Conference Management Toolkit - View review 10/3/24, 11:08

View Reviews

Paper ID
17

Paper Title
TreeTracker Join: Simple, Optimal, Fast

Reviewer #1

Questions

1. Overall Recommendation
Weak Reject

2. Summary of the paper and rationale for the recommendation

This paper presents the Tree Tracker Join (TTJ) algorithm which is inspired by the
TreeTracker algorithm used in constraint satisfaction. The key claim is that this
algorithm is significantly better than the best known linear-time join algorithm. The
paper presents a performance study comparing the algorithm using the Join Order
Benchmark.

The main challenge of the paper is that is presents the problem in a theoretical isolated
setting. What is not clear from this paper is what is the application domain of this
algorithm and how does it compare with many of the other algorithms and systems-
level optimizations (e.g., vectorized operators) used an today's database systems. The
paper lacks a compelling motivating use case where this algorithm will shine, and it
looks more like an isolated theoretical result.

3. Novelty and innovation
Interesting ideas

4. Strong Points (list positive aspects of the paper, especially if recommending
acceptance)

S1. Joins are an important component for analytics workloads, optimizing performance
of joins is always beneficial in our quest to improve query performance.

https://cmt3.research.microsoft.com/CIDR2025/Submission/Reviews/17 Page 10of 5



Conference Management Toolkit - View review 10/3/24, 11:08

S2. The paper makes a case for the proposed algorithm using the JOB to show the
benefits.

5. Weak Points (list aspects that could be improved, especially if recommending
rejection)

WH1. The paper needs to fit into the context of modern query execution engines as well
as the end-to-end picture of a query optimizer (more details below).

W?2. The paper needs to compare the algorithm with many advancements in join
algorithms, such as vectorization. The simple hash join is amenable to vectorized
execution which is really efficient for modern CPUs. The proposed algorithm, on the
other hand, is a branch-based row-at-a-time algorithm which is known to be pretty
inefficient for modern processors.

W3. SQLite is not a great fit as a baseline for analytical workloads. Would be good to
show how the improvements can be materialized in comparison to modern
implementations such as DuckDB

6. Overall Evaluation (Comments on the paper as a whole regarding its
contributions, degree of novelty, presentation, and adequacy to CIDR)

O1. The paper needs to clearly motivate the application scenario and how this
algorithm fits into the end-to-end query processing system? In today's systems, if
there is an n-way join, the optimizer will pick a join order, join operator, bushy vs. deep
etc. It uses the data statistics to make such decisions. Is the proposal that this
algorithm will replace these joins and across the board improve query performance?
The paper needs to clearly motivate the problem in a practical setting and break out of
its purely theoretical formulation.

02. As mentioned earlier, modern join algorithm implementations are heavily optimized
using vectors and SIMD instructions. The proposed algorithm is not amenable to that.
So one needs to quantify the benefits of the efficiency of the algorithm compared to
the inefficiencies introduced at the lower layers of the system (in how the processors
are optimized for vectorized operations over memory-resident data).

03. The paper needs to clearly tie the algorithm into the query optimizer on how it
interplays with other join algorithms. Is this is the join algorithm to rule them all or is an
optimizer join-ordering or join operator selection still relevant. If so, how does the

https://cmt3.research.microsoft.com/CIDR2025/Submission/Reviews/17 Page 2 of 5



Conference Management Toolkit - View review 10/3/24, 11:08

optimizer account for this new algorithm in its search and costing.

O4. A comparison with DuckDB instead of SQLite is more interesting and relevant.
Also, how sensitive is the performance depending on join order choice or whether a left
deep or a bushy plan is chosen. How susceptible is the new join algorithm to optimizer
errors in choosing the optimal order and operator? If the proposed algorithm is more
robust, that itself is a plus, though it needs to be demonstrated appropriately.

Reviewer #2

Questions

1. Overall Recommendation
Weak Accept

2. Summary of the paper and rationale for the recommendation

The paper proposes TreeTracker Join, a new linear-time join algorithm that requires no
query time preprocessing and matches or outperforms the performance of traditional
binary hash join. The basic idea is straightforward: remove tuples from the tables that
lead to no matches after probing the hash table. The paper presented correctness
proof and performance evaluations of TreeTracker Join, showing significant
improvement over Yannakakis and binary join algorithms.

3. Novelty and innovation
Interesting ideas

4. Strong Points (list positive aspects of the paper, especially if recommending
acceptance)

S1. Improving join algorithms is an important goal for high-performance systems.

S2. The algorithm overall finishes in O(N) time yet produces very good results, with
most of the cases in JOB outperforming binary join and Yannakakis join.

S3. The paper presented the intuition behind the algorithm well.

5. Weak Points (list aspects that could be improved, especially if recommending
rejection)

The algorithm requires more complex control flow by bailing out early in the inner
loops, as described as throwing and catching exceptions in the paper. This can much

https://cmt3.research.microsoft.com/CIDR2025/Submission/Reviews/17 Page 3 of 5



Conference Management Toolkit - View review 10/3/24, 11:08

complicate actual implementation where for high performance, most systems do not
rely on exception handling provided by the language/runtime (e.g., C++ or Jave
exceptions), but rather explicitly maintains return values and states. Doing so for TTJ
can be complex by keeping many intermediate function states. It'd be good for the
paper to comment on further such practical considerations.

6. Overall Evaluation (Comments on the paper as a whole regarding its
contributions, degree of novelty, presentation, and adequacy to CIDR)

The paper presented the intuition of the algorithm well in earlier sections. As someone
who doesn't work on the theoretical aspects of join algorithms, | find the paper a bit
hard to follow as Section 2 ends and Section 3 starts. Performance evaluation is
convincing overall, and |I'd appreciate more discussion on practical considerations.

Reviewer #3

Questions

1. Overall Recommendation
Reject

2. Summary of the paper and rationale for the recommendation

The paper presents TreeTracker join. The main idea is to remove dangling tuples from
the base relations while processing a join. In that sense it is a hybrid of a standard join
and the Yanakakis-algorithm.

Though this work has its merits, | do not see a good match for CIDR here. This is a
purely algorithmic paper which should be extended and then send to SIGMOD or
PVLDB.

3. Novelty and innovation
Not a match for CIDR

4. Strong Points (list positive aspects of the paper, especially if recommending
acceptance)

S1 interesting idea

5. Weak Points (list aspects that could be improved, especially if recommending
rejection)

W1 no-systems aspect whatsoever, no match for CIDR

https://cmt3.research.microsoft.com/CIDR2025/Submission/Reviews/17 Page 4 of 5



Conference Management Toolkit - View review 10/3/24, 11:08

6. Overall Evaluation (Comments on the paper as a whole regarding its
contributions, degree of novelty, presentation, and adequacy to CIDR)

Example 1.1. this notation that equality of attribute names implies an equality join
condition is used in some parts of the db community, in particular in db theory, but not

in all; you should restate precisely the semantics here. It would also help to show the
join graph as a figure.

https://cmt3.research.microsoft.com/CIDR2025/Submission/Reviews/17 Page 5 of 5



