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ABSTRACT

Inspired by the TreeTracker algorithm used in Constraint Satisfac-
tion we present a novel linear-time join algorithm, TreeTracker
Join (TTJ). TT) is very similar to a standard binary hash join, but
introduces a test that identifies when a tuple is dangling and re-
moves that tuple from its relation. The test is to simply observe if
a hash lookup fails to return any matching tuples. If so, TT) deter-
mines which tuple is responsible for the failure, backtracks to the
offending tuple, and removes it from its relation.

As compared to the best known linear-time join algorithm, Yan-
nakakis’s algorithm, TTJ shares the same asymptotic complexity
on acyclic queries while imposing much lower overhead in prac-
tice. We can also reuse any binary join plan for TT), with the guar-
antee that TT) will match or outperform binary join on the same
plan. Furthermore, this guarantee also extends to cyclic queries.
Our experiments show TT] is the fastest algorithm in 97 out of 113
queries, and outperforms binary join and Yannakakis’s algorithm
by up to 26.7x and 8.9, respectively.

1 INTRODUCTION

In 1981, Yannakakis [11] was the first to describe a linear-time join
algorithm (hereafter YA) running in time O(|IN| + |OUT]|), where
|IN] is the input size and |OUT]| is the output size. In principle,
this is the best asymptotic complexity that one can hope for, be-
cause in most cases the algorithm must read the entire input and
write the entire output. However, virtually no modern database
systems implement YA. A major factor is its high overhead. Prior
to executing the join YA makes two passes over the input relations,
using semijoins to reduce the size of each input. The reduced rela-
tions are then joined to produce the final output. Since the cost of
a semijoin is proportional to the size of its arguments, this imme-
diately incurs a 2X overhead in the input size. An improved ver-
sion of YA [1] achieves the same result in one semijoin pass, but
the overhead of this pass remains. Another practical challenge is
that YA is “too different” from traditional binary join algorithms,
making it difficult to integrate into existing systems. For example,
the efficiency of YA critically depends on a join tree which is dif-
ferent from the query plan used by binary joins. Where there is a
wealth of techniques to optimize query plans for binary joins, little
is known about optimizing join trees for YA.

In this paper, we propose a new linear-time join algorithm called
TreeTracker Join (TTJ). Inspired by the TreeTracker algorithm [5]
in Constraint Satisfaction, TT) can be understood as the traditional
binary hash join with a twist: when a hash lookup fails, backtrack
to the tuple causing the failure, and remove that tuple from its re-
lation. The backtracking points can be determined by the query
compiler, as they depend only on the query and not the data. With
those in place, TTJ requires no query-execution time preprocess-
ing, and the algorithm’s performance is guaranteed to match or

outperform binary hash join given the same query plan (Section 3.2).
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Thanks to the straightforward nature of TTJ, we are able to craft
pleasantly simple proofs of its correctness and efficiency. We use
the following example to illustrate the main ideas of TT)J.

Example 1.1. Consider the natural join of the relations R(i, x),
S(x,v,j), T(y, k), and U(y, ), where we use R(i, x) to denote that
the schema of R is {i, x}. Let the relations be defined as follows:

R={@1|ie[N]} S={(11))]je[N]}
T={(Lk) [ke[N]} U={@©D][le[N]}

In the above we denote the set {1,..., N} with [N]. Note that
on these input relations, the join produces no output, because U
shares no common y-values with S or T. Let us first compute the
join with binary hash join. Suppose the optimizer produces a left-
deep join plan ((R >« S) >« T) >« U. Following this plan, the execu-
tion engine first builds hash tables for S, T, and U, mapping each
x to (y, j) values in S, y to k values in T, and y to [ values in U.
Then we compute the join as shown in Figure 1a!. For each (i, x)
tuple in R, we probe into the hash table for S to get the (y, j) val-
ues. For each (y, j), we probe into T, and for each k probe into U.
Although the query produces no output, the execution here takes
Q(N?3) time because it essentially first computes the join of R, S,
and T. A closer look at the execution reveals the culprit: when the
lookup on U produces no result on line 7, the algorithm continues
to the next iteration of the loop over k values (line 6), even though
it will use the same y to probe into U again! To address this, the
first key idea of TT]J is to backjump? to the level causing the
probe failure. To keep the presentation simple, we abuse excep-
tion handling to implement backjumping as shown in Figure 1b.
Upon a failed probe into U, we throw an exception which is caught
at the end of the second loop level, because the lookup key y was
introduced at that level. We then continue to retrieve the next y, j
values, skipping over unnecessary iterations over k values that are
doomed to fail. With this optimization, the execution finishes in
O(N?) time, as it still needs to compute the join of R and S. We can
improve the performance further: the second key idea of TT) is
to delete the tuple causing the probe failure. This is shown
in Figure 1c: after the probe failure, we remove the current tuple
(x,y, j) from S. This is safe to do, because we know the y value will
always fail to join with U. In this way, we remove all tuples from
S after looping over it the first time. Then, on all subsequent itera-
tions of the loop over R, the probe into S fails immediately. Overall,
the algorithm finishes in O(N) time.

In general, TT) runs in linear time in the size of the input and
output for full acyclic joins. But the algorithm is not limited to
acyclic queries: given the same query plan, TT) is guaranteed to

!One may also recognize this as indexed nested loop join, which is equivalent [10].

2Backjumping is a concept in backtracking search algorithms; we use the term in-
formally to mean the interruption of a nested loop iteration to jump back to an outer
loop, while referring to the original TreeTracker algorithm [5] for a precise definition.
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#S: x> [y, NI
# 7.y —> [Kk]
# U: y —> [1]
for i,x in R:

for i,x in R:
for y,j in S[x]:

try: for k in T[y]:
if ULy] is None: throw Backjump
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for i,x in R:
for y,j in S[x]:
try: for k in T[y]:
if ULy] is None: throw Backjump

for y,j in S[x]:
for k in T[y]:
for 1 in U[y]:
print(x,y,i,j,k,1)

for 1 in U[y]:
print(...)
catch Backjump:

(a) Binary join execution

# continue to the 2nd loop level

(b) Backjumping

for 1 in ULy]:
print(...)
catch Backjump:
S[x].delete((y, 3))

(c) Tuple deletion

Figure 1: Execution of binary hash join, with backjumping, and with tuple deletion. Differences are underlined.

# t: current partial tuple
# plan: query plan

def ttj(t, plan, i):
if i == plan.len():

def parent(i, plan):
if i == @: return None

# the keys are the common attributes

# between R and previous relations

keys = R.schema N U< ;<; plan[j].schema

for S in plan[0..i]:

# i: position in plan print(t)
def join(t, plan, i): else:
if i == plan.len(): R = plan[i]; P = parent(i, plan)
print(t) if R[zr(t)] is None & P is not None:
else: throw BackJump(P)
R = plan[i] for m in RLzg(t)1:

for m in R[zr(t)]:
join(t++m, plan, i+1)

try: ttj(t++m, plan, i+1)
catch BackJump(R): R[zr(t)].delete(m)

if keys C S.schema:
return S
# we did not find a valid parent
return None

(a) Binary join

(b) TreeTracker join

(c) Computing the backjumping point

Figure 2: Binary hash join, TreeTracker join, and the parent function for computing the backjumping point in TTJ. 7zg(¢)
projects the tuple ¢ onto the common schema of R and ¢, and t ++ m appends m to t while resolving their schema appropriately.

match the performance of binary join?, even for cyclic queries. In
particular, when no probe fails TT) behaves identically to binary
join. This is in contrast to YA which always carries the overhead
of semijoin reduction, even if the reduction does little work. In
summary, our contributions are:

e Propose TTJ, anew join algorithm that runs in time O(|IN|+
|OUT]) on full acyclic queries.

e Prove that TT) matches or outperforms binary join given
the same query plan, on both acyclic and cyclic queries.

e Improve the performance of TT) with further optimizations.

e Conduct experiments to evaluate the efficiency of TT].

2 PRELIMINARIES

This section introduces fundamental concepts concerning acyclic
join queries and the associated definitions adopted in this paper.

2.1 Join Queries and Acyclicity

We consider natural join queries, also known as full conjunctive
queries, of the form:

Q(x) = Ry(x1) e Ra(x2) > - - - > R (xg) (1)
where each R; is a relation name, and each x; (and x) a tuple of
variables. We call each R;(x;) an atom. The query computes the

3We model the cost of execution by number of hash probes and accessed tuples.

set* O = {x | Nie[k] *i € Ri}. We will omit x and write Q = - -
to reduce clutter.

We say a query Q is acyclic (more specifically a-acyclic) if there
exists a join tree for Q, defined as follows.

Definition 2.1 (Join Tree). A join treefor a query Q is a tree where
each node is an atom in Q, such that for every variable x, the nodes
containing x form a connected subtree.

Consider the formal query used as example 1.1 :

Q1 =R(i,x) »a S(x,y,j) = T(y, k) > U(y,]) @)

One join tree has R(i, x) at the root, S(x, y, j) asits child, and T (y, k)
and U(y,l) as children of S. We encourage the reader to draw a
picture of this join tree for reference, and verify it satisfies the def-
inition above. One can construct a join tree for any acyclic query
with the GYO algorithm [3, 12], which works by finding a sequence
of ears. To define ear, we first introduce the concept of key schema:

Definition 2.2 (Key Schema). For a query Q of the form (1), the
key schema of an atom R;(x;) in Q, denoted as keys(Q, R;), is the
set of variables shared between R;(x;) with the other atoms in Q;
that is, keys(Q, R;) = x; N U jz; xj.

Intuitively, keys(Q, R;) form the keys of R;’s hash table, if we
first join the other relations in Q, and then join the result with R;.

4For clarity we assume set semantics. No change is needed for TTJ to support bag
semantics

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

259

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

290

TreeTracker Join: Simple, Optimal, Fast

# input: a forest where each tree has one atom
def GYO(Q, forest):
while not Q.is_empty():
R = find-ear(Q); P = parent(Q, R)
forest.set_parent(R, P)
Q.remove(R)

Figure 3: The GYO alglorithm

Definition 2.3 (Ear). Given a query Q of the form (1), an atom
R;(x;) isan earif it satisfies the property 3p # i : xp 2 keys(Q, R;).
In words, there is another atom Ry (xp) that contains all the vari-
ables in R;’s key schema. We call such an R, a parent of R;.

The parent concept is central to the TT) algorithm. The parent’s
schema include all of its children’s keys. When a hash lookup fails
at a child, TTJ will backjump to the parent.

The GYO algorithm is shown in Figure 3: we start with a forest
where each atom makes up its own tree, then for every ear, we
attach it to its parent and remove that ear from the query.

Definition 2.4 (GYO reduction order). A GYO reduction order for
a query Q is a sequence [Rp,,Rp,,...,Rp, ] that is a permutation
of [R1, Ry, ..., Ri], such that for every i < k, the atom Ry, is an ear
in the (sub)query Ry, v -+ =4 Rp, .

Equivalently, it is the same order of atoms as visited by the GYO
algorithm. For example, a GYO reduction order for Q1 is [U, T, S, R],
as the reader can verify. The existence of a GYO reduction order
implies the exitence of a join tree and vice versa:

THEOREM 2.5. A query Q has a join tree (i.e., Q is a-acyclic) if
and only if it has a GYO reduction order [3, 12].

2.2 Binary Join

In this paper we focus on hash-based join algorithms. Furthermore
we consider only left-deep linear joins, as the common approach
to handle bushy joins is to decompose into a sequence of left-deep
linear joins and materialize each intermediate result.

Definition 2.6 (Query Plan). A (left-deep linear) query plan for a
query Q of the form (1) is a sequence [Rpp Rp,, .. .,Rpk] that is a
permutation of Q’s relations [Ry, Ry, . .., Re].

An example query plan for Q7 in 2is [R, S, T, U]. One may notice
similarities between a GYO reduction order and a query plan. The
reason for this will become clear later.

We follow the push-based model [9] and present the binary hash
join algorithm as in Figure 2a: we start by passing to join the empty
tuple t = (), a query plan, and i = 0 to start at the beginning of
the plan. Although we do not need to build a hash table for the
left-most relation (the first relation in the plan), for simplicity we
assume that there is a (degenerate) hash table mapping the empty
tuple () to the entire left-most relation. In the body of join, we
first check if the plan has been exhausted and if so, we output the
tuple t. Otherwise, we retrieve the i-th relation R; from the plan,
and lookup from R; the matching tuples that join with ¢. For each
match, we concatenate it with ¢ and recursively call join.

# input: a GYO reduction order
def YA(Q, order):
for R in order: # preprocess with semijoins
P = parent(Q, R); Q.remove(R)
if P is not None: P = P x R
# compute the output with standard hash join
return join((), reverse(order), 0)

Figure 4: Yannakakis’s algorithm

It may be helpful to unroll the recursion over a query plan, and

we encourage the reader to do so for Q; in (2) with the plan [R, S, T, U].

This should result in exactly the same code as in Figure 1a.

2.3 Yannakakis’s Algorithm

Yannakakis’s original algorithm [11] makes two preprocessing passes
over the input relations. A third pass computes the joins yielding
the final output. Bagan, Durand, and Gandjean [1] improved the
original algorithm by eliminating the second preprocessing pass.
For brevity we only describe the latter algorithm. Following com-
mon usage, hereafter, we will refer to the improved version as Yan-
nakakis’s alglorithm/YA.

As shown in Figure 4, given a GYO reduction order we first pre-
process the relations with semijoins, then compute the output with
standard hash join. Equivalently, we can also preprocess by travers-
ing a join tree bottom-up while performing semijoins, and compute
the output by traversing the tree top-down with hash join.

Example 2.7. Given the query Q; in (2) and the GYO reduction
order [U, T, S, R], YA first performs the series of semijoins S = U,
ST, and R=S, then computes the output with the plan [R, S, T, U].
The reader may refer to the join tree of Q; and see that we are
indeed traversing the tree bottom-up then top-down.

2.4 The TreeTracker Algorithm

As the name suggests, TreeTracker Join is a direct decendent of
the TreeTracker algorithm [5] from Constraint Satisfaction. The
TreeTracker CSP algorithm resolved Dechter’s conjecture [2] that
there existed an optimal algorithm for acyclic CSPs free of any
preprocessing. This connection between query answering and con-
straint satisfaction should not be surprising, as it has been noted
the problems are two sides of the same coin [6, 8]. While we will
not describe the TreeTracker algorithm in full, we highlight the
key differences between TreeTracker and TT). First, in the context
of constraint satisfaction, the original TreeTracker algorithm stops
after producing the first satisfying assignment, while TT) produces
all tuples in the query output. Second, the original TreeTracker al-
gorithm does not make use of hash tables, and is more similar to
nested loop join as opposed to hash join. Finally, the best known
complexity of the original TreeTracker algorithm is polynomial in
the input size and does not consider the output size, while we prove
TT)J to run in linear time in the total size of the input and output.

3 TREETRACKER JOIN

Before explaining the algorithm, we first introduce the helper func-
tion parent in Figure 2c for determining the backjumping points.
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for i,x in R:

for y,j in S[x]:
try:
for k in T[y]:
if ULy] is None: throw Backjump(S)
for 1 in U[y]:
output(x,y,i,j,k,1)

catch Backjump(S): S.delete(x,y,j)

Figure 5: Execution of TTJ for Example 1.1

Given a position i and a query plan [Rp,, ..., Rp, |, parent returns
the first parent of Ry, in the subquery Q; = Ry, < -+ »a Ry, if Ry,
is an ear of Q;. Otherwise, it returns None.

Example 3.1. Consider again Q; in Example 1.1 and the query
plan [R, S, T, U]. Calling parent(i, [R,S,T,Ul) withi € {0,1,2,3}
returns None, R, S, and S, respectively. This is consistent with the
join tree we constructed for Q;: R is the root and therefore has no
parent, the parent of S is R, and the parent of T and U is S.

Note that although parent ties closely to the concept of join
trees, TTJ continues to work even if there is no join tree and parent
returns None more than once.

We are now ready to present the TT]J algorithm in Figure 2b.
The algorithm follows the same structure as binary hash join, and
the difference starts at the hash lookup R[zg(t)] on line 6. If this
lookup fails (i.e., it finds no match) and if R has a parent P, TT) back-
jumps to the end of the loop at P’s level by throwing an exception
(line 7). This will be caught by the corresponding catch block at P’s
level, upon which we delete the tuple causing the failure from P,
and continue onto the next iteration at that loop level.

Example 3.2. It can be helpful to unroll the recursion of TT) over
a query plan. Given Q; in (2) and the plan [R,S, T, U], Figure 5
shows the execution of TT). We gray out dead code and no-ops:

e Line 1 is unreachable because R[()] is always the entire
relation R, and R does not have a parent.

e Line 3 (and 13) is a no-op, because it would just backjump
to the immediately enclosing loop, and removing a tuple
from R is useless because R is at the outermost loop®.

o Technically the if-statement on line 5 is useful even though
it only backjumps one level, because the backjump would
remove a tuple from S when caught (line 12). However for
the particular input data in Example 1.1 we do not need
this, and we gray it out to reduce clutter.

o Finally, the innermost two try-catch pairs are unreachable,
because neither U nor T has children.

At this point, the remaining code in black is identical to the code
in Figure 1c (after replacing Backjump(S) with Backjump). As a side

5In Section 4 we will introduce an additional optimization that makes “removing”
from the outermost relation meaningful.
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note, a sufficiently smart compiler with partial evaluation or just-
in-time compilation could potentially remove the dead code and
no-ops as we have done above.

3.1 Correctness and Asymptotic Complexity

Thanks to its close resemblance to binary join, we can prove TT)
correct by relying on the correctness of binary join:

THEOREM 3.3. Given any planp for Q, ttj((),p,0) computes Q.

ProoF. Because we know binary join correctly computes Q, we
only need to prove the different behavior between TTJ and binary
join does not affect the output. Specifically, when a hash lookup
RLzgr(t)] fails, we show it is safe to backjump to R’s parent, P,
and delete 7p(t) from P. Upon the lookup failure, we know the
hash keys ng(t) do not appear in R, therefore they also cannot
appear in any output tuple of Q. By definition, the schema of the
parent, P, contains all the key attributes of R, so 7p(t) will not
contribute to any output either. It is therefore safe to backjump
over any recursive calls with t 2 7p(¢), and also delete 7p(t) from
P. O

Next, we prove TTJ runs in linear time in the size of the input
and output, for full acyclic queries. We first introduce a condition
on the query plan that is necessary for the linear time complexity:

LEMMA 3.4. Given a query Q and a planp = [Rp,,...,Rp,] for
Q, parent returns None only for Ry, during the execution of TTJ, if p
is the reverse of a GYO reduction order of Q.

ProoF. If [Rp,, ..., Rp,] is a GYO reduction order, then there is
a join tree with Ry, as root, and every other atom has a parent. O

TT) is guaranteed to run in linear time given such a plan:

THEOREM 3.5. Fix a query Q and a plan p. If p is the reverse of
a GYO reduction order for Q, then ttj((),p,0) computes Q in time

O(IQl + X; IRil).

ProoFr. We first note that in Figure 2b, ttj does constant work
outside of the loops; each iteration of the loop also does constant
work and recursively calls ttj, so each call to ttj accounts for con-
stant work, and so the total run time is linear in the number of calls
to ttj. All we need to show now is that there are a linear number
of calls to ttj.

Because p is the reverse of a GYO reduction order for Q, the fol-
lowing holds from Lemma 3.4: except for the one call to ttj on the
root relation (when i = 0), every call to ttj has 3 possible outcomes:
(1) It outputs a tuple. (2) It backjumps and deletes a tuple from an
input relation. (3) It recursively calls ttj. Because the query plan
has constant length, there can be at most a constant number of
recursive calls to ttj (case 3) until we reach cases 1 or 2. There-
fore there are at most O(|Q| + X3; |R;|) calls to ttj, and the entire
algorithm runs in that time. O

By Theorem 2.5 every a-acyclic query has a GYO reduction or-
der, therefore ttj runs in linear time:

COROLLARY 3.6. For any a-acyclic query Q, there is a plan p such
that ttj((),p,0) computes Q in time O(|Q| + X; |Ril).

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

426
427
428
429
430
431
432
433

434

436
437
438
439
440
441
442
443
444
445
446

447

460
461
462
463

464



465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

499

TreeTracker Join: Simple, Optimal, Fast

3.2 Comparison with Binary Join and YA

We now prove our claim that, for any given query plan, TTJ always
matches or outperforms binary join.

THEOREM 3.7. Given a query Q and a plan p for Q, computing Q
with TTJ using p makes at most as many hash lookups as computing
Q with binary join using p.

Proor. For clarity we have repeated the lookup R[zr (t)] three
times in Figure 2b, but we really only need to look up once and
save the result to a local variable for reuse. This way, every call
to ttj makes exactly one hash lookup. Since the binary join algo-
rithm in Figure 2a also makes exactly one hash lookup per call, it
is sufficient to bound the number of calls to ttj by that of binary
join. Recall that the execution of TT) differs from binary join only
when a lookup fails, upon which TT) backtracks at least one recur-
sive level and potentially more, while binary join always returns
to the immediately enclosing level. Therefore, the number of calls
to ttj is at most the number of calls to join in binary join. O

Intuitively, after a lookup failure binary join may repeat the
same lookup again, as we have seen in Example 1.1, while TT)
avoids that by backjumping to the tuple causing the failure and
getting a new one. Also note that in the above proof we did not
mention tuple deletion — indeed, tuple deletion is only necessary
for the linear time complexity. As another cost in query execu-
tion comes from accessing the matching tuples after a successful
lookup, one can prove that TTJ accesses no more tuples than bi-
nary join, following the same argument as above. Finally, we note
that the above proof does not assume an acyclic query.

While we guarantee TT]J to always match binary join, unfortu-
nately we cannot make the same strong claim for YA. We will see
in Section 5 that YA performs better than TTJ on some queries.
Here we analyze a few extreme cases for some intuition of how
TTJ compares to YA:

Example 3.8. Consider a query where every tuple successfully
joins, i.e., no lookup fails. In this case binary join and TT) behaves
identically. However, YA spends additional time futilely computing
semijoins (without removing any tuple), before following the same
execution as binary join and TTJ to produce the output.

Example 3.9. The other extreme case is when a query has no out-
put, and YA immediately detects this and stops. In fact Example 1.1
is such a query: all YA needs to do is the semijoin T = U, where it
builds a (tiny) hash table for U and iterate over T once to detect
nothing joins. In contrast, although TT]J also runs in linear time, it
must build the hash table for all of S, T and U.

4 OPTIMIZATIONS

We now present two optimizations of TTJ to further improve its
performance, namely deletion propagation and no-good list.

Deletion Propagation. Recall that after a lookup failure, we back-
jump to the offending tuple and remove it from its relation. In
certain cases, we remove all tuples sharing the same hash key:
R[7gr (t)] becomes empty after line 10 in Figure 2b. In this case, we
know that in any subsequent lookup, R[zg (t)] will fail. Instead of

waiting for and wasting the lookup failure, we immediately back-
jump to the parent of R and propagate the deletion to the parent. To
implement this, we add the following line to the end of Figure 2b:

if R[zr(t)] is None & P is not None: BackJump(P)

There is a case where this optimization is not beneficial. When
there are no subsequent lookups to R[zr (t)] propagating the dele-
tion is unnecessary and carries a small overhead.

No-Good List. We had remarked in Section 3 that removing a
tuple from the root relation is pointless, as the same tuple would
never be considered again. However, it can be beneficial to “re-
move” a tuple more programmatically: the idea of the no-good list
optimization is to keep a blacklist of attribute values, so that we
immediately skip any tuple matching those attributes. Concretely,
we change Figure 2b in three places. First, we include the key val-
ues when backjumping on line 7:

throw BackJump(P, ngr(t))

Then when catching the backjump (line 10) at the root relation, we
add those key values to the blacklist:

catch BackJump(R, keys):
if i == 0: no_good.add(keys) else: R[zgr(t)].delete(m)

Finally, we skip over any tuple matching the no-good list while
iterating over the root relation (after line 8):

if i == @ & m.matches(no_good): continue

Like deletion propagation, the benefit of a no-good list is data de-
pendent. When the list gets big, maintaining and probing it may
become more expensive than the lookups saved.

5 EXPERIMENTS

We compare the speed of TT) with binary hash join (H]) and YA on
113 acyclic queries from the Join Ordering Benchmark [7]. We im-
plement all three algorithms in Java, and provide each algorithm
with the same query plan produced by SQLite®. Every plan we en-
coutered can be reversed into a GYO order. Thus, YA and TT]J (by
Theorem 3.5) are guaranteed to run in linear time. More detail on
the implementation and experiments appears in the long version
of this paper[4].

Figure 6 shows the speed-up of YA, HJ, and TT]J relative to native
SQLite execution. Of 113 JOB queries, TTJ is the fastest algorithm
on 97 (86%) of them. Compared to HJ, the maximum speed-up is
26.7x (16b), the minimum speed-up is 1X (1a), and the average
speed-up (geometric mean) is 1.30X. Compared to YA, the maxi-
mum speed-up is 8.9 (16b), the minimum speed-up is 0.3x (6a),
and the average speed-up is 1.67X.

Whenever H) outperforms TT) their difference is negligible. YA
visibly outperforms TT) and HJ on queries 6a, 6b, 6c, 6d, 6e, 7b, and
17a. This is a consequence of the semijoin reduction on the largest
relation, cast_info, which removes a large fraction of tuples before
building its hash table. Since both TT) and HJ build all their hash
tables before computing the join, the time to build the larger hash
table dominates. An example is query 6a. The semijoin reduction

®For q7b the plan generated by MySQL was used. The SQLite plan contains Cartesian
products which we do not yet support.
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Figure 6
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on cast_info reduces around 36 million tuples to 486 tuples. Ex-
amining the time taken to build the hash tables for query 6a, YA
required 521 ms, which is 8% of the total execution time, compared
to 19,710 ms, amounting to 99% of the total runtime for TT).

SQLite runs significantly faster on queries 5a and 5b as a re-
sult of an optimization we did not implement. These queries return
no results. Once SQLite detects the output will be empty it avoids
building additional hash tables’.

6 FUTURE WORK AND CONCLUSION

In this paper we have proposed our new join algorithm, TreeTracker
Join (TT)J). The algorithm runs in time O(|IN| + |OUT]) on acyclic

queries, and given the same query plan it always matches or out-
performs binary join. We have shown emperically that TT) is com-
petitive with binary join and Yannakakis’s algorithm.

Although our implementation already beats SQLite in our ex-
periments, challenges remain for TTJ to compete with highly op-
timized systems. Decades of research on binary join has produced
effective techniques like column-oriented storage, vectorized exe-
cution, and parallel execution, just to name a few. Future research
should investigate how to adapt these techniques to TTJ, or de-
velop optimizations tailored to TT] like the ones described in Sec-
tion 4.

Our experiments focued on acyclic queries due to their preva-
lence in traditional workloads. However, with the rise of graph
databases we begin to encounter more and more cyclic queries. Ad-
ditional research on TT] for cyclic queries, both in terms of practi-
cal performance and theoretical guarantees, will be very valuable.
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