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TreeTracker Join: Simple, Optimal, Fast

ANONYMOUS AUTHOR(S)

We present a novel linear-time acyclic join algorithm, TreeTracker Join (TTJ). The algorithm can be understood

as the pipelined binary hash join with a simple twist: upon a hash lookup failure, TTJ resets execution to

the binding of the tuple causing the failure, and removes the offending tuple from its relation. Compared to

the best known linear-time acyclic join algorithm, Yannakakis’s algorithm, TTJ shares the same asymptotic

complexity while imposing lower overhead. Further, we prove that when measuring query performance by

counting the number of hash probes, TTJ will match or outperform binary hash join on the same plan. This

property holds independently of the plan and independently of acyclicity. We are able to extend our theoretical

results to cyclic queries by introducing a new hypergraph decomposition method called tree convolution. Tree

convolution iteratively identifies and contracts acyclic subgraphs of the query hypergraph. The method avoids

redundant calculations associated with tree decomposition and may be of independent interest. Empirical

results on TPC-H, the Join Order Benchmark, and the Star Schema Benchmark demonstrate favorable results.

ACM Reference Format:
Anonymous Author(s). 2025. TreeTracker Join: Simple, Optimal, Fast. 1, 1 (December 2025), 20 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Yannakakis [22] was the first to describe a linear-time join algorithm (hereafter YA) running in time

𝑂 ( |IN| + |OUT|), where |IN| is the input size and |OUT| is the output size. In principle, this is the

best asymptotic complexity one can hope for, because in most cases the algorithm must read the

entire input and write the entire output. However, virtually no modern database systems implement

YA. A major factor is its high overhead. Prior to executing the join, YA performs two passes over

the input relations, using semijoins to reduce the input size. The reduction is lossless and enables

optimally joining the reduced relations. Since the cost of a semijoin is proportional to the size of

its arguments, this immediately incurs a 2× overhead in the input size. An improved version of

YA [2] achieves the same result in one semijoin pass, but the overhead of this pass remains. Another

practical challenge is that YA is “too different” from traditional binary join algorithms, making it

difficult to integrate into existing systems. For example, the efficiency of YA critically depends on

a query’s join tree which is different from the query plan used by binary joins
1
. Where there is

a wealth of techniques to optimize query plans for binary joins, little is known about cost-based

optimization of join trees for YA.
In this paper, we propose a new linear-time join algorithm called TreeTracker Join (TTJ), inspired

by the TreeTracker algorithm [10] in Constraint Satisfaction. TTJ can be understood as the traditional
binary hash join with a twist: when a hash lookup fails, backtrack to the tuple causing the failure,

and remove that tuple from its relation. The backtracking points depend only on the query, not the

data, and are determined by the query compiler prior to query execution. The execution deviates

1
By join tree we mean (hyper-)tree decomposition of hypertree width 1, not the tree of binary join operators commonly

seen in relational algebra query plans.
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2 Anon.

1 for i,x in R:

2 for y,j in S[x]:

3 for k in T[y]:

4 # lines left blank

5 # intentionally

6 for l in U[y]:

7 print(x,y,i,j,k,l)

(a) Binary join

for i,x in R:

for y,j in S[x]:

for k in T[y]:

if U[y] is None:

break

for l in U[y]:

print(x,y,i,j,k,l)

(b) Backjumping

1for i,x in R:

2for y,j in S[x]:

3for k in T[y]:

4if U[y] is None:

5S[x].del((y,j)); break

6for l in U[y]:

7print(x,y,i,j,k,l)

(c) Tuple deletion

Fig. 1. Instantiation of binary hash join on example 1.1, with backjumping, and with tuple deletion.

from binary hash join only when a dangling tuple is detected and deleted. Thus the tuple is excluded

from any computation going forward. Hence, when using identical query plans TTJ is guaranteed
to match or outperform binary hash join (Section 4.2).

The following example illustrates the main ideas of TTJ.

Example 1.1. Consider the natural join of the relations 𝑅(𝑖, 𝑥), 𝑆 (𝑥,𝑦, 𝑗), 𝑇 (𝑦, 𝑘), and 𝑈 (𝑦, 𝑙),
where we use 𝑅(𝑖, 𝑥) to denote that the schema of 𝑅 is {𝑖, 𝑥}. The set {1, . . . , 𝑁 } is denoted by [𝑁 ].
Let the relations be defined as follows:

𝑅 = {(𝑖, 1) | 𝑖 ∈ [𝑁 ]} 𝑆 = {(1, 1, 𝑗) | 𝑗 ∈ [𝑁 ]} 𝑇 = {(1, 𝑘) | 𝑘 ∈ [𝑁 ]} 𝑈 = {(0, 𝑙) | 𝑙 ∈ [𝑁 ]}
Observe 𝑈 shares no common 𝑦-values with 𝑆 or 𝑇 , making the query result empty. We’ll first

consider execution with binary hash join, the foundation of our algorithm. Assume the optimizer

produces a left-deep join plan ((𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 ) ⊲⊳ 𝑈 . The execution engine builds hash tables for 𝑆 ,

𝑇 , and 𝑈 , mapping each 𝑥 to (𝑦, 𝑗) values in 𝑆 , 𝑦 to 𝑘 values in 𝑇 , and 𝑦 to 𝑙 values in 𝑈 . Figure 1a
2

illustrates the basis of the execution. For each (𝑖, 𝑥) tuple in 𝑅, the hash table for 𝑆 is probed for

the (𝑦, 𝑗) values. T is probed with each pair (𝑦, 𝑗) to determine the 𝑘 values. This repeats for 𝑈 .

Although the query produces no output, the execution takes Ω(𝑁 3) time because it first computes

the join of 𝑅, 𝑆 , and 𝑇 . A closer look at the execution reveals the culprit: when the lookup on 𝑈

produces no result, (line 6), the algorithm continues to the next iteration of the loop over 𝑘 values,

(line 3). The same value of 𝑦 is used to probe into 𝑈 again! To address this, the first key idea
of TTJ is to backjump3 to the level causing the probe failure. For clarity we use break to

represent the backjump, as shown in Figure 1b. When probing𝑈 with the key value 𝑦 fails to return

a result, we break out of the current loop over 𝑘 and continue to the next iteration of the second

loop level. That is because the unsuccessful lookup key value of 𝑦 is assigned at that level. That

next iteration retrieves new 𝑦, 𝑗 values, skipping over iterations for 𝑘 values that are doomed to fail.

With this optimization, the execution finishes in 𝑂 (𝑁 2) time, as it still needs to compute the join

of 𝑅 and 𝑆 . To improve the performance further: the second key idea of TTJ is to delete the
tuple causing the probe failure. This is shown in Figure 1c: after the probe failure, the offending

tuple (𝑥,𝑦, 𝑗) is removed from the 𝑆 hash table. This is safe to do, because that 𝑦 value will always

fail to join with any tuple in 𝑈 . In this way, all tuples from 𝑆 are removed after looping over it the

first time. Then, on all subsequent iterations of the loop over 𝑅, the probe into 𝑆 fails immediately.

Overall, the algorithm finishes in 𝑂 (𝑁 ) time.

2
One may also recognize this as indexed nested loop join, which is equivalent [17].

3
Backjumping is a concept in backtracking search algorithms; we use the term informally to mean the interruption of a

nested loop iteration to jump back to an outer loop, while referring to the original TreeTracker algorithm [10] for a precise

definition.
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TreeTracker Join: Simple, Optimal, Fast 3

In general, TTJ runs in linear time in the size of the input and output for full acyclic joins. But

the algorithm is not limited to acyclic queries: given the same query plan for any query, cyclic or

acyclic, TTJ is guaranteed to match the performance of binary hash join, when measuring query

performance by counting the number of hash probes. In particular, when no probe fails TTJ behaves
identically to binary join. This is in contrast to YA which always carries the overhead of semijoin

reduction, even if the reduction does not remove any tuple.

To address cyclic queries further we introduce a new method to break down a cyclic query into

acyclic parts called tree convolution. We use this method to analyze the run time of TTJ. A special

kind of tree convolution, called rooted convolution, eliminates materialization of intermediates

during query processing.

In summary, our contributions include:

• Propose TTJ, a new join algorithm that runs in time𝑂 ( |IN| + |OUT|) on full acyclic queries.

• Prove that TTJ matches or outperforms binary join given the same query plan, on both

acyclic and cyclic queries.

• Introduce tree convolution, a new method to break down cyclic queries into acyclic parts,

and use it to analyze the run time of TTJ on cyclic queries.

• Improve the performance of TTJ with further optimizations.

• Conduct experiments to evaluate the efficiency of TTJ on acyclic queries.

2 Related Work
The observation that only one semijoin pass is necessary in YA has been a folklore in the database

community, with an early appearance in the theoretical work of Bagan, Durand, and Grandjean [3].

Their paper studies the problem of enumerating conjunctive query results with constant delay,

but without considering practical efficiency. Recent systems implementing such enumeration

algorithms take advantage of the same insight [19, 20]. Compared to this improved version of YA,
TTJ has the guarantee of matching the performance of HJ given any query plan, and is often faster

in practice, as we will show in Section 6.

Researchers have also explored ways to integrate elements of YA into existing systems. Zhu

et.al. [24] propose lookahead information passing, using bloom filters to implement semijoins over

star schemas. Birler, Kemper, and Neumann [5] decompose every join operator into a lookup and
an expand, and prove that certain lookup-and-expand (L&E) plans are guaranteed to run in linear

time for acyclic queries. Bekkers et.al. [4] implement L&E plans in a vectorized query engine, while

proving that their approach is guaranteed to match binary hash join for a class of well-behaved
query plans. The theoretical guarantees of TTJ is complementary to these approaches: while TTJ
guarantees to match binary hash join for left-deep plans, the well-behaved class defined by Bekkers

et.al. [4] essentially contains right-deep plans with a slight generalization. On the other hand,

as we focus on an algorithm-level evaluation of TTJ in this paper, our implementation is not

yet competitive with the highly optimized systems mentioned above. Future work shall explore

how to incorporate various system-level optimizations like query compilation, vectorization, and

parallelization into TTJ.
Going beyond acyclic queries, the standard way to handle cyclic queries is to break up the

query with (hyper-)tree decomposition [8]. Such decomposition results in smaller cyclic subqueries

connected by an acyclic “skeleton”. Each cyclic subquery can then be computed with worst-case

optimal join algorithms [15, 21]. With the result of each subquery materialized, the final output

can then be computed with YA. As we will show in Section 7, TTJ can support cyclic queries with

only a few modifications. Compared to the tree decomposition approach, TTJ does not require
materializing intermediate results, thus requiring only constant space in addition to the linear
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4 Anon.

space required to store and index the input relations. While the worst-case time complexity of TTJ
does not match that obtained by tree decompositions, the advantage of each approach depends on

the data.

As the name suggests, TreeTracker Join is a direct decendent of the TreeTracker algorithm [10]

from Constraint Satisfaction. The TreeTracker CSP algorithm resolved Dechter’s conjecture [6]

that there existed an optimal algorithm for acyclic CSPs free of any preprocessing. The connection

between query answering and constraint satisfaction is a recurring theme in the literature to the

extent that an expression emerged, the problems are two sides of the same coin [11, 13]. There are

substantive differences that make TreeTracker and TTJ different. First the constraint satisfaction
problem concerns the existence of a non-empty model for a large logical formula. Thus, constraint

satisfaction algorithms including TreeTracker stop execution and return TRUE upon identifying

what in a relational query would be just one row of the result. In contrast, TTJ produces all tuples in
the query output. Second, the TreeTracker algorithm does not make use of hash tables, and is thus

structured like a nested loop join rather than a hash join. This is because unlike the study of queries

in databases, constraint satisfaction rarely specializes the problem to only equality predicates.

Combining these two differences TreeTracker incorporates ad-hoc data structures, where TTJ
employs recognized indices commonly used in databases. These difference clearly manifest in the

respective complexity analyses. The complexity of the best variation of the TreeTracker algorithm

is polynomial in the input size and does not consider the output size. We prove below TTJ runs in
linear time in the total size of the input and output.

3 Preliminaries
In this section, we present the foundational concepts concerning acyclic join queries and the specific

definitions adopted in this paper.

3.1 JoinQueries and Acyclicity
We consider natural join queries, also known as full conjunctive queries, of the form:

𝑄 (𝒙) = 𝑅1 (𝒙1) ⊲⊳ 𝑅2 (𝒙2) ⊲⊳ · · · ⊲⊳ 𝑅𝑛 (𝒙𝑛) (1)

where each 𝑅𝑖 is a relation name, each 𝒙𝑖 (and 𝒙) a tuple of distinct variables, and every 𝑥 ∈ 𝒙𝑖 also
appears in 𝒙 . We call each 𝑅𝑖 (𝒙𝑖 ) an atom, and 𝑥𝑖 the schema of 𝑅𝑖 , denoted as Σ(𝑅𝑖 ). We extend

the notion of schema to tuples in the standard way and write Σ(𝑡) for the schema of 𝑡 . The query

computes the set
4 𝑄 = {𝒙 | ∧𝑖∈[𝑛] 𝒙𝑖 ∈ 𝑅𝑖 }. We sometimes write 𝑄 and not 𝑄 (𝒙) to reduce clutter,

and identify𝑄 with its set of relations. For example,𝑄 − {𝑅𝑖 } denotes the query𝑄 with 𝑅𝑖 removed.

Definition 3.1 (Join Tree). A join tree for a query 𝑄 is a tree where each node is an atom in 𝑄 ,

such that for every variable 𝑥 , the nodes containing 𝑥 form a connected subtree.

A query 𝑄 is acyclic (more specifically 𝛼-acyclic) if there exists a join tree for Q.
For clarity we rewrite the query in example 1.1 and detail one of its join trees:

𝑄1 = 𝑅(𝑖, 𝑥) ⊲⊳ 𝑆 (𝑥,𝑦, 𝑗) ⊲⊳ 𝑇 (𝑦, 𝑘) ⊲⊳ 𝑈 (𝑦, 𝑙) (2)

One join tree has 𝑅(𝑖, 𝑥) at the root, 𝑆 (𝑥,𝑦, 𝑗) as its child, and 𝑇 (𝑦, 𝑘) and 𝑈 (𝑦, 𝑙) as children of 𝑆 .

We encourage the reader to draw a picture of this join tree for reference. One can construct a join

tree for any acyclic query with the GYO algorithm [9, 23], which works by finding a sequence of

ears. To define ear, we first define a key schema:

4
For clarity we assume set semantics. No change is needed for TTJ to support bag semantics
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TreeTracker Join: Simple, Optimal, Fast 5

1 def GYO(Q):

2 forest = { tree(R) for R in Q }

3 while not Q.is_empty():

4 R = find-ear(Q)

5 P = parent(Q, R)

6 forest.set_parent(R, P)

7 Q.remove(R)

8 return forest

(a) The GYO alglorithm.

1 def parent(R, Q):

2 if Q.is_empty(): return None

3 keys = Σ(R) ∩⋃
S∈Q-{R} Σ(S)

4 for S in Q - {R}:

5 if keys ⊆ Σ(S):

6 return S

7 # we did not find a valid parent

8 return None

(b) Find a parent of 𝑅 in 𝑄 if one exists.

Fig. 2. GYO reduction and parent computation.

Definition 3.2 (Key Schema). For a query 𝑄 of the form (1), the key schema of an atom 𝑅𝑖 (𝒙𝑖 ) in
𝑄 , denoted as keys(𝑄, 𝑅𝑖 ), is the set of variables shared between 𝑅𝑖 (𝒙𝑖 ) with the other atoms in 𝑄 ;

i.e., keys(𝑄, 𝑅𝑖 ) = 𝒙𝑖 ∩
⋃
𝑗∈[𝑛]∧𝑗≠𝑖 𝒙 𝑗 .

Intuitively, keys(𝑄, 𝑅𝑖 ) form the keys of 𝑅𝑖 ’s hash table, if we compute (𝑄 − {𝑅𝑖 }) ⊲⊳ 𝑅𝑖 using
binary hash join.

Definition 3.3 (Ear). Given a query 𝑄 of the form (1), an atom 𝑅𝑖 (𝒙𝑖 ) is an ear if it satisfies the
property ∃ 𝑗 ≠ 𝑖 : 𝒙 𝑗 ⊇ keys(𝑄, 𝑅𝑖 ). In words, there is another atom 𝑅 𝑗 (𝒙 𝑗 ) that contains all the
variables in 𝑅𝑖 ’s key schema. We call such an 𝑅 𝑗 a parent of 𝑅𝑖 .

The parent concept is central to the TTJ algorithm. The parent’s schema include all of its children’s

keys. When a hash lookup fails at a child, TTJ will backjump to the parent. Figure 2b shows an

algorithm to find the first parent of an ear in 𝑄 , where 𝑄 is represented as a list of atoms.

The GYO algorithm for constructing join trees is shown in Figure 2a: we start with a forest where

each atom makes up its own tree, then for every ear, we attach it to its parent and remove that ear

from the query. Note that it is possible for the algorithm to produce a forest of disjoint trees when

the query contains Cartesian products. For simplicity, we will ignore such cases.

Definition 3.4 (GYO reduction order). Given a query 𝑄 of the form (1), a GYO reduction order for
a query 𝑄 is a sequence [𝑅𝑝1 , 𝑅𝑝2 , . . . , 𝑅𝑝𝑛 ] that is a permutation of [𝑅1, 𝑅2, . . . , 𝑅𝑛], such that for

every 𝑖 < 𝑛, the atom 𝑅𝑝𝑖 is an ear in the (sub)query 𝑅𝑝𝑖 ⊲⊳ · · · ⊲⊳ 𝑅𝑝𝑛 .

Equivalently, it is the same order of atoms as visited by the GYO algorithm. The reader can

verify [𝑈 ,𝑇 , 𝑆, 𝑅]is a GYO reduction order for 𝑄1. The existence of a GYO reduction order and the

existence of a join tree are equivalent.

Theorem 3.5 ([9, 23]). A query 𝑄 has a join tree (i.e., 𝑄 is 𝛼-acyclic) if and only if it has a GYO
reduction order.

3.2 Binary Hash Join
In this paper we focus on hash-based join algorithms. For theoretical analyses we focus on left-deep

linear plans; for practical implementation we follow the standard practice and decompose each

bushy plan into a sequence of left-deep linear plans, materializing each intermediate result.

Definition 3.6 (Query Plan). A (left-deep linear) query plan for a query 𝑄 of the form (1) is a

sequence [𝑅𝑝1 , 𝑅𝑝2 , . . . , 𝑅𝑝𝑛 ] that is a permutation of 𝑄’s relations [𝑅1, 𝑅2, . . . , 𝑅𝑛].
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1 def join(t, plan, i):

2 if i > plan.len(): print(t)

3 else:

4 R = plan[i]; k = 𝜋keys(plan[1..i],R) (𝑡)
5 for r in R[k]:

6 join(t++r, plan, i+1)

(a) Pipelined left-deep binary hash join

1 def YA(Q, order):

2 for R in order: # semijoins reduction

3 P = parent(Q, R); Q.remove(R)

4 if P is not None: P = P ⋉ R

5 # compute the output with hash join

6 return join((), reverse(order), 1)

(b) Yannakakis’s algorithm

Fig. 3. Binary hash join and Yannakakis’s algorithm. The plan array is 1-indexed.

For consistency we adopt 1-based indexing for query plans, so the first relation in the plan

is stored at 𝑖 = 1. An example query plan for 𝑄1 in 2 is [𝑅, 𝑆,𝑇 ,𝑈 ]. One may notice similarities

between a GYO reduction order and a query plan. The reason for this will become clear.

We follow the push-based model [14] and specialize the binary hash join algorithm for pipelined

left-deep plans as shown in Figure 3a. We write 𝜋𝑠 (𝑡) to project the tuple 𝑡 onto the schema 𝑠 , and

𝑡 ++ 𝑟 to concatenate the tuples 𝑡 and 𝑟 while resolving the schema appropriately. Execution begins

by passing to join the empty tuple 𝑡 = (), a query plan, and 𝑖 = 1. Although we do not need to build

a hash table for the left-most relation (the first relation in the plan), for simplicity we assume that

there is a (degenerate) hash table mapping the empty tuple () to the entire left-most relation. The

algorithm starts by checking if the plan has been exhausted and if so, output the tuple 𝑡 . Otherwise,

we retrieve the 𝑖-th relation 𝑅𝑝𝑖 from the plan, and lookup from 𝑅𝑝𝑖 the matching tuples that join

with 𝑡 . For each match, we concatenate it with 𝑡 and recursively call join.

It may be helpful to unroll the recursion over a query plan, and we encourage the reader to do

so for 𝑄1 in (2) with the plan [𝑅, 𝑆,𝑇 ,𝑈 ]. This will generate the same code as in Figure 1a.

3.3 Yannakakis’s Algorithm
Yannakakis’s original algorithm [22] makes two preprocessing passes over the input relations. A

third pass computes the joins yielding the final output. Bagan, Durand, and Gandjean [2] improved

the original algorithm by eliminating the second preprocessing pass. For brevity we only describe

the latter algorithm. Following common usage, hereafter, we will refer to the improved version as

Yannakakis’s alglorithm (YA).
Shown in Figure 3b is, given a GYO reduction order, the relations are preprocessed using semijoins,

then the output is computed with standard hash join. Equivalently, the semijoin preprocessing step

can be performed by traversing a join tree bottom-up, and the output computed with hash join by

traversing the tree top-down.

Example 3.7. Given the query𝑄1 in (2) and the GYO reduction order [𝑈 ,𝑇 , 𝑆, 𝑅], YA first performs

the series of semijoins, 𝑆 ′ = 𝑆 ⋉𝑈 , 𝑆 ′′ = 𝑆 ′ ⋉𝑇 , and 𝑅′ = 𝑅 ⋉ 𝑆 ′′, then computes the output with

the plan [𝑅′, 𝑆 ′′,𝑇 ,𝑈 ]. The reader may refer to the join tree of 𝑄1 and confirm we are traversing

the tree bottom-up then top-down.

4 TreeTracker Join
The TreeTracker Join algorithm is shown in Figure 4a. The algorithm follows the same structure as

binary hash join. The difference starts on line 5 right before the hash lookup R[k]. If this lookup

fails (i.e., it finds no match), and if 𝑅 has a parent 𝑃 that appears before 𝑅 in the plan, then TTJ
backjumps to the for-loop at 𝑃 ’s recursive level, by returning P (line 7). This is similar to throwing

an exception which is “caught” at the loop level of P, as we will explain on line 10. Otherwise, if the
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1 def ttj(t, plan, i):

2 if i > plan.len(): print(t)

3 else:

4 R = plan[i]; k = 𝜋keys(plan[1..i],R) (𝑡)
5 P = parent(plan[1..i], R)

6 if R[k] is None & P is not None:

7 return P # backjump to P

8 for r in R[k]:

9 result = ttj(t++r, plan, i+1)

10 if result == R: # catch backjump

11 R[k].delete(r)

12 elif: result is not None:

13 return result # continue backjump

(a) TreeTracker join

1if R[()] is None: throw BJ(None)

2for i,x in R:

3try: if S[x] is None: throw BJ(R)

4for y,j in S[x]:

5try: if T[y] is None: throw BJ(S)

6for k in T[y]:

7try: if U[y] is None: throw BJ(S)

8for l in U[y]:

9try: output(x,y,i,j,k,l)

10catch BJ(U): U[y].delete(l)

11catch BJ(T): T[y].delete(k)

12catch BJ(S): S[x].delete(y,j)

13catch BJ(R): R[()].delete(i, x)

(b) Execution of TTJ for Example 1.1

Fig. 4. The TreeTracker algorithm and an example execution.

lookup R[k] succeeds, the algorithm iterates over each matching tuple 𝑟 and calls itself recursively

(line 9). This recursive call has three possible results. A result containing a relation (line 10) signifies

a backjump has occurred, with that relation as the backjumping point. If the backjumping point is

the same as the current relation 𝑅, then the tuple 𝑟 is deleted from 𝑅 (line 11). If the backjumping

point is different from 𝑅, then the backjump continues by returning result which interrupts the

current loop. Finally, if the recursive call (implicitly) returns None, the algorithm continues to the

next loop iteration.

Example 4.1. It can be helpful to unroll the recursive algorithm over a query plan. Given𝑄1 in (2)

and the plan [𝑅, 𝑆,𝑇 ,𝑈 ], Figure 4b shows the execution of TTJ. To make the code more intuitive,

we replace return statements with exception handling to simulate backjumping. We gray out dead

code and no-ops:

• Line 1 is unreachable because R[()] is always the entire relation 𝑅, and 𝑅 has no parent.

• Line 3 (and 13) is a no-op, because it would just backjump to the immediately enclosing

loop, and removing a tuple from 𝑅 is useless because 𝑅 is at the outermost loop
5
.

• Technically the if-statement on line 5 is useful even though it only backjumps one level,

because the backjump would remove a tuple from 𝑆 when caught (line 12). However for the

input data in Example 1.1 we do not need this, and we gray it out to reduce clutter.

• Finally, the innermost two try-catch pairs are unreachable, because𝑈 and𝑇 have no children.

At this point, the remaining code in black is essentially the same as the code in Figure 1c. As a side

note, a sufficiently smart compiler with partial evaluation or just-in-time compilation could remove

the dead code and no-ops as we have done above.

4.1 Correctness and Asymptotic Complexity
The correctness proof starts with an observation on the relationship between different calls to ttj:

Proposition 4.2. If ttj(𝑡 𝑗 , 𝑝, 𝑗) recursively calls ttj(𝑡𝑖 , 𝑝, 𝑖), then 𝑡 𝑗 ⊆ 𝑡𝑖 .
Proof. The proposition follows from the definition of the algorithm, where the 𝑡𝑖 argument to

the nested call is constructed by appending tuples to 𝑡 𝑗 . □
5
In Section 5 we will introduce an additional optimization that makes “removing” from the outermost relation meaningful.
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8 Anon.

TTJ differs from binary join only upon a lookup failure. In that case it backjumps to the parent

of the relation that caused the failure, and deletes the tuple that caused the failure. Therefore, TTJ
is correct as long as it never deletes or “backjumps over” any tuple that should be in the output. We

first prove that a deleted tuple can never contribute to any outupt. In the following we write 𝜋𝑅 (𝑡)
for the projection of 𝑡 onto the schema of 𝑅.

Lemma 4.3. Suppose a tuple 𝑟 𝑗 is deleted from 𝑅 𝑗 during the execution of TTJ for a query 𝑄 using
plan 𝑝 . Then ∀𝑡out ∈ 𝑄 : 𝜋𝑅 𝑗

(𝑡out) ≠ 𝑟 𝑗 .
Proof. Let 𝑝 be [𝑅1, . . . , 𝑅𝑛], and 𝑡 𝑗 be the value of the argument 𝑡 in scope at the time of the

deletion. Because 𝑟 𝑗 is deleted from 𝑅 𝑗 , there must be a failed lookup 𝑅𝑖 [𝑘𝑖 ] recursively nested

within the call to ttj(𝑡 𝑗 ++ 𝑟 𝑗 , 𝑝, 𝑗 + 1), and 𝑅 𝑗 is the parent of 𝑅𝑖 . Let 𝐾𝑖 = keys(𝑝 [1, . . . , 𝑖], 𝑅𝑖 ), and
let 𝑡𝑖 be the value of 𝑡 at the time of the lookup failure. Then 𝑡 𝑗 ++ 𝑟 𝑗 ⊆ 𝑡𝑖 by Proposition 4.2. By

definition of parent, 𝐾𝑖 ⊆ Σ(𝑅 𝑗 ) ⊆ Σ(𝑡 𝑗 ++ 𝑟 𝑗 ) ⊆ Σ(𝑡𝑖 ), so 𝑘𝑖 = 𝜋𝐾𝑖
(𝑡𝑖 ) = 𝜋𝐾𝑖

(𝑡 𝑗 ++ 𝑟 𝑗 ) = 𝜋𝐾𝑖
(𝑟 𝑗 ).

However, since the lookup failure implies no tuple in 𝑅𝑖 contains 𝑘𝑖 , any output tuple 𝑡out cannot

contain 𝑘𝑖 either, i.e., ∀𝑡out ∈ 𝑄 : 𝜋𝐾𝑖
(𝑡out) ≠ 𝑘𝑖 . Therefore, ∀𝑡out ∈ 𝑄 : 𝜋𝐾𝑖

(𝑡out) ≠ 𝜋𝐾𝑖
(𝑟 𝑗 ) which

implies ∀𝑡out ∈ 𝑄 : 𝜋𝑅 𝑗
(𝑡out) ≠ 𝜋𝑅 𝑗

(𝑟 𝑗 ). □

Next, we show TTJ never backjumps over any tuple that contributes to the output. Given a plan

𝑝 = [𝑅1, . . . , 𝑅𝑛], denote by 𝜋 [𝑖 ] (𝑡) the projection of 𝑡 onto
⋃
𝑗∈[𝑖 ] Σ(𝑅 𝑗 ).

Lemma 4.4. For any tuple 𝑡out ∈ 𝑄 , plan 𝑝 for 𝑄 , and 1 ≤ 𝑖 ≤ |𝑝 |, ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) recursively
calls ttj(𝜋 [𝑖 ] (𝑡out), 𝑝, 𝑖 + 1).

Proof. Consider a lookup 𝑅 [𝑘] that is recursively nested within the call to ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖)
where 𝑅 has a parent 𝑅 𝑗 with 𝑗 ∈ [𝑖 − 1]. Then 𝑘 ⊆ 𝜋𝑅 𝑗

(𝑡out) ⊆ 𝑡out, and because Σ(𝑘) ⊆ Σ(𝑅),
we have 𝑘 ⊆ 𝜋𝑅 (𝑡out) ∈ 𝑅. This means the lookup 𝑅 [𝑘] will not fail. This holds for all such 𝑅, so
the algorithm never backjumps from within the call ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) to any 𝑅 𝑗 for 𝑗 ∈ [𝑖 − 1].
The algorithm may still backjump to 𝑅𝑖 , but by Lemma 4.3, 𝜋𝑅𝑖 (𝑡out) is never deleted from 𝑅𝑖 , and

therefore the algorithm will recursively call ttj(𝜋 [𝑖−1] (𝑡out) ++ 𝜋𝑅𝑖 (𝑡out), 𝑝, 𝑖 + 1) which is the same

as ttj(𝜋 [𝑖 ] (𝑡out), 𝑝, 𝑖 + 1). □

We arrive at the correctness of TTJ by applying Lemma 4.4 inductively over the query plan.

Theorem 4.5. Given any plan p for 𝑄 , ttj((),p,1) computes 𝑄 .

Proof. We prove the correctness of TTJ in two directions: first, any tuple produced by TTJ should
be in the output; second, TTJ produces all tuples that should be in the output. The first direction

is straightforward, as any tuple produced by TTJ is also produced by binary hash join. We prove

the second direction by induction over the argument 𝑖 , with the following inductive hypothesis:

ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) will be invoked for all 𝑡out ∈ 𝑄 and 1 ≤ 𝑖 ≤ |𝑝 |. The base case when 𝑖 = 1

holds because we start the execution of TTJ by calling ttj((), 𝑝, 1). For the inductive step, assume

ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) is invoked, then applying Lemma 4.4 shows ttj(𝜋 [𝑖 ] (𝑡out), 𝑝, 𝑖 + 1) will also
be invoked. Therefore, ttj(𝑡out, 𝑝, |𝑝 | + 1) will be invoked for all 𝑡out ∈ 𝑄 , which produces all tuples

that should be in the output. □

Next, we prove TTJ runs in linear time in the size of the input and output, for full acyclic queries.

We first introduce a condition on the query plan that is necessary for the linear time complexity:

Lemma 4.6. Given a query 𝑄 and a plan 𝑝 = [𝑅1, . . . , 𝑅𝑛] for 𝑄 , parent returns None only for 𝑅1
during the execution of TTJ, if 𝑝 is the reverse of a GYO reduction order of 𝑄 .

Proof. If [𝑅𝑛, . . . , 𝑅1] is a GYO reduction order, then there is a join tree with 𝑅1 as root, and

every non-root atom has a parent. □
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TTJ is guaranteed to run in linear time given such a plan:

Theorem 4.7. Fix a query 𝑄 and a plan 𝑝 . If 𝑝 is the reverse of a GYO reduction order for 𝑄 , then
ttj((),p,1) computes 𝑄 in time 𝑂 ( |𝑄 | +∑

𝑖 |𝑅𝑖 |).

Proof. We first note that in Figure 4a, ttj does constant work outside of the loops; each iteration

of the loop also does constant work and recursively calls ttj, so each call to ttj accounts for constant

work, therefore the total run time is linear in the number of calls to ttj. All we need to show now

is that there are a linear number of calls to ttj.

Because 𝑝 is the reverse of a GYO reduction order for 𝑄 , the following holds from Lemma 4.6:

except for the one call to ttj on the root relation (when 𝑖 = 1), every call to ttj has 3 possible

outcomes: (1) It outputs a tuple. (2) It backjumps and deletes a tuple from an input relation. (3) It

recursively calls ttj. Because the query plan has constant length, there can be at most a constant

number of recursive calls to ttj (case 3) until we reach cases 1 or 2. Therefore there are at most

𝑂 ( |𝑄 | +∑
𝑖 |𝑅𝑖 |) calls to ttj, and the algorithm runs in that time. □

By Theorem 3.5 every 𝛼-acyclic query can be GYO-reduced, therefore ttj runs in linear time:

Corollary 4.8. For any 𝛼-acyclic query 𝑄 , there is a plan 𝑝 such that ttj((),p,1) computes 𝑄 in
time 𝑂 ( |𝑄 | +∑

𝑖 |𝑅𝑖 |).

4.2 Comparison with Binary Join and YA
We now prove our claim that, for any given query plan, TTJ always matches or outperforms binary

hash join. Because TTJ and hash join build the exact same set of hash tables, they share the same

cost for hash building. We therefore focus on the cost of hash lookups which accounts for the

majority of the remaining cost for both algorithms. The following proofs take advantage of set

semantics, but it is easy to extend the reasoning for bag semantics, as we can convert a bag into a

set by appending a unique labeled null value to each tuple. We start with the following observation

to relate the run time of hash join and TTJ to the set of arguments they are invoked with:

Lemma 4.9. Both hash join and TTJ, as defined in Figure 3a and Figure 4a, are invoked once for
each distinct combination of the arguments (𝑡, 𝑝, 𝑖).

Proof. We prove by induction over the argument 𝑖 . In the base case when 𝑖 = 1, both algorithms

are invoked once with 𝑡 = (), 𝑖 = 1. For the inductive step, first consider the hash join algorithm.

For every distinct 𝑡 , join(t, plan, i) recursively calls join(t++r, plan, i+1) for every 𝑟 ∈ 𝑅𝑖 [𝑘].
Since 𝑅𝑖 is a set, each 𝑟 is distinct, so each 𝑡 ++ 𝑟 is also distinct. The same reasoning also applies to

TTJ, as the algorithm will call itself only for a subset of the tuples in 𝑅𝑖 [𝑘]. □

In other words, the number of calls to each algorithm is the same as the number of distinct

arguments they are invoked with. We can now compare the algorithms, by bounding the number

of calls to TTJ by that of binary join.

Theorem 4.10. Given a query 𝑄 and a plan 𝑝 for 𝑄 , computing 𝑄 with TTJ using 𝑝 makes at most
as many hash lookups as computing 𝑄 with binary join using 𝑝 .

Proof. For clarity we have repeated the lookup R[k] three times in Figure 4a, but we really

only need to look up once and save the result to a local variable for reuse. Specifically, a pointer

to R[k] on line 6 can be used for the nullness check on the same line, the loop on line 8, as well

as the deletion
6
on line 11. This way, every call to ttj makes exactly one hash lookup. Since the

6
Although the deletion occurs after a recursive function call, the recursion has constant depth, so the pointer dereference

has good temporal locality and is likely cheap.
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10 Anon.

binary join algorithm in Figure 3a also makes exactly one hash lookup per call, it is sufficient to

bound the number of calls to ttj by that of binary join. By Lemma 4.9, it is sufficient to show the

distinct arguments TTJ is invoked on is a subset of that for binary join. We prove this by induction

over the argument 𝑖 . When 𝑖 = 1, both TTJ and binary join are invoked with 𝑡 = () and 𝑖 = 1.

For the inductive step, ttj(t, p, i) recursively calls ttj(t++r, p, i+1) only if 𝑟 ∈ 𝑅𝑖 [𝑘], which
implies join(t, p, i) will also call join(t++r, p, i+1) in binary join. Therefore, every call to TTJ
is accounted for with a call to binary join. □

Another cost in query execution comes from accessing the matching tuples after a successful

lookup, and one can prove that TTJ accesses no more tuples than binary join, following the same

reasoning as above. Although backjumping and tuple deletion in TTJ may in principle carry an

overhead, we will show in Section 6 that such an overhead is negligible as compared to the cost of

hash lookups. Finally, we note the above proof does not assume an acyclic query. Section 7 analyzes

the run time of TTJ on cyclic queries.

While we guarantee TTJ to always match binary join, we cannot make the same strong claim for

YA. We will see in Section 6 that YA performs better than TTJ on some queries. Here we analyze a

few extreme cases for some intuition of how TTJ compares to YA:

Example 4.11. Consider a query where every tuple successfully joins, i.e., no lookup fails. In

this case binary join and TTJ behaves identically. However, YA spends additional time futilely

computing semijoins (without removing any tuple), before following the same execution as binary

join and TTJ to produce the output.

Example 4.12. The other extreme case is when a query has no output, and YA immediately detects

this and stops. In fact Example 1.1 is such a query: all YA needs to do is the semijoin𝑇 ⋉𝑈 , where it

builds a (tiny) hash table for𝑈 and iterate over𝑇 once to detect nothing joins. In contrast, although

TTJ also runs in linear time, it must build the hash table for all of 𝑆 , 𝑇 and𝑈 .

5 Optimizations
Up until this section TTJ has been presented in foundational manner, requiring only minor changes

to HJ. Deep consideration of TTJ reveals many opportunties for enhancement. We present two

direct optimizations of the TTJ algorithm inspired by research in Constraint Satisfaction. We name

these the deletion propagation and no-good list optimizations. Deletion propagation is emodied in

the TreeTracker algorithm [10] and we include it to examine its effectiveness on join evaluation.

No-good list is also known as no-good recording, which stems from the constraint learning method

in Constraint Satisfaction [7].

Deletion Propagation. Recall that after a lookup failure, a backjump is executed and the offending

tuple removed it from its relation based on the corresponding hash key. There will be executions

where all the tuples sharing that hash key are removed. Programatically in line 11 in Figure 4a R[k]

becomes empty. If so any subsequent lookup, R[k] will fail. Instead of continuing execution, as

defined so far, we can immediately backtrack further to the parent of 𝑅 and propagate the deletion
to 𝑅’s parent. Said optimization requires adding the single following line to the end of Figure 4a:

if R[k] is None & P is not None: return P

This optimization is not always beneficial. When there are no subsequent lookups to R[k] propa-

gating the deletion is unnecessary and carries a small overhead.

No-Good List. We had remarked in Section 4 that removing a tuple from the root relation is

pointless, as the same tuple would never be considered again. However, any tuple in the root

relation that shares the same values with an offending tuple over the key schema will also fail. The
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no-good list optimization comprises adding that set of values to a blacklist. Each tuple from the

root relation is tested for membership in the blacklist. Since membership in that list mean certain

failure no further effort to join that tuple is necessary. This optimization requires three changes to

Figure 4a.

First, the key values must be included as parameters and passed to the parent relation, line 7:

return (P, 𝜋𝑅(t))

When catching the backjump (line 10) at the root relation, those key values are added to the

blacklist:

if result == (R, vals):

if i == 0: no_good.add(vals) else: R[k].delete(r)

When iterating over the root relation, (after line 8), each tuple is tested for membership in the

no-good list and if present further processing is skipped.

if i == 0 & r.matches(no_good): continue

The no-good list, 𝑛𝑔, can be implemented as a hash table. Suppose the root relation, 𝑅, has 𝑚

children 𝑆1, . . . , 𝑆𝑚 . The lookup key for 𝑛𝑔 is ⟨𝑆𝑖 , ℓ𝑖⟩ where ℓ𝑖 is a set containing 𝜋keys(𝑅,𝑆𝑖 ) (𝑡) (called
no-goods) for a tuple 𝑡 from 𝑅 that caused a lookup failure at 𝑆𝑖 for 𝑖 ∈ [𝑚]. The impact of the

no-good list is almost identical to semijoin reduction in YA. The algorithmic difference is in lieu of

a semijoin removing dangling tuples prior to the join, the 𝑅 tuples are checked against a collection

of values accumulated on the fly and at anytime during execution are a subset of the contents of

the complementary antijoin. Like YA itself, the effectiveness of the no-good list depends on how

much the argument is reduced and the size of the intermediate result. i.e. the semijoin and join

selectivity. We demonstrate the trade-off through Star Schema Benchmark in Section 6.1.

6 Empirical Results
Since our primary contribution concerns the development of an algorithm that is both asymptotically

optimal and is competative in practice w.r.t. wall clock time, the primary goal of the empirical

assessment is to compare the execution time of the algorithms in as controlled of an experiment as

possible. All three algorithms, TTJ, binary hash join, HJ, and YA are implemented in the same Java

query execution engine written from scratch. We are certain our algorithm execution measurements

do not make calls to methods outside of our execution environment. Any data structure in our

execution environment whose definition is impacted by the definition of a data structure outside of

our Java execution environment is treated identically for all three algorithms. Where possible, code

is reused across algorithm implementation. The source code of the implementation is available at

https://anonymous.4open.science/r/treetracker.

Remaining aspects of query compilation and and DBMS implementation are “borrowed” from

other DBMS implementations. Query plans are an example of borrowing from other DBMS imple-

mentations. After loading a benchmark database instance and gathering catalog statistics left-deep

linear query plans are determined by SQLite, and bushy plans by PostgreSQL. The SQL EXPLAIN

command elicits the plans from the DBMSs. SQLite and PostgreSQL were chosen because of the

topology of the plans their optimizers generate. The linear time guarantee only holds for left-deep

linear plans that are consistant with a GYO reduction order of the query. All the left-deep plans

produced by SQLite in our experiments are consistent with the GYO reduction requirement.

Workload. Our experments encompass left-deep plans, left-deep plans with optimizations inte-

grated into the TTJ algorithm, and bushy plans. Only the acyclic join queries in three benchmarks

were evaluated, the Join Ordering Benchmark (JOB) [12], TPC-H [18] (scale factor = 1), and the

Star Schema Benchmark (SSB) [16] (scale factor = 1). Also omitted were single-relation queries, and
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Fig. 5. Run time of TTJ, HJ, YA, and PostgreSQL on JOB, TPC-H, and SSB. Every data point corresponds to a
query, whose 𝑥- and 𝑦-coordinates correspond to the run time of the algorithms under comparison.

Baseline Benchmark Average Maximum Mininimum

Hash Join

JOB 1.11× 12.6× (16b) 0.9× (11b)

TPC-H 1.09× 1.9× (Q9) 1× (Q7)

SSB 1.15× 1.7× (Q2.2) 0.8× (Q3.4)

Yannakakis’s

Algorithm

JOB 1.60× 9.2× (16b) 0.2× (6a)

TPC-H 1.40× 3.7× (Q9) 0.7× (Q7)

SSB 3.16× 7.9× (Q2.2) 1× (Q3.4)

Table 1. Speed-up of TreeTracker Join Relative to Hash Join and Yannakakis’s Algorithm.

correlated subqueries. These criteria eliminated only 9 queries, all from TPC-H. Thus, the 113 JOB

queries, the 13 SSB queries and 13 out of 22 TPC-H queries were assessed, for a total of 139 queries.

Environment. Experiments were conducted on a single logical core of an AMD Ryzen 9 5900X

12-Core Processor @ 3.7Hz CPU. The computer contained 64 GB of RAM, and a 1TB PCIe NVMe

Gen3 M.2 2280 Internal SSD. All data structures are allocated from JVM heap which was set to 20

GB. Since execution was otherwise identical for all algorithms under test, no techniques to reduce

the overhead of memory allocation or garbage collection were exploited. Measurements for each

query and algorithm pair were orchestrated by JMH [1] configured for 5 warmup forks and 10

measurement forks. Each of those forks contains 3 warmup and 5 measurement iterations.

Direct measurements of PostgreSQL, which can be seen as the control group (not a baseline), for

our implementations are the same as [12]. PostgreSQL measurements use an in-memory hash join,

indices were dropped and single process execution specified. Thus, we configured PostreSQL such

that measurements were made as similar to our Java implementations as we could make possible.

A timeout was set to 1 minute. Of all the queries only TPC-H Q20 exceeded the timeout.

6.1 Algorithm Comparison
Figure 5 illustrates our primary results. It contains 3 scatter plots that pairwise compare the execu-

tion time of 4 implementations for each query across the 3 benchmarks. First, Figure 5a compares

the performance of PostgreSQL, using hash joins with our implementation of HJ. Inspection of
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the scatterplot shows that with few exceptions the execution time of the same query is less than

an order of magnitude apart. Most points are below the diagonal indicating our implementation

is faster than PostreSQL. The shape of the cluster suggests a consistent range in the disparity of

execution time.

Faster execution is not surprising. The results of a road race with PostgreSQL are not material to

this paper. Our execution environment contains no elements of transaction system overhead or

buffer and memory hierarchy management. PostgreSQL execution time was measured as a control.

This first plot establishes that our Java implementation is within range of a commercially used

RDBMS and the consistency in the difference of execution speed lends credibility that the emperical

results from our execution environment will generalize to commercially deployed RDBMSs.

Figure 5b shows, on a per query basis, the relative speed of TTJ versus HJ. The visualization
in Figure 5b reveals that TTJ is often faster than HJ, and for just a few queries the execution is

slower and when that is the case the performance disadvantage is marginal. Per Table 1, JOB query

11b and SSB query Q3.4, form the worst results for TTJ are just 10% and 20% slower respectively.

The weighted average of TTJ execution time over the three benchmarks is a hair better than 10%

faster. More sizable improvements appear in the maximum speed-up results. We remind the reader

the join orders are for plans that were optimized for left-deep linears hash-joins. Below we will

return to the question of the upside opportunity for TTJ execution speed when, in future work, a

SQL optimizer includes cost models for TTJ and the optimization process includes both a choice

of join order and a choice of join algorithm. For instance the detailed examination of each query

execution revealed that TTJ’s worst-relative performance, JOB query 11b is due to the inclusion of

the no-good list optimization which, often predictably, incures overhead without providing any

performance benefit.

For completeness, performance of TTJ relative to YA is presented in Figure 5c. The results

exemplify the paradox and challenge of YA. On all but 12 queries, TTJ outperforms YA, with average

and maximum speedup of 1.4x and 9.2x. 8 of those queries, JOB 6a, 6b, 6c, 6d, 6e, 7b, 12b, and TPC-H

Q7, exhibit the most significant disadvantage of TTJ.
Review of the JOB queries reveals a foreseeable cause for YA execution speed advantage. The

first semijoin removes a large fraction of tuples from a large relation. For example, the first semijoin

for JOB query 6a reduces the largest relation, cast_info, from 36,000,000 tuples to 486 tuples. That

semijoin is executed before building the hash tables. Hash table build time for YA is 499ms. For TTJ
that build time is 13,398ms and by itself comprises 98% of the execution time for TTJ.

The basis of TPC-H, Q7’s performance results are also due to the impact of the first semijoin, but

in a more involved way. Prior to any join processing a relational select on nation returns just 1

tuple. As an argument to the first semijoin, supplier ⋉ nation, over 90% of tuples from supplier are
removed. Where, in the first example the one semijoin reduction accounted for speed benefit, in

this example, by beginning with a single tuple, the entire chain of semijoin reductions resulted in

large reductions in the size of the join arguments repeat.

Review of hash table build times for YA relative to hash table build times for TTJ and HJ alone,
(these latter two always being equal), accounts for all the speed improvement of YA compared to

the other algorithms.

The specialized pattern embodied in SSB, star queries on a star schema, enables a quantitative

assessment that may be used in the future by a query optimizer. Notably a determination if the

integration of a no-good list is advantagous. For the special case of big data queries modeled by

SSB, the performance of TTJ is largely determined by the effectiveness of the no-good list.

Recall the no-good list is a specialization for the leftmost argument of a join plan as hash-joins

do not typically create a hash-table for the leftmost argument. The no-good list forms a cache of the

tuple key values for the leftmost argument that have been determined to be dangling. Queries plans
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Fig. 6. Number of hash probes in different algorithms.

for star schema typically start with the fact table as the leftmost relation in a plan, and provide the

key values for a series of joins on dimension tables. Any lookup failure will backjump to the fact

table and add to the no-good list. Thus the no-good list acts as a filter that prevents any processing

of a fact tuple whose join key values have already been determined to be fruitless.

Of 13 SSB queries evaluated TTJ is the fastest algorithm on 6, and, plus or minus, within 10%

margin of the best algorithm on 10 queries. We compared the queries that run relatively slower

in TTJ (Q1.2, Q3.4, Q4.1, and Q4.3) with those that run relatively faster (Q2.1, Q2.2, Q2.3, Q3.1,

Q3.2, and Q3.3), and measured the ratio between the intermediate result size reduction and the

size of no-good lists. We determined that for the slower queries, each element in the no-good

list, on average, reduces the intermediate result size by 182. For the faster queries the average is

318. Although an optimizer is not within the scope of this paper, we can conclude that for our

testbed more refined measurements would determine a tipping point value of a selectivity that falls

between 1/182 and 1/318. Selectivity below the tipping point indicates omitting the no-good list

will result in faster query execution and vice versa.

The scatter plot Figure 6a compares the number of hash probes for TTJ vs. HJ for each query. A

small number of the scatter plot points appear on the diagonal, i.e. an equal number of hash probes.

The remainder of the points are below the diagonal. This emperically validates our theorem that

TTJ will execute fewer or an equal number of hash probes as HJ.
We have not made any claims as to the relative number of hash probes between TTJ and YA.

Nevertheless we made that measurement. Figure 6b shows like HJ, TTJ makes fewer hash probes

for YA. Yet YA runs faster for certain queries as hash building, not probing, sometimes dominates

query run time, as we have pointed out in the analysis of results in Figure 5c.

6.2 Impact of Optimizations
Experiments in this section investigate the impact of the two optimizations introduced in Section 5,

no-good list and deletion propagation. To denote TTJ with both no-good list (𝑛𝑔) and deletion

propagation (𝑑𝑝) we write TTJ𝑛𝑔+𝑑𝑝 . To denote TTJ with no-good list only and TTJ with deletion

propagation only we write TTJ𝑛𝑔 and TTJ𝑑𝑝 respectively. For this section TTJ shall mean the

algorithm without the optimizations. Figure 7 contains scatter plots that compare the runtime of

TTJ with each of the three possible integrations of the optimizations.

Reviewing the behavior of the optimizations independently, we see that deletion propagation

has little effect on query run time. This is due to the fundamental differences between constraint
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Fig. 7. Performance impact of TTJ optimizations.

satisfaction and query evaluation. In constraint satisfaction, the modus operandi is to backtrack

upon a failed constraint, and such failures are common due to the large number of constraints

present. In contrast, in query evaluation the number of constraints is small as the query is usually

much smaller than the input data, and a large number of tuples will eventually satisfy all constraints

and appear in the output. Indeed, from running the entire benchmark suite, only around 5% of

deletions trigger propagation.

On the other hand, no-good list markedly improves the performance in a number of queries.

There are only a few queries slightly above the diagonal, all from the SSB benchmark. Recall from

our SSB analysis (Section 6.1) that the effectiveness of the no-good list hinges on the ratio of

intermediate result size reduction to the no-good list size. For star schema queries, this ratio is

dominated by the no-good list’s ability to filter tuples from the fact table—the left-most relation in

the join plan. Quantifying this, we observe that each no-good element reduces intermediate results

by 318 on average for fast queries (Q2.1, Q2.2, Q2.3, Q3.1, Q3.2, Q3.3) versus 182 for slow queries

(Q1.2, Q3.4, Q4.1, Q4.3). The fast queries achieve a 75% higher reduction per element, surpassing

the threshold where benefits outweigh costs. Crucially, this aligns with scenarios where the join

plan structure and backjump dynamics prioritize filtering the left-most relation—a pattern common

in efficient executions.

6.3 TTJ on Bushy Plans
Since every plan in Section 6.1 is compatible with a GYO reduction order, the runtime of TTJ is
guaranteed to be linear. However, given the abundance of bushy plans (all the native PostgreSQL

plans we used here are bushy), a natural question to ask is whether TTJ can still provide reasonably

good performance despite the loss of linear runtime guarantee. The results in this section give an

affirmative answer.

Figures 8a and 8b compare the run time of TTJ, HJ, and PostgreSQL using bushy plans produced

by PostgreSQL, and Figure 8c compares the run time of TTJ using bushy plans with the same

algorithm using left-deep linear plans produced by SQLite, denoted by TTJ𝐿 . Figure 8a shows ourHJ
baseline remains competitive with PostgreSQL under bushy plans. TTJ is faster than HJ on all 113

JOB queries, and faster than TTJ𝐿 on 101 (89%) of them. Compared to TTJ𝐿 , the maximum speed-up

is 5.7× (7b), the minimum speed-up is 0.5× (19d), and the average speed-up (geometric mean)

is 1.75×. Compared to HJ, the maximum speed-up is 2.1× (13d), the minimum speed-up is 1.1×
(19d), and the average speed-up (geometric mean) is 1.56×. From the figure, we observe that the
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Fig. 8. Run time comparison of TTJ, TTJ𝐿 , HJ and PostgreSQL. TTJ𝐿 uses left-deep linear plans generated by
SQLite (same as earlier experiments), while all other algorithms use bushy plans generated by PostgreSQL.

materialization of intermediate results due to bushy plans does not degrade TTJ performance; in fact,

TTJ performs much better than itself on linear plans in most cases due to the fact that intermediate

results generated in bushy plans are usually smaller than some of the largest input relations in JOB,

which allows TTJ to spend less time building hash tables. As a result, the saving in join computation

becomes more salient than that over left-deep plans. Furthermore, the performance improvement

using TTJ on each individual linear plan has the compound effect that contribute to the overall

performance improvement of the queries. However, we do observe that some of the queries still

have better performance under linear plans than bushy plans such as 8c and 16b. This indicates that

linear time guarantee is still meaningful for query performance and optimization is still necessary

to bring out the best performance of TTJ (e.g., decide which plan shape to use). An important topic

for future work is to optimize bushy plans that also have the guarantee of optimality.

7 CyclicQueries
The TTJ algorithm as defined in Figure 4a supports both acyclic and cyclic queries. The guarantee

to match or outperform binary join (Theorem 4.10) also holds for cyclic queries. However, the

linear-time guarantee only applies to acyclic queries. To analyze the run time of TTJ on cyclic

queries, we introduce a new method called tree convolution to break down a cyclic query in to

acyclic parts. The next example illustrates the intuition behind tree convolution.

Example 7.1. Consider the following query whose query graph is shown in Figure 9a:

𝑄⊠ : -𝑅1 (𝑥1, 𝑥2) ⊲⊳ 𝑅2 (𝑥2, 𝑥3) ⊲⊳ 𝑅3 (𝑥3, 𝑥4) ⊲⊳ 𝑅4 (𝑥4, 𝑥1) ⊲⊳
𝑆1 (𝑥1, 𝑦) ⊲⊳ 𝑆2 (𝑥2, 𝑦) ⊲⊳ 𝑆3 (𝑥3, 𝑦) ⊲⊳ 𝑆4 (𝑥4, 𝑦)

In the query graph, each node is a variable, and there is an edge between two nodes if the corre-

sponding variables appear in the same atom, for example the edge 𝑅1 between 𝑥1 and 𝑥2 corresponds

to the atom 𝑅1 (𝑥1, 𝑥2). Clearly the query is cyclic. However, we can compute the query by breaking

it down into two acyclic steps: First, we compute the join 𝑆1 ⊲⊳ 𝑆2 ⊲⊳ 𝑆3 ⊲⊳ 𝑆4 and store the result in

a temporary relation 𝑆 . Then we compute the final result with 𝑅1 ⊲⊳ 𝑅2 ⊲⊳ 𝑅3 ⊲⊳ 𝑅4 ⊲⊳ 𝑆 . Any acyclic

join algorithm can be used to compute each step, and, as we will show later, using TTJ can avoid

materializing the intermediate result 𝑆 . The total run time is therefore 𝑂 ( |IN| + |OUT| + |𝑆 |).
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Fig. 9. Query graph and tree convolutions of 𝑄⊠ in Example 7.1.

To formally define tree convolutions, we first identify a (full conjunctive) query with the set of

atoms in its body, and define a subquery of a query 𝑄 as a subset of the atoms in 𝑄 . Then, a tree

convolution for a query is a nested tree, defined recursively as follows:

Definition 7.2. A tree convolution of a query 𝑄 , written 𝒯(𝑄), is a tree where each node is

either an atom in 𝑄 , or a tree convolution of a subquery of 𝑄 . Each atom in 𝑄 appears exactly once

anywhere in𝒯(𝑄), and every tree 𝑇 in𝒯(𝑄) forms a join tree of the corresponding (sub-)query,

after replacing each non-atom node 𝑣 ∈ 𝑇 with a fresh atom over all variables in 𝑣 .

Figure 9b shows a tree convolution corresponding to the computation of 𝑄⊠ in Example 7.1:

first join together the 𝑆 relations, then join the result with the 𝑅 relations. Figure 9c shows a

different convolution, where we first compute three acyclic subqueries, then join together the

results. Another convolution with four nesting levels is shown in Figure 10b.

We can compute any cyclic query using a tree convolution. Starting from the most deeply nested

trees, we run any acyclic join algorithm to materialize intermediate results, until we reach the

top-level tree that produces the final output. However, TTJ can avoid the expensive materialization

by using a special kind of tree convolution called rooted convolution.

Definition 7.3. A convolution is rooted if nested convolutions only appear at the root of each tree.

The convolution in Figure 9b is rooted, while the one in Figure 9c is not. We can generate a plan

𝑝 for TTJ by traversing a rooted convolution inside-out: starting with the most deeply nested tree,

initialize 𝑝 with the reverse of the GYO-reduction order of this tree; then, as we go up each level,

append the reverse of the GYO-reduction order to the end of 𝑝 .

Example 7.4. The rooted convolution in Figure 9b generates the plan [𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑅1, 𝑅2, 𝑅3, 𝑅4].

A small adjustment to the TTJ algorithm is necessary to fully exploit rooted convolutions. If we

execute TTJ as-is using the plan in Example 7.4, none of the relations 𝑅1, . . . , 𝑅4 have a parent in the

plan, yet we need to compute the join 𝑆 ⊲⊳ 𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅4 in time 𝑂 ( |𝑆 | +∑
𝑖 |𝑅𝑖 | + |𝑄 |), where 𝑆 is

the join of 𝑆1, . . . , 𝑆4. We therefore introduce additional backjumps from each 𝑅𝑖 to 𝑆4, but without

deleting any tuple from 𝑆4. This is achieved by defining the parent function to work over rooted

convolutions: given a tree convolution 𝐶 and a relation 𝑅, if the parent node of 𝑅 in some tree of 𝐶

is an atom 𝑃 , then assign 𝑃 as the parent of 𝑅; otherwise if the parent node is a nested tree, then

assign the last relation in that tree (i.e. the first relation in its GYO-reduction order) as the parent

of 𝑅. For example, the parent of each 𝑅𝑖 in Example 7.4 is 𝑆4.

Finally, when backjumping to a parent in a nested convolution, we do not delete any tuple from

that parent. We are now ready to analyze the run time of TTJ on cyclic queries.
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Given a rooted tree convolution𝒯(𝑄), we generate a query plan 𝑝 as follows. Suppose𝒯(𝑄)
consists of𝑚 nested trees𝑇1, . . . ,𝑇𝑚 where𝑇1 is the most deeply nested tree and𝑇𝑚 is the outermost

tree. Let 𝑝1, . . . , 𝑝𝑚 be the plans corresponding to𝑇1, . . . ,𝑇𝑚 . Then, each 𝑝𝑖 is a plan that corresponds

to the reverse of a GYO-reduction order of𝑇𝑖 , where the first relation in 𝑝𝑖 is result of 𝑝𝑖−1 for 𝑖 > 1.

The outermost plan 𝑝𝑚 then computes the final result of 𝑄 .

Proposition 7.5. During ttj execution on a given rooted convolution 𝒯 of a query 𝑄 , if a lookup
fails at 𝑅 that belongs to 𝑝𝑖 but not in 𝑝𝑖−1 (𝑖 ≥ 2), ttj either backjumps to an atom that is in 𝑝𝑖 but
not in 𝑝𝑖−1 or backjumps to the last atom of 𝑝𝑖−1.

Proof. For any 𝑝𝑖 with 𝑖 ≥ 2, since 𝑝𝑖 is the reverse of a GYO-reduction order of the 𝑖-th tree of

𝒯 and by the modified parent function, every relation in 𝑝𝑖 but not in 𝑝𝑖−1 has parent. Furthermore,

if lookup fails at 𝑅 that is in 𝑝𝑖 but not in 𝑝𝑖−1, ttj backjumps to 𝑅’s parent. Then, the result follows

by the definition of the modified parent function. □

In 𝑝1, if the parent of a relation is the first relation of 𝑝1, ttj backjumps to the first relation. We

can treat the first relation of 𝑝1 as 𝑝0 (i.e., the most deeply nested tree in𝒯 is now a node of an atom

of 𝑄) and the relation is also the last atom of 𝑝0. Therefore, we can remove the restriction of 𝑖 ≥ 2

in Proposition 7.5. In the following proof, we reference the Proposition 7.5 with the understanding

that it holds for 𝑖 ≥ 1.

Theorem 7.6. Given a rooted convolution 𝒯(𝑄) of 𝑄 , there is a plan 𝑝 such that TTJ runs in time
𝑂 ( |IN| + |OUT| +∑

𝑖 |𝑆𝑖 |) on 𝑝 where |𝑆𝑖 | is the size of the join of all relations in the 𝑖-th tree of𝒯(𝑄).

Proof. Since there is no change to ttj except using the modified parent function for 𝒯, like

Proof of Theorem 4.7, we only need to show the algorithm makes𝑂 ( |IN| + |OUT| +∑
𝑖 |𝑆𝑖 |) number

of calls to ttj.

Excep for the initial call to ttj with ttj((), p, 1), every call to ttj has three possible outcomes:

(1) It outputs a tuple. (2) It backjumps and possibly deletes a tuple from an input relation. (3) It

recursively calls ttj. Because the query plan has constant length, there can be at most a constant

number of recursive calls to ttj (case 3) until we reach cases 1 or 2. There can be 𝑂 ( |𝑄 |) ttj calls
for case 1. Since lookup cannot fail at the first relation of 𝑝 , the relation that lookup fails at is in

some 𝑝𝑖 but not in 𝑝𝑖−1. Let 𝑅 be a relation that a lookup fails at. By Proposition 7.5, there can be

two cases on where ttj backjumps to. If ttj backjumps to an atom that is also in 𝑝𝑖 but not in

𝑝𝑖−1, a tuple is deleted. This case can happen 𝑂 ( |IN|) times. If ttj backjumps to the last atom of

𝑝𝑖−1, since ttj works no different than binary join from this moment until next lookup failure, this

can happen 𝑂 ( |𝑆𝑖−1 |) times; the tuples computed at the last atom of 𝑝𝑖−1 is 𝑆𝑖−1. Therefore, given
1 ≤ 𝑖 ≤ 𝑚, there are at most 𝑂 ( |IN| + |OUT| +∑𝑚−1

𝑖=1 |𝑆𝑖 |) calls to ttj, and the algorithm runs in

that time. □

We conclude this section by noting that tree convolution generalizes several exisiting ideas in

databases and constraint satisfaction. First, classic binary join plans are a special case, where every

tree in the tree convolution is of size 2. For example, the convolution in Figure 10b corresponds

to the binary join plan in Figure 10a. In other words, traditional hash join can be thought of as

computing a convolution one binary join at a time, and we have generalized this to computing a

multi-way acyclic join at a time. In a similar way, rooted convolutions generalize left-deep linear

plans, as the top-half of Figure 10b corresponds to the left-half in Figure 10a. Second, in constraint

satisfaction a cycle cut set is a subset of the constraints whose exclusion makes the constraint

problem acyclic. In database terms, it is a subset of the atoms of 𝑄 whose removal leaves an acyclic

subquery. Tree convolution generalizes cycle cut sets in the sense that it “cuts” the query in multiple

rounds, with each round producing acyclic subqueries that can be computed in linear time. Finally,
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(a) A binary join plan for 𝑄⊠. (b) A tree convolution for 𝑄⊠.

Fig. 10. A binary join plan for the query in Example 7.1 and the corresponding tree convolution.

many of the properties of tree convolution are shared with tree decomposition of hypergraphs [8] in

database theory. In fact both tree convolutions in Figure 9 can also be seen as tree decompositions:

Figure 9b is a tree decomposition with 5 bags, one containing {𝑆1, 𝑆2, 𝑆3, 𝑆4}, and one for each 𝑅𝑖 ;

each box in Figure 9c forms a bag in the corresponding tree decomposition. These are then also

examples of where algorithms using tree decompositions require materializing the join result of

each bag. But given a rooted tree convolution, Figure 9b, TTJ requires no materialization.

8 Future Work and Conclusion
In this paper we have proposed our new join algorithm, TreeTracker Join (TTJ). The algorithm runs

in time 𝑂 ( |IN| + |OUT|) on acyclic queries, and guarantees to make no more hash probes than

binary hash join on the same query plan. We have shown empirically that TTJ is competitive with

binary hash join and Yannakakis’s algorithm.

Although our implementation already beats PostgreSQL in our experiments, challenges remain

for TTJ to compete with highly optimized systems. Decades of research on binary join has produced

effective techniques like column-oriented storage, vectorized execution, and parallel execution, just

to name a few. Future research should investigate how to adapt these techniques to TTJ.
Another avenue for future work is to develop a dedicated query optimizer for TTJ. As this paper’s

focus is on algorithm-level comparison, we have opted to reuse existing systems to produce binary

hash join plans, which are then executed using TTJ. Tailoring the optimizer to TTJ may yield plans

with better performance. For instance, estimating the number of hash probe failures instead of

intermediate result sizes shall more accurately model the execution cost of TTJ. On the other hand,

extending TTJ to also guarantee a linear time complexity on bushy plans is also an interesting

challenge. Our theoretical analyses of TTJ reveal a close connection between GYO-reduction orders

and left-deep linear plans, both of which are total orders. Since bushy plans and join trees both

define partial orders, we conjecture there exists a algorithm that runs in linear time on any bushy

plan that corresponds to a join tree, with the same guarantee of matching binary hash join on the

same plan.

Finally, our experiments focus on acyclic queries due to their prevalence in traditional workloads.

However, with the rise of graph databases practitioners begin to encounter more and more cyclic

queries. Additional research on TTJ for cyclic queries, both in terms of practical performance and

theoretical guarantees, will be very valuable. Some open problems include: Given any hypergraph,

what is the minimum nesting depth of any tree convolution? How does this number related

to other measures like various notions of hypergraph widths? And what is the complexity of
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20 Anon.

finding the optimal tree convolution given a cost function? Answering theses questions will aid

the development of a query optimizer for TTJ on cyclic queries.
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