
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TreeTracker Join: Simple, Optimal, Fast
Zeyuan Hu

University of Texas at Austin
Austin, Texas, USA

Remy Wang
University of California, Los Angeles

Los Angeles, California, USA

Daniel P. Miranker
University of Texas at Austin

Austin, Texas, USA

ABSTRACT
Inspired by the TreeTracker algorithm used in Constraint Satisfac-
tion we present a novel linear-time join algorithm, TreeTracker
Join (TTJ). TTJ is very similar to a standard binary hash join, but
introduces a test that identifies when a tuple is dangling and re-
moves that tuple from its relation. The test is to simply observe if
a hash lookup fails to return any matching tuples. If so, TTJ deter-
mines which tuple is responsible for the failure, backtracks to the
offending tuple, and removes it from its relation.

As compared to the best known linear-time join algorithm, Yan-
nakakis’s algorithm, TTJ shares the same asymptotic complexity
on acyclic queries while imposing much lower overhead in prac-
tice. We can also reuse any binary join plan for TTJ, with the guar-
antee that TTJ will match or outperform binary join on the same
plan. Furthermore, this guarantee also extends to cyclic queries.
Our experiments show TTJ is the fastest algorithm in 97 out of 113
queries, and outperforms binary join and Yannakakis’s algorithm
by up to 26.7× and 8.9×, respectively.

1 INTRODUCTION
In 1981, Yannakakis [11] was the first to describe a linear-time join
algorithm (hereafter YA) running in time 𝑂 (|IN| + |OUT|), where
|IN| is the input size and |OUT| is the output size. In principle,
this is the best asymptotic complexity that one can hope for, be-
cause in most cases the algorithm must read the entire input and
write the entire output. However, virtually no modern database
systems implement YA. A major factor is its high overhead. Prior
to executing the join YAmakes two passes over the input relations,
using semijoins to reduce the size of each input. The reduced rela-
tions are then joined to produce the final output. Since the cost of
a semijoin is proportional to the size of its arguments, this imme-
diately incurs a 2× overhead in the input size. An improved ver-
sion of YA [1] achieves the same result in one semijoin pass, but
the overhead of this pass remains. Another practical challenge is
that YA is “too different” from traditional binary join algorithms,
making it difficult to integrate into existing systems. For example,
the efficiency of YA critically depends on a join tree which is dif-
ferent from the query plan used by binary joins. Where there is a
wealth of techniques to optimize query plans for binary joins, little
is known about optimizing join trees for YA.

In this paper, we propose a new linear-time join algorithm called
TreeTracker Join (TTJ). Inspired by the TreeTracker algorithm [5]
in Constraint Satisfaction, TTJ can be understood as the traditional
binary hash join with a twist: when a hash lookup fails, backtrack
to the tuple causing the failure, and remove that tuple from its re-
lation. The backtracking points can be determined by the query
compiler, as they depend only on the query and not the data. With
those in place, TTJ requires no query-execution time preprocess-
ing, and the algorithm’s performance is guaranteed to match or
outperform binary hash join given the same query plan (Section 3.2).

Thanks to the straightforward nature of TTJ, we are able to craft
pleasantly simple proofs of its correctness and efficiency. We use
the following example to illustrate the main ideas of TTJ.

Example 1.1. Consider the natural join of the relations 𝑅(𝑖, 𝑥),
𝑆 (𝑥,𝑦, 𝑗), 𝑇 (𝑦, 𝑘), and 𝑈 (𝑦, 𝑙), where we use 𝑅(𝑖, 𝑥) to denote that
the schema of 𝑅 is {𝑖, 𝑥}. Let the relations be defined as follows:

𝑅 = {(𝑖, 1) | 𝑖 ∈ [𝑁]} 𝑆 = {(1, 1, 𝑗) | 𝑗 ∈ [𝑁]}
𝑇 = {(1, 𝑘) | 𝑘 ∈ [𝑁]} 𝑈 = {(0, 𝑙) | 𝑙 ∈ [𝑁]}

In the above we denote the set {1, . . . , 𝑁 } with [𝑁]. Note that
on these input relations, the join produces no output, because 𝑈
shares no common 𝑦-values with 𝑆 or 𝑇 . Let us first compute the
join with binary hash join. Suppose the optimizer produces a left-
deep join plan ((𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇) ⊲⊳ 𝑈 . Following this plan, the execu-
tion engine first builds hash tables for 𝑆 , 𝑇 , and 𝑈 , mapping each
𝑥 to (𝑦, 𝑗) values in 𝑆 , 𝑦 to 𝑘 values in 𝑇 , and 𝑦 to 𝑙 values in 𝑈 .
Then we compute the join as shown in Figure 1a1. For each (𝑖, 𝑥)
tuple in 𝑅, we probe into the hash table for 𝑆 to get the (𝑦, 𝑗) val-
ues. For each (𝑦, 𝑗), we probe into 𝑇 , and for each 𝑘 probe into 𝑈 .
Although the query produces no output, the execution here takes
Ω(𝑁 3) time because it essentially first computes the join of 𝑅, 𝑆 ,
and𝑇 . A closer look at the execution reveals the culprit: when the
lookup on𝑈 produces no result on line 7, the algorithm continues
to the next iteration of the loop over 𝑘 values (line 6), even though
it will use the same 𝑦 to probe into 𝑈 again! To address this, the
first key idea of TTJ is to backjump2 to the level causing the
probe failure. To keep the presentation simple, we abuse excep-
tion handling to implement backjumping as shown in Figure 1b.
Upon a failed probe into𝑈 , we throw an exception which is caught
at the end of the second loop level, because the lookup key 𝑦 was
introduced at that level. We then continue to retrieve the next 𝑦, 𝑗
values, skipping over unnecessary iterations over 𝑘 values that are
doomed to fail. With this optimization, the execution finishes in
𝑂 (𝑁 2) time, as it still needs to compute the join of 𝑅 and 𝑆 . We can
improve the performance further: the second key idea of TTJ is
to delete the tuple causing the probe failure. This is shown
in Figure 1c: after the probe failure, we remove the current tuple
(𝑥,𝑦, 𝑗) from 𝑆 . This is safe to do, because we know the𝑦 value will
always fail to join with 𝑈 . In this way, we remove all tuples from
𝑆 after looping over it the first time. Then, on all subsequent itera-
tions of the loop over 𝑅, the probe into 𝑆 fails immediately. Overall,
the algorithm finishes in 𝑂 (𝑁) time.

In general, TTJ runs in linear time in the size of the input and
output for full acyclic joins. But the algorithm is not limited to
acyclic queries: given the same query plan, TTJ is guaranteed to

1One may also recognize this as indexed nested loop join, which is equivalent [10].
2Backjumping is a concept in backtracking search algorithms; we use the term in-
formally to mean the interruption of a nested loop iteration to jump back to an outer
loop, while referring to the original TreeTracker algorithm [5] for a precise definition.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Zeyuan Hu, Remy Wang, and Daniel P. Miranker

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1 # S: x -> [(y, j)]

2 # T: y -> [k]

3 # U: y -> [l]

4 for i,x in R:

5 for y,j in S[x]:

6 for k in T[y]:

7 for l in U[y]:

8 print(x,y,i,j,k,l)

(a) Binary join execution

1 for i,x in R:

2 for y,j in S[x]:

3 try: for k in T[y]:

4 if U[y] is None: throw Backjump

5 for l in U[y]:

6 print(...)

7 catch Backjump:

8 # continue to the 2nd loop level

(b) Backjumping

1 for i,x in R:

2 for y,j in S[x]:

3 try: for k in T[y]:

4 if U[y] is None: throw Backjump

5 for l in U[y]:

6 print(...)

7 catch Backjump:

8 S[x].delete((y, j))

(c) Tuple deletion

Figure 1: Execution of binary hash join, with backjumping, and with tuple deletion. Differences are underlined.

1 # t: current partial tuple

2 # plan: query plan

3 # i: position in plan

4 def join(t, plan, i):

5 if i == plan.len():

6 print(t)

7 else:

8 R = plan[i]

9 for m in R[𝜋𝑅(t)]:

10 join(t++m, plan, i+1)

(a) Binary join

1 def ttj(t, plan, i):

2 if i == plan.len():

3 print(t)

4 else:

5 R = plan[i]; P = parent(i, plan)

6 if R[𝜋𝑅(t)] is None & P is not None:

7 throw BackJump(P)

8 for m in R[𝜋𝑅(t)]:

9 try: ttj(t++m, plan, i+1)

10 catch BackJump(R): R[𝜋𝑅(t)].delete(m)

(b) TreeTracker join

1 def parent(i, plan):

2 if i == 0: return None

3 # the keys are the common attributes

4 # between R and previous relations

5 keys = R.schema ∩ ∪
0≤ 𝑗<𝑖 plan[j].schema

6 for S in plan[0..i]:

7 if keys ⊆ S.schema:

8 return S

9 # we did not find a valid parent

10 return None

(c) Computing the backjumping point

Figure 2: Binary hash join, TreeTracker join, and the parent function for computing the backjumping point in TTJ. 𝜋𝑅 (𝑡)
projects the tuple 𝑡 onto the common schema of 𝑅 and 𝑡 , and 𝑡 ++𝑚 appends𝑚 to 𝑡 while resolving their schema appropriately.

match the performance of binary join3, even for cyclic queries. In
particular, when no probe fails TTJ behaves identically to binary
join. This is in contrast to YA which always carries the overhead
of semijoin reduction, even if the reduction does little work. In
summary, our contributions are:

• Propose TTJ, a new join algorithm that runs in time𝑂 (|IN|+
|OUT|) on full acyclic queries.

• Prove that TTJ matches or outperforms binary join given
the same query plan, on both acyclic and cyclic queries.

• Improve the performance of TTJwith further optimizations.
• Conduct experiments to evaluate the efficiency of TTJ.

2 PRELIMINARIES
This section introduces fundamental concepts concerning acyclic
join queries and the associated definitions adopted in this paper.

2.1 JoinQueries and Acyclicity
We consider natural join queries, also known as full conjunctive
queries, of the form:

𝑄 (𝒙) = 𝑅1 (𝒙1) ⊲⊳ 𝑅2 (𝒙2) ⊲⊳ · · · ⊲⊳ 𝑅𝑘 (𝒙𝑘) (1)

where each 𝑅𝑖 is a relation name, and each 𝒙𝑖 (and 𝒙) a tuple of
variables. We call each 𝑅𝑖 (𝒙𝑖) an atom. The query computes the

3We model the cost of execution by number of hash probes and accessed tuples.

set4 𝑄 = {𝒙 | ∧𝑖∈[𝑘] 𝒙𝑖 ∈ 𝑅𝑖 }. We will omit 𝒙 and write 𝑄 = · · ·
to reduce clutter.

We say a query𝑄 is acyclic (more specifically 𝛼-acyclic) if there
exists a join tree for Q, defined as follows.

Definition 2.1 (Join Tree). A join tree for a query𝑄 is a treewhere
each node is an atom in𝑄 , such that for every variable 𝑥 , the nodes
containing 𝑥 form a connected subtree.

Consider the formal query used as example 1.1 :

𝑄1 = 𝑅(𝑖, 𝑥) ⊲⊳ 𝑆 (𝑥,𝑦, 𝑗) ⊲⊳ 𝑇 (𝑦, 𝑘) ⊲⊳ 𝑈 (𝑦, 𝑙) (2)

One join tree has𝑅(𝑖, 𝑥) at the root, 𝑆 (𝑥,𝑦, 𝑗) as its child, and𝑇 (𝑦, 𝑘)
and 𝑈 (𝑦, 𝑙) as children of 𝑆 . We encourage the reader to draw a
picture of this join tree for reference, and verify it satisfies the def-
inition above. One can construct a join tree for any acyclic query
with the GYO algorithm [3, 12], whichworks by finding a sequence
of ears. To define ear, we first introduce the concept of key schema:

Definition 2.2 (Key Schema). For a query 𝑄 of the form (1), the
key schema of an atom 𝑅𝑖 (𝒙𝑖) in 𝑄 , denoted as keys(𝑄, 𝑅𝑖), is the
set of variables shared between 𝑅𝑖 (𝒙𝑖) with the other atoms in 𝑄 ;
that is, keys(𝑄, 𝑅𝑖) = 𝒙𝑖 ∩

∪
𝑗≠𝑖 𝒙 𝑗 .

Intuitively, keys(𝑄, 𝑅𝑖) form the keys of 𝑅𝑖 ’s hash table, if we
first join the other relations in 𝑄 , and then join the result with 𝑅𝑖 .

4For clarity we assume set semantics. No change is needed for TTJ to support bag
semantics

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

TreeTracker Join: Simple, Optimal, Fast

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1 # input: a forest where each tree has one atom

2 def GYO(Q, forest):

3 while not Q.is_empty():

4 R = find-ear(Q); P = parent(Q, R)

5 forest.set_parent(R, P)

6 Q.remove(R)

Figure 3: The GYO alglorithm

Definition 2.3 (Ear). Given a query 𝑄 of the form (1), an atom
𝑅𝑖 (𝒙𝑖) is an ear if it satisfies the property ∃𝑝 ≠ 𝑖 : 𝒙𝑝 ⊇ keys(𝑄, 𝑅𝑖).
In words, there is another atom 𝑅𝑝 (𝒙𝑝) that contains all the vari-
ables in 𝑅𝑖 ’s key schema. We call such an 𝑅𝑝 a parent of 𝑅𝑖 .

The parent concept is central to the TTJ algorithm. The parent’s
schema include all of its children’s keys. When a hash lookup fails
at a child, TTJ will backjump to the parent.

The GYO algorithm is shown in Figure 3: we start with a forest
where each atom makes up its own tree, then for every ear, we
attach it to its parent and remove that ear from the query.

Definition 2.4 (GYO reduction order). A GYO reduction order for
a query 𝑄 is a sequence [𝑅𝑝1 , 𝑅𝑝2 , . . . , 𝑅𝑝𝑘] that is a permutation
of [𝑅1, 𝑅2, . . . , 𝑅𝑘], such that for every 𝑖 < 𝑘 , the atom 𝑅𝑝𝑖 is an ear
in the (sub)query 𝑅𝑝𝑖 ⊲⊳ · · · ⊲⊳ 𝑅𝑝𝑘 .

Equivalently, it is the same order of atoms as visited by the GYO
algorithm. For example, a GYO reduction order for𝑄1 is [𝑈 ,𝑇 , 𝑆, 𝑅],
as the reader can verify. The existence of a GYO reduction order
implies the exitence of a join tree and vice versa:

TheoRem 2.5. A query 𝑄 has a join tree (i.e., 𝑄 is 𝛼-acyclic) if
and only if it has a GYO reduction order [3, 12].

2.2 Binary Join
In this paper we focus on hash-based join algorithms. Furthermore
we consider only left-deep linear joins, as the common approach
to handle bushy joins is to decompose into a sequence of left-deep
linear joins and materialize each intermediate result.

Definition 2.6 (Query Plan). A (left-deep linear) query plan for a
query 𝑄 of the form (1) is a sequence [𝑅𝑝1 , 𝑅𝑝2 , . . . , 𝑅𝑝𝑘] that is a
permutation of 𝑄 ’s relations [𝑅1, 𝑅2, . . . , 𝑅𝑘].

An example query plan for𝑄1 in 2 is [𝑅, 𝑆,𝑇 ,𝑈]. Onemay notice
similarities between a GYO reduction order and a query plan. The
reason for this will become clear later.

We follow the push-basedmodel [9] and present the binary hash
join algorithm as in Figure 2a: we start by passing to join the empty
tuple 𝑡 = (), a query plan, and 𝑖 = 0 to start at the beginning of
the plan. Although we do not need to build a hash table for the
left-most relation (the first relation in the plan), for simplicity we
assume that there is a (degenerate) hash table mapping the empty
tuple () to the entire left-most relation. In the body of join, we
first check if the plan has been exhausted and if so, we output the
tuple 𝑡 . Otherwise, we retrieve the 𝑖-th relation 𝑅𝑖 from the plan,
and lookup from 𝑅𝑖 the matching tuples that join with 𝑡 . For each
match, we concatenate it with 𝑡 and recursively call join.

1 # input: a GYO reduction order

2 def YA(Q, order):

3 for R in order: # preprocess with semijoins

4 P = parent(Q, R); Q.remove(R)

5 if P is not None: P = P ⋉ R

6 # compute the output with standard hash join

7 return join((), reverse(order), 0)

Figure 4: Yannakakis’s algorithm

It may be helpful to unroll the recursion over a query plan, and
we encourage the reader to do so for𝑄1 in (2) with the plan [𝑅, 𝑆,𝑇 ,𝑈].
This should result in exactly the same code as in Figure 1a.

2.3 Yannakakis’s Algorithm
Yannakakis’s original algorithm [11]makes two preprocessing passes
over the input relations. A third pass computes the joins yielding
the final output. Bagan, Durand, and Gandjean [1] improved the
original algorithm by eliminating the second preprocessing pass.
For brevity we only describe the latter algorithm. Following com-
mon usage, hereafter, we will refer to the improved version as Yan-
nakakis’s alglorithm/YA.

As shown in Figure 4, given a GYO reduction order we first pre-
process the relations with semijoins, then compute the output with
standard hash join. Equivalently, we can also preprocess by travers-
ing a join tree bottom-upwhile performing semijoins, and compute
the output by traversing the tree top-down with hash join.

Example 2.7. Given the query 𝑄1 in (2) and the GYO reduction
order [𝑈 ,𝑇 , 𝑆, 𝑅], YA first performs the series of semijoins 𝑆 ⋉ 𝑈 ,
𝑆⋉𝑇 , and 𝑅⋉𝑆 , then computes the output with the plan [𝑅, 𝑆,𝑇 ,𝑈].
The reader may refer to the join tree of 𝑄1 and see that we are
indeed traversing the tree bottom-up then top-down.

2.4 The TreeTracker Algorithm
As the name suggests, TreeTracker Join is a direct decendent of
the TreeTracker algorithm [5] from Constraint Satisfaction. The
TreeTracker CSP algorithm resolved Dechter’s conjecture [2] that
there existed an optimal algorithm for acyclic CSPs free of any
preprocessing.This connection between query answering and con-
straint satisfaction should not be surprising, as it has been noted
the problems are two sides of the same coin [6, 8]. While we will
not describe the TreeTracker algorithm in full, we highlight the
key differences between TreeTracker and TTJ. First, in the context
of constraint satisfaction, the original TreeTracker algorithm stops
after producing the first satisfying assignment, while TTJ produces
all tuples in the query output. Second, the original TreeTracker al-
gorithm does not make use of hash tables, and is more similar to
nested loop join as opposed to hash join. Finally, the best known
complexity of the original TreeTracker algorithm is polynomial in
the input size and does not consider the output size, while we prove
TTJ to run in linear time in the total size of the input and output.

3 TREETRACKER JOIN
Before explaining the algorithm, we first introduce the helper func-
tion parent in Figure 2c for determining the backjumping points.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Zeyuan Hu, Remy Wang, and Daniel P. Miranker

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

1 if R[()] is None: throw Backjump(None)

2 for i,x in R:

3 try: if S[x] is None: throw Backjump(R)

4 for y,j in S[x]:

5 try: if T[y] is None: throw Backjump(S)

6 for k in T[y]:

7 try: if U[y] is None: throw Backjump(S)

8 for l in U[y]:

9 try: output(x,y,i,j,k,l)

10 catch Backjump(U): U.delete(y, l)

11 catch Backjump(T): T.delete(y, k)

12 catch Backjump(S): S.delete(x,y,j)

13 catch Backjump(R): R.delete(i, x)

Figure 5: Execution of TTJ for Example 1.1

Given a position 𝑖 and a query plan [𝑅𝑝1 , . . . , 𝑅𝑝𝑘], parent returns
the first parent of 𝑅𝑝𝑖 in the subquery𝑄𝑖 = 𝑅𝑝1 ⊲⊳ · · · ⊲⊳ 𝑅𝑝𝑖 , if 𝑅𝑝𝑖
is an ear of 𝑄𝑖 . Otherwise, it returns None.

Example 3.1. Consider again 𝑄1 in Example 1.1 and the query
plan [𝑅, 𝑆,𝑇 ,𝑈]. Calling parent(i, [R,S,T,U]) with 𝑖 ∈ {0, 1, 2, 3}
returns None, R, S, and S, respectively. This is consistent with the
join tree we constructed for 𝑄1: 𝑅 is the root and therefore has no
parent, the parent of 𝑆 is 𝑅, and the parent of 𝑇 and𝑈 is 𝑆 .

Note that although parent ties closely to the concept of join
trees, TTJ continues to work even if there is no join tree and parent

returns None more than once.
We are now ready to present the TTJ algorithm in Figure 2b.

The algorithm follows the same structure as binary hash join, and
the difference starts at the hash lookup R[𝜋𝑅(t)] on line 6. If this
lookup fails (i.e., it finds nomatch) and if𝑅 has a parent 𝑃 , TTJ back-
jumps to the end of the loop at 𝑃 ’s level by throwing an exception
(line 7).This will be caught by the corresponding catch block at 𝑃 ’s
level, upon which we delete the tuple causing the failure from 𝑃 ,
and continue onto the next iteration at that loop level.

Example 3.2. It can be helpful to unroll the recursion of TTJ over
a query plan. Given 𝑄1 in (2) and the plan [𝑅, 𝑆,𝑇 ,𝑈], Figure 5
shows the execution of TTJ. We gray out dead code and no-ops:

• Line 1 is unreachable because R[()] is always the entire
relation 𝑅, and 𝑅 does not have a parent.

• Line 3 (and 13) is a no-op, because it would just backjump
to the immediately enclosing loop, and removing a tuple
from 𝑅 is useless because 𝑅 is at the outermost loop5.

• Technically the if-statement on line 5 is useful even though
it only backjumps one level, because the backjump would
remove a tuple from 𝑆 when caught (line 12). However for
the particular input data in Example 1.1 we do not need
this, and we gray it out to reduce clutter.

• Finally, the innermost two try-catch pairs are unreachable,
because neither𝑈 nor 𝑇 has children.

At this point, the remaining code in black is identical to the code
in Figure 1c (after replacing Backjump(S) with Backjump). As a side
5In Section 4 we will introduce an additional optimization that makes “removing”
from the outermost relation meaningful.

note, a sufficiently smart compiler with partial evaluation or just-
in-time compilation could potentially remove the dead code and
no-ops as we have done above.

3.1 Correctness and Asymptotic Complexity
Thanks to its close resemblance to binary join, we can prove TTJ
correct by relying on the correctness of binary join:

TheoRem 3.3. Given any plan p for 𝑄 , ttj((),p,0) computes 𝑄 .

PRoof. Because we know binary join correctly computes𝑄 , we
only need to prove the different behavior between TTJ and binary
join does not affect the output. Specifically, when a hash lookup
R[𝜋𝑅(t)] fails, we show it is safe to backjump to 𝑅’s parent, 𝑃 ,
and delete 𝜋𝑃 (𝑡) from 𝑃 . Upon the lookup failure, we know the
hash keys 𝜋𝑅 (𝑡) do not appear in 𝑅, therefore they also cannot
appear in any output tuple of 𝑄 . By definition, the schema of the
parent, 𝑃 , contains all the key attributes of 𝑅, so 𝜋𝑃 (𝑡) will not
contribute to any output either. It is therefore safe to backjump
over any recursive calls with 𝑡 ⊇ 𝜋𝑃 (𝑡), and also delete 𝜋𝑃 (𝑡) from
𝑃 . □

Next, we prove TTJ runs in linear time in the size of the input
and output, for full acyclic queries. We first introduce a condition
on the query plan that is necessary for the linear time complexity:

Lemma 3.4. Given a query 𝑄 and a plan 𝑝 = [𝑅𝑝1 , . . . , 𝑅𝑝𝑘] for
𝑄 , parent returns None only for 𝑅𝑝1 during the execution of TTJ, if 𝑝
is the reverse of a GYO reduction order of 𝑄 .

PRoof. If [𝑅𝑝𝑘 , . . . , 𝑅𝑝1] is a GYO reduction order, then there is
a join tree with 𝑅𝑝1 as root, and every other atom has a parent. □

TTJ is guaranteed to run in linear time given such a plan:

TheoRem 3.5. Fix a query 𝑄 and a plan 𝑝 . If 𝑝 is the reverse of
a GYO reduction order for 𝑄 , then ttj((),p,0) computes 𝑄 in time
𝑂 (|𝑄 | +∑

𝑖 |𝑅𝑖 |).

PRoof. We first note that in Figure 2b, ttj does constant work
outside of the loops; each iteration of the loop also does constant
work and recursively calls ttj, so each call to ttj accounts for con-
stant work, and so the total run time is linear in the number of calls
to ttj. All we need to show now is that there are a linear number
of calls to ttj.

Because 𝑝 is the reverse of a GYO reduction order for𝑄 , the fol-
lowing holds from Lemma 3.4: except for the one call to ttj on the
root relation (when 𝑖 = 0), every call to ttj has 3 possible outcomes:
(1) It outputs a tuple. (2) It backjumps and deletes a tuple from an
input relation. (3) It recursively calls ttj. Because the query plan
has constant length, there can be at most a constant number of
recursive calls to ttj (case 3) until we reach cases 1 or 2. There-
fore there are at most 𝑂 (|𝑄 | + ∑

𝑖 |𝑅𝑖 |) calls to ttj, and the entire
algorithm runs in that time. □

By Theorem 2.5 every 𝛼-acyclic query has a GYO reduction or-
der, therefore ttj runs in linear time:

CoRollaRy 3.6. For any 𝛼-acyclic query𝑄 , there is a plan 𝑝 such
that ttj((),p,0) computes 𝑄 in time 𝑂 (|𝑄 | +∑

𝑖 |𝑅𝑖 |).
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

TreeTracker Join: Simple, Optimal, Fast

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

3.2 Comparison with Binary Join and YA
We now prove our claim that, for any given query plan, TTJ always
matches or outperforms binary join.

TheoRem 3.7. Given a query𝑄 and a plan 𝑝 for𝑄 , computing𝑄
with TTJ using 𝑝 makes at most as many hash lookups as computing
𝑄 with binary join using 𝑝 .

PRoof. For clarity we have repeated the lookup R[𝜋𝑅(t)] three
times in Figure 2b, but we really only need to look up once and
save the result to a local variable for reuse. This way, every call
to ttj makes exactly one hash lookup. Since the binary join algo-
rithm in Figure 2a also makes exactly one hash lookup per call, it
is sufficient to bound the number of calls to ttj by that of binary
join. Recall that the execution of TTJ differs from binary join only
when a lookup fails, upon which TTJ backtracks at least one recur-
sive level and potentially more, while binary join always returns
to the immediately enclosing level. Therefore, the number of calls
to ttj is at most the number of calls to join in binary join. □

Intuitively, after a lookup failure binary join may repeat the
same lookup again, as we have seen in Example 1.1, while TTJ
avoids that by backjumping to the tuple causing the failure and
getting a new one. Also note that in the above proof we did not
mention tuple deletion – indeed, tuple deletion is only necessary
for the linear time complexity. As another cost in query execu-
tion comes from accessing the matching tuples after a successful
lookup, one can prove that TTJ accesses no more tuples than bi-
nary join, following the same argument as above. Finally, we note
that the above proof does not assume an acyclic query.

While we guarantee TTJ to always match binary join, unfortu-
nately we cannot make the same strong claim for YA. We will see
in Section 5 that YA performs better than TTJ on some queries.
Here we analyze a few extreme cases for some intuition of how
TTJ compares to YA:

Example 3.8. Consider a query where every tuple successfully
joins, i.e., no lookup fails. In this case binary join and TTJ behaves
identically. However, YA spends additional time futilely computing
semijoins (without removing any tuple), before following the same
execution as binary join and TTJ to produce the output.

Example 3.9. Theother extreme case is when a query has no out-
put, and YA immediately detects this and stops. In fact Example 1.1
is such a query: all YA needs to do is the semijoin 𝑇 ⋉𝑈 , where it
builds a (tiny) hash table for 𝑈 and iterate over 𝑇 once to detect
nothing joins. In contrast, although TTJ also runs in linear time, it
must build the hash table for all of 𝑆 , 𝑇 and𝑈 .

4 OPTIMIZATIONS
We now present two optimizations of TTJ to further improve its
performance, namely deletion propagation and no-good list.

Deletion Propagation. Recall that after a lookup failure, we back-
jump to the offending tuple and remove it from its relation. In
certain cases, we remove all tuples sharing the same hash key:
R[𝜋𝑅(t)] becomes empty after line 10 in Figure 2b. In this case, we
know that in any subsequent lookup, R[𝜋𝑅(t)] will fail. Instead of

waiting for and wasting the lookup failure, we immediately back-
jump to the parent of 𝑅 and propagate the deletion to the parent. To
implement this, we add the following line to the end of Figure 2b:

if R[𝜋𝑅(t)] is None & P is not None: BackJump(P)

There is a case where this optimization is not beneficial. When
there are no subsequent lookups to R[𝜋𝑅(t)] propagating the dele-
tion is unnecessary and carries a small overhead.

No-Good List. We had remarked in Section 3 that removing a
tuple from the root relation is pointless, as the same tuple would
never be considered again. However, it can be beneficial to “re-
move” a tuple more programmatically: the idea of the no-good list
optimization is to keep a blacklist of attribute values, so that we
immediately skip any tuple matching those attributes. Concretely,
we change Figure 2b in three places. First, we include the key val-
ues when backjumping on line 7:

throw BackJump(P, 𝜋𝑅(t))

Thenwhen catching the backjump (line 10) at the root relation, we
add those key values to the blacklist:

catch BackJump(R, keys):

if i == 0: no_good.add(keys) else: R[𝜋𝑅(t)].delete(m)

Finally, we skip over any tuple matching the no-good list while
iterating over the root relation (after line 8):

if i == 0 & m.matches(no_good): continue

Like deletion propagation, the benefit of a no-good list is data de-
pendent. When the list gets big, maintaining and probing it may
become more expensive than the lookups saved.

5 EXPERIMENTS
We compare the speed of TTJwith binary hash join (HJ) and YA on
113 acyclic queries from the Join Ordering Benchmark [7]. We im-
plement all three algorithms in Java, and provide each algorithm
with the same query plan produced by SQLite6. Every plan we en-
coutered can be reversed into a GYO order. Thus, YA and TTJ (by
Theorem 3.5) are guaranteed to run in linear time. More detail on
the implementation and experiments appears in the long version
of this paper[4].

Figure 6 shows the speed-up of YA,HJ, and TTJ relative to native
SQLite execution. Of 113 JOB queries, TTJ is the fastest algorithm
on 97 (86%) of them. Compared to HJ, the maximum speed-up is
26.7× (16b), the minimum speed-up is 1× (1a), and the average
speed-up (geometric mean) is 1.30×. Compared to YA, the maxi-
mum speed-up is 8.9× (16b), the minimum speed-up is 0.3× (6a),
and the average speed-up is 1.67×.

Whenever HJ outperforms TTJ their difference is negligible. YA
visibly outperforms TTJ andHJ on queries 6a, 6b, 6c, 6d, 6e, 7b, and
17a. This is a consequence of the semijoin reduction on the largest
relation, cast_info, which removes a large fraction of tuples before
building its hash table. Since both TTJ and HJ build all their hash
tables before computing the join, the time to build the larger hash
table dominates. An example is query 6a. The semijoin reduction

6For q7b the plan generated by MySQL was used. The SQLite plan contains Cartesian
products which we do not yet support.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Zeyuan Hu, Remy Wang, and Daniel P. Miranker

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1a
1b

1c
1d

2a
2b

2c
2d

3a
3b

3c
4a

4b
4c

5a
5b

5c
6a

6b
6c

6d
6e

6f
7a

7b
7c

8a
8b

8c
8d

9a
9b

9c
9d

10
a

10
b

10
c

11
a

110

SQ
Lit

e

11
b

11
c

11
d

12
a

12
b

12
c

13
a

13
b

13
c

13
d

14
a

14
b

14
c

15
a

15
b

15
c

15
d

16
a

16
b

16
c

16
d

17
a

17
b

17
c

17
d

17
e

17
f

18
a

18
b

18
c

19
a

19
b

19
c

19
d

20
a

20
b

20
c

21
a

110 Speedup (log scale)

21
b

21
c

22
a

22
b

22
c

22
d

23
a

23
b

23
c

24
a

24
b

25
a

25
b

25
c

26
a

26
b

26
c

27
a

27
b

27
c

28
a

28
b

28
c

29
a

29
b

29
c

30
a

30
b

30
c

31
a

31
b

31
c

32
a

32
b

33
a

33
b

33
c

110

Fi
gu

re
6:

Sp
ee
du

p
of

YA
,H

J,
an

d
T
TJ

ov
er

SQ
Li
te

on
al
l1

13
JO

B
qu

er
ie
s.

on cast_info reduces around 36 million tuples to 486 tuples. Ex-
amining the time taken to build the hash tables for query 6a, YA
required 521 ms, which is 8% of the total execution time, compared
to 19,710 ms, amounting to 99% of the total runtime for TTJ.

SQLite runs significantly faster on queries 5a and 5b as a re-
sult of an optimization we did not implement.These queries return
no results. Once SQLite detects the output will be empty it avoids
building additional hash tables7.

6 FUTUREWORK AND CONCLUSION
In this paperwe have proposed our new join algorithm, TreeTracker
Join (TTJ). The algorithm runs in time 𝑂 (|IN| + |OUT|) on acyclic
queries, and given the same query plan it always matches or out-
performs binary join. We have shown emperically that TTJ is com-
petitive with binary join and Yannakakis’s algorithm.

Although our implementation already beats SQLite in our ex-
periments, challenges remain for TTJ to compete with highly op-
timized systems. Decades of research on binary join has produced
effective techniques like column-oriented storage, vectorized exe-
cution, and parallel execution, just to name a few. Future research
should investigate how to adapt these techniques to TTJ, or de-
velop optimizations tailored to TTJ like the ones described in Sec-
tion 4.

Our experiments focued on acyclic queries due to their preva-
lence in traditional workloads. However, with the rise of graph
databases we begin to encounter more andmore cyclic queries. Ad-
ditional research on TTJ for cyclic queries, both in terms of practi-
cal performance and theoretical guarantees, will be very valuable.

REFERENCES
[1] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic

Conjunctive Queries and Constant Delay Enumeration. In Annual Conference
for Computer Science Logic. https://api.semanticscholar.org/CorpusID:15398587

[2] Rina Dechter. 1990. Enhancement Schemes for Constraint Processing: Back-
jumping, Learning, and Cutset Decomposition. Artif. Intell. 41, 3 (1990), 273–312.
https://doi.org/10.1016/0004-3702(90)90046-3

[3] M. Graham. 1980. On the universal relation. Technical Report. University of
Toronto, Computer Systems Research Group.

[4] Zeyuan Hu and Daniel P. Miranker. 2024. TreeTracker Join: Turning the Tide
When a Tuple Fails to Join. CoRR abs/2403.01631 (2024). https://doi.org/10.
48550/ARXIV.2403.01631 arXiv:2403.01631

[5] Roberto J. Bayardo Jr. and Daniel P. Miranker. 1994. An Optimal Backtrack
Algorithm for Tree-Structured Constraint Satisfaction problems. Artif. Intell.
71, 1 (1994), 159–181. https://doi.org/10.1016/0004-3702(94)90064-7

[6] Phokion G. Kolaitis and Moshe Y. Vardi. 2000. Conjunctive-Query Containment
and Constraint Satisfaction. J. Comput. Syst. Sci. 61, 2 (2000), 302–332. https:
//doi.org/10.1006/JCSS.2000.1713

[7] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[8] Daniel P. Miranker, Roberto J. Bayardo, and Vasilis Samoladas. 1997. Query Eval-
uation as Constraint Search; An Overview of Early Results. In International Sym-
posium on the Applications of Constraint Databases. https://api.semanticscholar.
org/CorpusID:8644835

[9] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Mod-
ern Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[10] SQLite Documentation. 2024. Query Planning and Optimization. https://www.
sqlite.org/optoverview.html#hash_joins. Accessed: 2024-07-24.

[11] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very
Large Data Bases, 7th International Conference, September 9-11, 1981, Cannes,
France, Proceedings. IEEE Computer Society, 82–94.

7SQLite uses B-trees instead of hash tables, but its documentation [10] treats them as
roughly equivalent. For brevity, we refer to SQLite’s B-trees as hash tables.

6

https://api.semanticscholar.org/CorpusID:15398587
https://doi.org/10.1016/0004-3702(90)90046-3
https://doi.org/10.48550/ARXIV.2403.01631
https://doi.org/10.48550/ARXIV.2403.01631
https://arxiv.org/abs/2403.01631
https://doi.org/10.1016/0004-3702(94)90064-7
https://doi.org/10.1006/JCSS.2000.1713
https://doi.org/10.1006/JCSS.2000.1713
https://doi.org/10.14778/2850583.2850594
https://api.semanticscholar.org/CorpusID:8644835
https://api.semanticscholar.org/CorpusID:8644835
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://www.sqlite.org/optoverview.html#hash_joins
https://www.sqlite.org/optoverview.html#hash_joins

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

TreeTracker Join: Simple, Optimal, Fast

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

[12] Clement T. Yu and M. Z. Ozsoyoglu. 1979. An algorithm for tree-query mem-
bership of a distributed query. In Annual International Computer Software and

Applications Conference. https://api.semanticscholar.org/CorpusID:7812638

7

https://api.semanticscholar.org/CorpusID:7812638

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Join Queries and Acyclicity
	2.2 Binary Join
	2.3 Yannakakis's Algorithm
	2.4 The TreeTracker Algorithm

	3 TreeTracker Join
	3.1 Correctness and Asymptotic Complexity
	3.2 Comparison with Binary Join and YA

	4 Optimizations
	5 Experiments
	6 Future Work and Conclusion
	References

