing an additional constraint on PQ. We defer the details to502

Appendix D. In Appendix E we show how to use TTJ on plan that is no longer degenerate.503

We further analyze its performance and formulate a graph mapping problem that can lead504

to optimality. Lastly, besides the hypertree decomposition approach, TTJ can be easily505

extended to cyclic queries using the spanning tree approach described in [21], which we detail506

in Appendix F.507

7 Empirical Results508

So far, we have shown that by combining two logical operations into one, we maintain the509

optimality guarantee. To finish our argument, we need to supplement empirical evidence to510

show our approach gives better overall performance compared to the existing approaches. In511

this section, we compare the performance of TTJ with the baseline algorithms (Section 3.2)512

on two standard benchmarks: TPC-H [57], and Star Schema Benchmark (SSB) [46]. We defer513



Anonymous author(s) 23:15

1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 3.4 4.1 4.2 4.3
0

1

2

3

4

5

6
Sp

ee
du

p

+

Figure 3 Speedup of TTJ, YA, YA+, PT, and LIP over HJ on all 13 SSB queries

the details of our experimental setup such as algorithm implementation details, workload,514

environment, and cost models to Appendix G. We present our SSB results and defer TPC-H515

result to Appendix H.516

We present SSB results because star schema queries eliminate the impact of join order and517

join tree on algorithms’ performance; all algorithms share the identical TQ and plan, where518

the fact table is Rk and the dimension tables are the children of Rk ordered from left to right.519

Figure 3 illustrates that TTJ has the largest speedup, 3.2× on average, for all SSB queries520

and LIP comes in second with average of 2.8×. The performance difference between TTJ521

and LIP shows that lazily building and probing ng works better than proactively building522

and probing a set of Bloom filters. Probing Bloom filters at Rk in LIP can be viewed as523

performing a bottom-up pass of TQ. The comparison result between TTJ and LIP supports524

our argument that the users do not need to trade-off optimality guarantee for empirical525

performance; they can have both at the same time. Furthermore, in this setup, TTJ is indeed526

reduced to combining the bottom-up semijoin pass and join pass into one 5, which makes527

TTJ equivalent to YA+. However, TTJ outperforms YA+, which shows that TTJ is more528

empirical efficient than YA+ despite the equivalent formal runtime guarantee. Compared529

with LIP and YA+, YA and PT perform an additional top-down pass of TQ. PT has extra pass530

compared to YA+ but still outperforms YA+ in most cases; such results reflect using Bloom531

filter is much more cost-effective than using semijoin. Additional results on the number of532

dangling tuples removed by each algorithm is in Appendix I.533

8 Limitations and Future Work534

In this paper, we use TTJ to argue that two separate logical operations: semijoin and join,535

is the fundamental reason that users have had to pick between theoretical guarantee and536

good empircal performance. Theoretical gaps remain when consider TTJ with additional537

requirements, which we discuss next. First, the combined complexity of TTJ can be improved538

because it has an additional log k term compared with the complexity of YA. Second,539

optimality of TTJ under bushy plan is contingent upon the resolution of a graph mapping540

problem that maps TQ into query plan.541
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Figure 4 (a) query graph, (b) join tree , and (c) query plan of Q of four relations in (c). R1, . . . , R4

show the relation numbering and ⋊⋉1,⋊⋉2,⋊⋉3,⋊⋉4 denote the join operator numbering. ⋊⋉4 represents
the table scan operator associated with the left-most relation R4, which is T in this example.

B Understanding TTJ Requirements on PQ and TQ770

TTJ operates on a left-deep query plan, which represents the join order of the input relations771

of the query. In addition, TTJ requires a TQ to find the parent of the detection relation, i.e.,772

the guilty relation, for a join failure. Thus, if either the plan or the TQ is missing, we need773

to construct it from the other one. A constraint exists for such construction to ensure TTJ774

can function correctly. Since deleteDT() always sends a reference of the detection relation775

downwards along the plan, when the plan is missing, we need to construct a plan such that776

the guilty relation must sit below the detection relation. For the same reason, when TQ is777

missing, we need to construct a TQ such that for any detection relation in a plan, exactly778

one of the relations below it must be its parent in the tree. In this section we formalize the779

constraint and describe how to properly construct a TQ or a plan given the other input.780

Given PQ, Definition 6 defines the aforementioned constraint on the TQ. calling781

▶ Example 20. Consider PQ in Figure 4 (c), B is labeled as R2. TTJ expects that B’s782

parent in TQ has to be either R3 or R4. As shown in Figure 4 (b), B’s parent is S, which783

corresponds to R3. Thus, TQ in (b) satisfies the assumption.784

Lemma 8 states that we can easily construct a required TQ from any left-deep query plan785

that does not have cross-product. The key idea is as follows: We construct TQ following the786

order of relations in PQ from left to right. Suppose Rk, . . . , Rj+1 are already added to TQ. For787

Rj , we want to find a relation Ri that is already in TQ such that attr(Rj)∩(
⋃k

u=j+1 attr(Ru))788

⊆ attr(Ri). Left-deep query plan without cross-product for acyclic queries guarantees such789

Ri exists. We add Rj in TQ through an edge (Ri, Rj).790

▶ Example 21. Suppose PQ = [R3(x, y), R2(x, y, z), R1(y, z)]. The left-most relation R3(x, y)791

has to be the root of TQ. For the next relation R2(x, y, z), since only R3 is in TQ and792

attr(R2) ∩ attr(R3) ⊆ attr(R3), we add edge (R3, R2). Now, both R3 and R2 are in TQ793

and union of their attributes is {x, y, z}. Since attr(R1) ∩ {x, y, z} ⊆ attr(R2), we add edge794

(R2, R1). The final TQ is R3 → R2 → R1.795

▶ Example 22. Consider a cyclic query, PQ = [R3(a, b), R2(b, c), R1(c, a)], the classic796

triangle query. Let us try to construct TQ. R3(a, b) is the root. R2(b, c) connects R3.797
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attr(R3) ∪ attr(R2) = {a, b, c}. But, attr(R1) ∩ {a, b, c} ̸⊆ attr(R2) and attr(R1) ∩ {a, b, c}798

̸⊆ attr(R3). R1 cannot be placed in TQ to satisfy the connectedness property while keeping799

TQ being a tree.800

▶ Example 23. PQ = [T (x), R(y, z), B(z), S(x, y, z)] contains a cross-product due to801

T (x), R(y, z). We cannot construct TQ because TQ is a subgraph of the query graph and the802

query graph does not contain (T, R) edge.803

Proof. For a left-deep plan without cross-product for an acyclic CQ [Sk, Sk−1, . . . , S1], our804

proof proceeds by showing the plan permits a rooted join tree that satisfies Definition 6.805

That is, Sk is Rk, the root of some TQ, and for any relation Si, its parent in TQ is Sj806

with j ∈ {k, k − 1, . . . , i + 1}. For a relation Si, let attribute set as(Si) denote the set of807

attributes appear before it in the plan, i.e., as(Si) = attr(Sk) ∪ · · · ∪ attr(Si+1). The plan808

has the property that attr(Si) ∩ as(Si) ̸= ∅. We want to show there is some relation Sj with809

j ∈ {k, k − 1, . . . , i + 1} such that attr(Sj) ⊇ (attr(Si)∩as(Si)). If the statement is true, we810

can construct TQ by adding edge (Sj , Si). To prove the statement, for a relation Su, suppose811

relations before Su already form a join tree, i.e., we are about to attach Su to the tree.812

Suppose the statement is not true and there are two more relations Si, Sj (i > j > u) in the813

plan such that attr(Su) ∩ as(Su) = (attr(Si) ∪ attr(Sj)) and attr(Su) ∩ as(Su) ̸⊆ attr(Si)814

(correspondingly for attr(Sj) as well). Si and Sj are connected via a path. To satisfy join815

tree requirement, one must add two edges (Si, Su) and (Sj , Su), which form a cycle. ◀816

Definition 6 can be interpreted as a join order assumption, which defines the constraint817

on the plan (Corollary 7). Construction of PQ is straightforward: performing a top-down818

pass (not necessarily from left to right) of TQ.819

▶ Example 24. For TQ in Figure 4 (b) with T as the root, both P1
Q = [T, S, B, R] and820

P2
Q = [T, S, R, B] are valid plans for TTJ.821

C An Additional Example on822

▶ Example 25. Consider a TQ R3(x) → R2(x, y) → R1(y) with the following database823

instance: R3(4), R2(4, 6), R2(3, 5), R2(3, 7), R2(4, 7), and R1(7). Clean state only requires824

the removal of one tuple R2(4, 6). HFQ removes two tuples R2(4, 6) and R2(3, 5). FQ825

removes three tuples: R2(4, 6), R2(3, 5), and R2(3, 7).826

D Improving TTJ Combined Complexity827

Theorem 19 gives O(k2n+kr) combined complexity. We can further improve it to O(nk log k+828

kr) by constraining the join order (Corollary 7). In particular, to decide join order, one829

pre-order traverses TQ and when multiple subtrees exist for a given relation in TQ, one breaks830

ties by visting the largest subtree of any relation last [9]. Figure 5 shows an example.831

▶ Theorem 26 (Improving combined complexity of TTJ). Combined complexity of TTJ832

can be improved to O(nk log k + kr) (log is base 2) if one performs pre-order traversal over833

TQ and break ties by visiting the largest subtree of any relation last.834

Proof. The new order strategy only changes the total number of deleteDT() calls (Line 27)835

in Theorem 19 proof. For a given TQ, let bi be the backjumping distance where the join836

failure relation is Ri. Note that bi is exactly the same as the number of deleteDT() calls837

generated (Line 27) when join fails at ⋊⋉i. bi ≤ k− i for the default join order. Let di denote838
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(a) (b)
Figure 5 Given TQ in (a), one decides join order by pre-order traversing over TQ and breaking

ties via visiting the largest subtree of any relation last. The resulting order (b) satisfies Corollary 7.

the number of descendents of an internal relation Ri and mi denotes the number of relations839

in the largest subtree rooted at one of i’s children, e.g., in Figure 5, dT = 4 and mT = 3.840

Since the new order satisfies Definition 6, when join fails at Ri, only descendents of Rj (the841

parent of Ri) could exist between Ri and Rj in the order. The largest number of deleteDT()842

generated when join fails at the root relation of the largest subtree of a relation. Thus,843

bi ≤ di −mi + 1.844

Next, we prove
∑k−1

i=1 bi ≤ k log k. Proof by induction on the size of TQ. Base case k = 1,845

the claim holds. Assuming the claim holds for k− 1. Suppose there are s subtrees of Rk and846

each with size k1, . . . , ks. Let km denote the largest subtree. Then br ≤ (k − 1)− km + 1 =847

k− km. Thus,
∑k−1

i=1 bi ≤
∑s

i=1 ki log ki + (k− km) ≤ k log km + (k− km) ≤ k log k (the last848

inequality follows Lemma A.1 in [9]). Then, the total number of deleteDT() calls on Line 27849

is ≤
∑k−1

i=1 bin = O(nk log k). ◀850

E Bushy Plan851

A common approach to evaluate a bushy plan, query plan that is no longer degenerate, is852

to decompose it into a sequence of left-deep subplans: right child of every join operator853

forms a left-deep subplan and is evaluated first before proceeding with the join [63, 55]. In854

particular, for in-memory hash-join, build side is a blocking operation, i.e., hash tables can855

be constructed not just from base relations but also from intermediate results computed from856

subplans, which are buffered inside the memory [55, 32]. TTJ works with bushy plan exactly857

as above. The only issue to address is to transform TQ into a bushy plan satisfying Corollary 7858

6 so that when join fails at R, deleteDT() can find its parent. We use Algorithm E.1 to859

control the construction of a bushy plan for TTJ. Such algorithm can be easily adapted into860

a “reverse-engineer" procedure where one can construct a TQ from the given bushy plan: we861

construct a join tree for each left-deep subplan using Lemma 8 and concatenate all the trees862

to form the final join tree.863

Fragment group FG is a set of nodes in TQ constituting a subplan. We use FG and864

subplan interchangeably. Any node from TQ only belongs to one group. The key idea to form865

a bushy plan is that we create a TTJ-compatible subplan for each group and connect them866

altogether using TTJ join operators again. Fragment groups are formed with the property867

6 We use join order view of Definition 6.
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(a) (b)

1

2 4

53

Figure 6 Given TQ in (a), there are two fragment groups F G1 and F G2. (b) is a bushy plan
constructed from the two fragment groups. Join failures can be categorized into two cases: within
F G (M13) and across F Gs (M14).

Algorithm E.1 Construct bushy plan for TTJ
Input: TQ
Output: A bushy plan that can be evaluated by TTJ

1 Starting from the root of TQ, visit each node in pre-order traversal.
2 For each node, decide whether create a new fragment group FGi+1 or put it to the

fragment group FGi where its parent node belongs. If for a node R and its left
sibling node S has attr(R) ∩ attr(S) = ∅, R has to be in the same group as its
parent. Suppose there are fragment groups FGi for i ∈ [m] at the end of this step.

3 For each FGi for i ∈ [m], create a subplan satisfying the default join order .
4 Start from FGm and connect it with the subplan from FGm−1 with a TTJ join

operator. The resulting subplan, a new FGm−1, is connected with the subplan
FGm−2 and continue. When connecting two subplans FGi and FGi−1, we always
put FGi−1 as the left child of TTJ join operator. The step repeats until all the
subplans are connected.

that parent node belongs to the same or lower-numbered group than its child node(s) in TQ.868

Line 2 checks sibling node to avoid cross-product when join two subplans. The resulting plan869

satisfies Corollary 7 and can be evaluated by TTJ directly.870

▶ Example 27. Consider Q represented in Figure 6 (a). There are two fragment groups871

FG1 = {T, S, R} and FG2 = {U, D, V }. The whole plan is being evaluated by TTJ operators:872

every join operator is TTJ join operator; T and U are TTJ table scan operators and the873

rest are normal table scan operators. deleteDT() happens for two cases. First, deleteDT()874

happens inside the subplan. For example, join fails at ⋊⋉4 (M7). Since U is the parent875

of V , a tuple from U is added to ng. Second, deleteDT() happens at the join operator876

connecting two subplans. For example, join fails at ⋊⋉1 (M8). In this case, deleteDT() sends877

the reference to the root of FG2, U , downward. The rest of the evaluation is the same as878

the left-deep plan case in the previous sections.879

▶ Lemma 28. The bushy plan constructed from Algorithm E.1 satisfies Corollary 7.880

Proof. Let S be a node and R, U be its children. There are three possible cases. First, if881

R and U are all within the same FG as S, by Line 3, the claim holds. Second, if one of882
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its children is in a different FG, say, U . Since S is in the FG with smaller numbering, by883

Line 4, S is to the left of U . S is to the left of R because they are in the same FG. Third, if884

all of its children are in different FGs, by a similar argument as the previous case, the claim885

holds. ◀886

▶ Theorem 29 (Correctness). TTJ evaluates Q correctly under the bushy plan constructed887

from Algorithm E.1.888

Proof. By Lemma 28 and Theorem 9, TTJ evaluates relations associated with each FG889

correctly. We only need to focus on TTJ operators that join two different FGs and show890

it generates the correct join result. W.l.o.g., the two FGs are denoted FG1 and FG2. We891

want to show FG1⋊⋉FG2 is correct. If all tuples from FG1 are joinable with some tuple from892

FG2 join result, the claim holds. Suppose t ∈ FG1 cannot join with any tuple from FG2893

and thus dangling. By Lemma 28, the parent of the node where join fails must be in FG1.894

Applying the same arguments in Theorem 9, the claim holds. ◀895

Let ri denote the size of the join result computed from FGi.896

▶ Theorem 30 (Data complexity of TTJ on bushy plan). Suppose there are m FGs and897

each has result size r1, . . . , rm, respectively. TTJ runs O(n + max(r1, . . . , rm)).898

Proof. Note that m ≤ k. Proof by induction on the number of FGs in the plan. Base case899

FGm. It takes O(n + rm) to evaluate it. Suppose the claim holds for all the fragment groups900

until i. To evaluate the plan associated with FGi−1, it takes O(n + max(ri+1, . . . , rm)) to901

evaluate the subplan associated with FGi. By Line 4, FGi appears as rinner, which TTJ902

builds the hash table. TTJ takes ri to build H corresponding to FGi. Result follows. ◀903

Effectively, Algorithm E.1 maps TQ into a bushy plan, another tree. Together with904

Theorem 30, we can see that if ri ≤ r for i ∈ [m]. TTJ can provide optimality guarantee905

under bushy plan. Thus, it is an open question whether we can construct a bushy plan such906

that the output size of each fragment is bounded by the final output size r. If such algorithm907

exists, TTJ is optimal under bushy plan as well.908

F Handle Cyclic CQ909

We show a simple approach to allow TTJ to work with cyclic CQs as well. The key challenge910

for cyclic CQs is that the query does not permit TQ, i.e., a graph that has to contain cycles911

to satisfy the connectedness property. Let GQ denote the graph that contain cycles but912

satisfies the connectedness property. As an example, (a) in Figure 7 shows GQ for a query913

joining T (a, b), S(b, c), B(a, c), and R(b). The query is a simple extension to the classic914

triangle query R(a, b)⋊⋉S(b, c)⋊⋉T (c, a), which makes the query being cyclic. Our solution to915

the challenge is simple: conceptually, we remove edges from GQ to obtain TQ by renaming916

necessary attributes. Then, we introduce a select operator at the root of the plan for the query917

to filter out redundant tuples so that the final result satisfies the original query semantics.918

The idea is the same as the spanning tree approach described in [21].919

▶ Example 31. Consider the cyclic query shown in Figure 7. Red color indicates the new920

operations introduced to handle cyclic CQs.921

In the example, we remove edge (T, B). Since attr(B) ∩ attr(T ) = {a}, we rename922

attribute a in one of these two relations. In this case, we rename a in B to d. Thus, in the923

query plan, we introduce ρB(c,d)B right above B. The resulting query joining T (a, b), S(b, c),924
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(a) (b)

1

2

3

Figure 7 (a) GQ (b) query plan of T (a, b)⋊⋉S(b, c)⋊⋉B(a, c)⋊⋉R(b).

B(c, d), and R(b) is acyclic and can be evaluated using TTJ. Since cycle in GQ contains T ,925

S, and B, we add σa=dJ2 right above ⋊⋉2 to filter out those tuples that their a attribute926

values and d attribute values are different, i.e., adding the removed edge back.927

Clearly the simple solution computes the correct join result: the correct join result is928

subset of the join result compute from ⋊⋉1. To find GQ for a given join order, one can build929

TQ and introduce necessary extra edges (and thus, form cycles) to satisfy the connectedness930

property. Those extra edges will be temporarily removed as illustrated in the example above.931

Essentially, the approach uses an acyclic query to contain a given cyclic query (in query932

containment sense [15]) to compute a superset of the cyclic query result set and removes933

redundant tuples with selections. Thus, the runtime performance of this approach ties to934

the runtime performance of evaluating the acyclic query, which is O(n + r′) where r′ is the935

output size of the acyclic query.936

G Experiment Setup937

G.1 Algorithms and Implementation938

We compare TTJ with the baseline algorithms (Section 3.2) in an apples-to-apples fashion,939

where we implement all these methods within the same query engine built from scratch in940

Java. The engine architecture is similar to the architecture of recent federated database941

systems [53, 11]. The engine optimizes each algorithm using the same DP procedure [27]942

with an algorithm-specific cost model (Appendix G.4). The engine connects two data sources:943

PostgreSQL 13, which provides the estimation to the terms in the cost models, and DuckDB944

[49], which serves as the storage manager. All data are stored on disk.945

We detail the implementation of ng here. Suppose Rk has m children S1, . . . , Sm.946

Physically, ng is implemented as a hash table ⟨Si, ℓi⟩ where ℓi is a set containing jav(t, Rk, Si)947

for dangling tuple t from Rk detected by Si.948

We provide additional implementation details of the baseline algorithms that are not949

described in Section 3.2. To implement YA, we introduce a k-ary physical operator full950

reducer operator that executes FQ. The fully reduced relations, which already reside in951

memory, are then evaluated by HJ. PT is implemented similarly to YA with a k-ary operator952

for the predicate transfer phase. PT originally works on the predicate transfer graph, which953

contains redundant edges compared with TQ. Redundant edges may lead to additional954

unnecessary passes of Bloom filters that may negatively impact PT performance 7. Thus, we955

7 We conducted an empirical study by comparing PT on the predicate transfer graph with the same PT
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show the results of PT on TQ. We use the blocked Bloom filter [47] implementation from956

[30].957

G.2 Workload and Environment958

Workload. We use three workloads: Join Ordering Benchmark (JOB) [39], TPC-H [57] (scale959

factor = 1), and Star Schema Benchmark (SSB) [46] (scale factor = 1). We focus on ACQs960

in the benchmarks, i.e., we omit cyclic queries, single-relation queries, and queries with961

correlated subqueries. All 113 JOB queries, 13 TPC-H queries, and all 13 SSB queries meet962

the criteria.963

Environment. For all our experiments, we use a single machine with one AMD Ryzen964

9 5900X 12-Core Processor @ 3.7Hz CPU and 64 GB of RAM. We only use one logical965

core. We set the size of the JVM heap to 20 GB. All the data structures are stored on966

JVM heap. Benchmarks are orchestrated by JMH [1], which includes 5 warmup forks and967

10 measurement forks for each query and algorithm. Each fork contains 3 warmup and 5968

measurement iterations.969

G.3 TTJ Cost Model970

Given PQ is a transformation of TQ, costing TTJ is the same as costing evaluation of TQ971

under TTJ. One simple but effective cost model is the sum of the sizes of intermediate results972

[39, 22, 18, 56], which comprises two components: the dangling tuples produced and the973

size of intermediate results that are part of final join result. The former corresponds to the974

cleaning cost in the optimality proof, which can be estimated based on the clean state. Using975

clean state, the latter can be estimated easily as well. Since TTJ reduces internal◦ relation976

sizes, like [22], TTJ cost includes the size of inner relations that are in clean state as well.977

▶ Theorem 32. The cost of TTJ, i.e., the cost of TQ when evaluated by TTJ, is978

m∑
i=1

|Ai|−1∑
t=0

bRi

Rt+1
u
|(R[t]

i
><J∗

i+1) Ď>< R̃t+1
u )| (6)979

+
s∑

i=1

|Bi|−1∑
t=0

bRi

Rt+1
u
|(R[t]

i
><J∗

i+1) Ď>< R̃t+1
u )| (7)980

+
|C|−1∑
t=0

bRk

Rt+1
u
|δ(πja(Rk,Rt

u)(R
[t]
k

Ď>< R̃t+1
u ))| (8)981

+
1∑

j=k

|f(Sj)| (9)982

+
k∑

i=2
|R̃i| (10)983

Equations (6)–(8) give the number of dangling tuples. Equation (9) gives the size of984

intermediate results (including the size of R∗
k) that are part of final join result. Equation (10)985

is the summation of size of internal◦ and leaf relations that are in clean state.986

on TQ to verify our conclusion. Result shows PT on TQ outperforms PT on the predicate transfer graph
by 1× (Appendix G.5).
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bij counts the number of additional dangling tuples generated given a dangling tuple987

from guilty relation R and detection relation S. We define the following three sets over the988

relations in TQ. First, A consists of all the leaf relations Ru such that internal◦ relation Ri989

are their parent. We partition A by leaf relations’ parents, A1, . . . ,Am where Ai is the set990

of leaf relations that have the parent Ri. Thus, |Ai| represents the number of leaf relations991

in TQ that are children of Ri. Let us label those leaf relations R1
u, . . . R

|Ai|
u . Second, B992

consists of internal◦ relations Ru that their parents Ri are internal◦ relations. Similarly to993

A1, . . . ,Am, we partition B by the parent of Ru: we have B1, . . . ,Bs. |Bi| and R1
u, . . . , R

|Bi|
u994

are defined similarly as above. Third, C comprises all the relations Ru that are children of995

Rk. The children of Rk are labeled R1
u, . . . , R

|C|
u . Equation (11) defines R[t]

i , which reflects996

the gradual discovery of dangling tuples of Ri during plan evaluation.997

R[t]
i =

{
Ri if t = 0
R[t−1]

i − ((R[t−1]
i

><J∗
i+1) Ď>< R̃t

u) otherwise
(11)998

Suppose the join order (w.r.t. TQ) determined either syntactically from TQ or from the999

DP algorithm is [Sk, . . . , S1] where Sj = Ri for some i ∈ [k]. f(Sj) in Equation (12) computes1000

the size of intermediate results that are part of the final join result. Given Definition 6, the1001

first relation to apply f is always Rk, root of TQ, and its content, per Lemma 13, is R∗
k.1002

f(Sj) =
{
R∗

k if j = k

S̃j⋊⋉f(Sj+1) otherwise
(12)1003

▶ Example 33. Using Example 2, we illustrate how to compute Equations (6)–(8), the most1004

complex terms in the cost equation. Assume PQ = [T, S, B, R]. Start with Equation (6).1005

A = {B, R}. Since both B and R have the same parent, S, m = 1. Thus, the cost is1006

1 · |(S ><T ) Ď>< B| + 2 · |(S[1] ><T ) Ď>< R|. In particular, |(S ><T ) Ď>< B| = 0. Therefore,1007

S[1] = S. |(S[1] ><T ) Ď>< R| = 1 due to S(red, 1, 2). Thus, S̃ = {(red, 3, 2)}. Since B = ∅,1008

we do not need to compute Equation (7). To compute Equation (8), due to C = {S}, we1009

have 1 · |δ(πx(T Ď>< S̃))| = 1. Thus, the number of dangling tuples produced by TTJ is1010

0 + 2 + 1 = 3.1011

G.4 Baseline Algorithms’ Cost Models1012

The cost model of HJ is the summation of intermediate results [39, 27]. Query plan and TQ1013

are fixed for all compared algorithms on star schema queries. Thus, we do not cost LIP. PT1014

shares the same TQ as YA. We detail the cost model of YA below.1015

The central idea of costing YA is exactly identical to how we cost TTJ in Appendix G.3.1016

We first deduce the state of relations after FQ called full reducer state (Definition 34), which1017

is similar to clean state (Definition 12). Then, we compute the number of intermediate1018

results produced by FQ (Equations (13)–(15)), the size of the intermediate results that are1019

part of the final join result (Equation (16)), and the size of the relations that are in full1020

reducer state (Equation (17)) in YA cost equation (Theorem 35).1021

▶ Definition 34 (full reducer state). Query plan using FQ reaches full reducer state if the1022

following conditions hold:1023

1. Rk
Ď>< R̃u = ∅ for the root of TQ, Rk and its children Ru. The content of Rk satisfying1024

the condition is denoted by R∗
k;1025

2. Ru
Ď>< R∗

i = ∅ for all the leaf relations Ru of TQ and their parent Ri. The content of Ru1026

satisfying the condition is denoted by R∗
u. Furthermore, R̃u = Ru; and1027
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3. (Ri
Ď>< R̃u) ∪ (Ri

Ď>< R∗
j ) = ∅ for internal◦ relation Ri, its child relations Ru, and its1028

parent Rj. The content of Ri satisfying the condition is denoted by R∗
i . If content of Ri1029

satisfies Ri
Ď>< R̃u = ∅ only, we denote the content of Ri as R̃i.1030

▶ Theorem 35. The cost of TQ under YA is1031

|A|∑
u=1
|R∗

u| (13)1032

+
s∑

i=1
(|R∗

i |+
|Bi|−1∑

t=0
|R[t]

i
><R̃t+1

u |) (14)1033

+
|C|−1∑
t=0
|R[t]

k
><R̃t+1

u | (15)1034

+
1∑

i=k

|f(Si)| (16)1035

+
k∑

i=2
|R∗

i | (17)1036

We define the following three sets over the relations in TQ. First, A consists of all the leaf1037

relations Ru. Second, B consists of Ru whose parents Ri are internal◦ relations. We partition1038

B by the parent of Rus. Then, we have B1, . . . ,Bs. |Bi| indicates the number of relations1039

in TQ that are children of Ri. We label those relations R1
u, . . . , R

|Bs|
u . Third, C comprises1040

all the relations Ru that are children of Rk. The children of Rk are labeled R1
u, . . . , R

|C|
u .1041

Equation (18) defines R[t]
i , which reflects the gradual removal of dangling tuples of Ri during1042

semijoins.1043

R[t]
i =

{
Ri if t = 0
R[t−1]

i
><R̃t

u otherwise
(18)1044

Suppose the join order (w.r.t. TQ) determined either syntactically from TQ or from1045

the DP algorithm is [Sk, . . . , S1] where Sj = Ri for some i ∈ [k]. f(Sj) in Equation (19)1046

computes the size of intermediate results that are part of the final join result.1047

f(Si) =
{
S∗

i if i = k

S∗
i ⋊⋉f(Si+1) otherwise

(19)1048

G.5 Empirical study of PT performance on the predicate transfer graph1049

versus TQ1050

Predicate transfer graph is a directed query graph. PT construct the predicate transfer graph1051

from the query graph using a simple heuristic: for an edge of two relations, the head of1052

the edge is the relation with bigger size. For star schema queries in our setup where Rk is1053

the fact table, predicate transfer graph is identical to TQ: query graph is identical to the1054

undirected join tree and the heuristic applied on the query graph leads to TQ. Thus, PT on1055

the predicate transfer graph (denoted by PTO) has identical performance as PT on TQ on1056

star schema queries. PTO can have a different performance compared with PT when one1057

of the following conditions happen: (1) the query graph is not identical to an undirected1058

join tree; (2) when undirected join tree and the query graph are identical, TQ created from1059
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Figure 8 Speedup of TTJ, YA, YA+, PT over HJ on 13 TPC-H queries

costing is different from the predicate transfer graph created by the heuristics; and (3) both1060

TQ and the predicate transfer graph are identical but the order of passing Bloom filters are1061

different.1062

Table 1 Speedup of PT and PTO compared with HJ on Q7 and Q8 in TPC-H

Method Q7 Q8

PT 1.6× 1.6×
PTO 0.6× 0.7×

We empirically compare PT and PTO on Q7 and Q8 in TPC-H. The performance result1063

is shown in Table 1. In Q7, condition (2) happens where PT and PTO have different tree1064

structures. In Q8, condition (3) happens where both PT and PTO share the same TQ but1065

Bloom filters are applied in different orders.1066

H TPC-H Results1067

Figure 8 shows the comparison result on TPC-H. TTJ has the maximum speedup 2.4× on1068

Q8, the largest query with k = 8 in TPC-H. 2.4× is also the largest speedup among the four1069

algorithms: the maximum speedup of YA, YA+, and PT is 1.4×, 1.5×, 1.7×, respectively.1070

TTJ has steady speedup over the benchmarked TPC-H queries with average (geometric mean)1071

1.2× compared with 0.69× from YA, 0.78× from YA+, and 0.84× from PT. The minimum1072

speedup of TTJ, YA, YA+, and PT is 1.0×, 0.4×, 0.5×, 0.5×, respectively. From the aggregate1073

statistics we can see: First, TTJ has more steady speedup than YA, YA+, and PT on the entire1074

workload: TTJ has higher average and minimum speedup than the other three algorithms.1075

Second, YA, YA+, and PT outperform TTJ when the full reducer can be executed quickly.1076

Consider Q7: A fragment of YA join tree is a chain orders → lineitem → supplier → nation.1077

The first semijoin supplier ><nation already removes more than 90% of tuples from supplier1078

because |nation| = 1. The largely reduced supplier speeds up the subsequent semijoin1079

lineitem><supplier and starts a chain reaction on the remaining semijoins. As a result, YA1080

removes close to 100% of the tuples of the input relations in a small amount of time.1081

I Measurement of the Number of Dangling Tuples Removed1082

Figures 9 and 10 empirically measure the amount of tuples removed by TTJ and all the1083

algorithms we compared on TPC-H and SSB. From the figures we see that TTJ always1084

remove the least amount of dangling tuples because TTJ reaches the clean state and the1085

clean state requires the least amount of dangling tuples removed compared with YA and1086
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Figure 9 Fraction of tuples removed from the
input relations by TTJ, YA, YA+, and PT on
TPC-H
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Figure 10 Fraction of tuples removed from the
input relations by TTJ, YA, YA+, LIP, and PT on
SSB

YA+ (Corollary 15). This confirms that TTJ, although intuitively combining the bottom-up1087

semijoin pass with the join pass, is different from YA+.1088

J Proof of YA+
1089

YA+ states that bottom-up semijoin pass and top-down join pass over TQ is sufficient to1090

provide O(n + r) guarantee. We formalize the statement into Theorem 36.1091

▶ Theorem 36. Given a join tree TQ and root R1, one can compute join with the following1092

two steps:1093

1. apply bottom-up semijoin pass HFQ on TQ;1094

2. perform pair-wise join from root R1 to leaves recursively.1095

Any intermediate join result during the computation will not contain any dangling tuples.1096

The intuition is that after applying HFQ, R1 = R∗
1 (Lemma 4 of [12]) and each other1097

relation only contains tuples that are joinable with its child relations. If we start to compute1098

join from this state in a top-down fashion, it is impossible to produce dangling tuples.1099

Proof. Proof by induction on the height of TQ. Base case. Suppose the height of TQ is1100

0. Claim trivially holds. Suppose the claim holds for all queries whose height of TQ < h.1101

We want to show the claim holds for height of TQ equals h. We want to show J1 =1102

R1⋊⋉ . . .⋊⋉Rk and there is no dangling tuples in any intermediate result during computation.1103

(. . . ((R∗
1⋊⋉R′

2)⋊⋉R′
3) . . .⋊⋉R′

m) equals to R1⋊⋉R′
2⋊⋉ . . .⋊⋉R′

m.1104

J1 = (. . . ((R∗
1⋊⋉R′

2)⋊⋉R′
3) . . .⋊⋉R′

m)⋊⋉J2⋊⋉ . . .⋊⋉Jm1105

= R1⋊⋉R′
2⋊⋉ . . .⋊⋉R′

m⋊⋉J2⋊⋉ . . .⋊⋉Jm1106

= R1⋊⋉(R′
2⋊⋉J2)⋊⋉(R′

3⋊⋉J3)⋊⋉ . . .⋊⋉(R′
m⋊⋉Jm)1107

= R1⋊⋉J2⋊⋉J3⋊⋉ . . .⋊⋉Jm1108

= R1⋊⋉R2⋊⋉ . . .⋊⋉Rk1109
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The last step because J2, . . . , Jm are subtrees of TQ and they are disjoint. To show there1110

is no dangling tuple, pick R1, Rj and Ri where Rj is a child of R1 and Ri is a child of1111

Rj . During HFQ, R1 ><(Rj ><Ri) is executed. Because TQ is a join tree, R1, Rj , Ri share1112

common attributes. If there is a dangling tuple, it has to happen after R1⋊⋉Rj . However this1113

is not possible because R1⋊⋉Rj after PQ,1 equals to (R1 ><(Rj ><Ri))⋊⋉(Rj ><Ri), which is1114

(R1⋊⋉Rj)><Ri. By induction assumption, no dangling tuple when join relations in subtree1115

rooted in Ri. Since Rj and Ri are picked arbitrarily, the theorem holds. ◀1116

▶ Corollary 37. The algorithm in Theorem 36 runs O(n + r), which is the same as YA.1117

Corollary 37 immediately follows from Theorem 36 because intermediate result size is1118

smaller than the final result size.1119

K Discussion and Related Work1120

We organize the related work in four categories. First,CSP. The equivalence between CQ1121

evaluation and CSP is established by [38, 15]. TreeTracker in [9] solves a CSP for one1122

solution without preprocessing the CSP. TTJ extends TreeTracker into query evaluation by1123

(1) returning all possible solutions, and (2) blending the ideas from TreeTracker into physical1124

operators in a query plan. Second, Semijoin reduction. An intensive research has been done1125

on using semijoin to improve query evaluation speed [12, 59, 36, 13, 60, 40, 17, 66]. TTJ1126

achieves a similar effect (clean state) as performing semijoin reduction without explicitly1127

using semijoins. Third, SIP. deleteDT() of TTJ takes the form of SIP [68, 32, 35, 33, 8,1128

29, 42, 44, 22, 52, 54, 48, 23, 26, 67]. TTJ is different from the prior approaches in one or1129

more of the following aspects: (1) TTJ does not introduce any preprocessing steps; (2) TTJ1130

does not use Bloom filters, bitmaps, or semijoins; and (3) TTJ provides optimality guarantee.1131

Third, Worst-Case Optimal Join (WCOJ) algorithms. A related line of work is to implement1132

WCOJ algorithms efficiently [43, 6, 34, 25, 2, 64, 63]. TTJ is orthogonal to such direction as1133

TTJ focuses on ACQ evaluation with query-specific output size r whereas WCOJ focuses on1134

worst-case optimal join problem with worst-case output size bounded by AGM. In addition,1135

comparing to WCOJ algorithms, which commonly use multi-way join operators, TTJ uses1136

binary physical operators in iterator interface.1137
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