TreeTracker Join: Simple, Optimal, Fast

ANONYMOUS AUTHOR(S)

We present a novel linear-time acyclic join algorithm, TreeTracker Join (TT)). The algorithm can be understood
as the pipelined binary hash join with a simple twist: upon a hash lookup failure, TTJ resets execution to
the binding of the tuple causing the failure, and removes the offending tuple from its relation. Compared to
the best known linear-time acyclic join algorithm, Yannakakis’s algorithm, TTJ shares the same asymptotic
complexity while imposing lower overhead. Further, we prove that when measuring query performance by
counting the number of hash probes, TTJ will match or outperform binary hash join on the same plan. This
property holds independently of the plan and independently of acyclicity. We are able to extend our theoretical
results to cyclic queries by introducing a new hypergraph decomposition method called tree convolution. Tree
convolution iteratively identifies and contracts acyclic subgraphs of the query hypergraph. The method avoids
redundant calculations associated with tree decomposition and may be of independent interest. Empirical
results on TPC-H, the Join Order Benchmark, and the Star Schema Benchmark demonstrate favorable results.

ACM Reference Format:
Anonymous Author(s). 2025. TreeTracker Join: Simple, Optimal, Fast. 1, 1 (December 2025), 30 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction

Yannakakis [38] was the first to describe a linear-time join algorithm (hereafter YA) running in time
O(]IN| + |OUT]), where |IN]| is the input size and |OUT]| is the output size. In principle, this is the
best asymptotic complexity one can hope for, because in most cases the algorithm must read the
entire input and write the entire output. However, virtually no modern database systems implement
YA. A major factor is its high overhead. Prior to executing the join, YA performs two passes over
the input relations, using semijoins to reduce the input size. The reduction is lossless and enables
optimally joining the reduced relations. Since the cost of a semijoin is proportional to the size of
its arguments, this immediately incurs a 2X overhead in the input size. An improved version of
YA [2] achieves the same result in one semijoin pass, but the overhead of this pass remains. Another
practical challenge is that YA is “too different” from traditional binary join algorithms, making it
difficult to integrate into existing systems. For example, the efficiency of YA critically depends on
a query’s join tree which is different from the query plan used by binary joins!. Where there is
a wealth of techniques to optimize query plans for binary joins, little is known about cost-based
optimization of join trees for YA.

In this paper, we propose a new linear-time join algorithm called TreeTracker Join (TTJ), inspired
by the TreeTracker algorithm [15] in Constraint Satisfaction. TT) can be understood as the traditional
binary hash join with a twist: when a hash lookup fails, backtrack to the tuple causing the failure,
and remove that tuple from its relation. The backtracking points depend only on the query, not the
data, and are determined by the query compiler prior to query execution. The execution deviates

1By join tree we mean (hyper-)tree decomposition of hypertree width 1, not the tree of binary join operators commonly
seen in relational algebra query plans.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2025/12-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Anon.

for i,x in R:
for y,j in S[x]:
for k in T[y]:
if ULy] is None:

break S[x].del((y,3));
for 1 in U[y]:
print(xyy;iyj’kyl)
(a) Binary join (b) Backjumping (c) Tuple deletion

Fig. 1. Instantiation of binary hash join on example 1.1, with backjumping, and with tuple deletion. S[x]
denotes a hash lookup into the hash table for S using x as key.

from binary hash join only when a dangling tuple is detected and deleted. Thus the tuple is excluded
from any computation going forward. Hence, when using identical query plans TTJ is guaranteed
to match or outperform binary hash join (Section 4.2).

The following example illustrates the main ideas of TT).

Example 1.1. Consider the natural join of the relations R(i,x), S(x,y, j), T(y, k), and U(y, 1),
where we use R(i, x) to denote that the schema of R is {i, x}. The set {1, ..., N} is denoted by [N].
Let the relations be defined as follows:

R={GD|ic[N]} S={(1L1L)[je[N]} T={1k |ke[N]} U={@01D]le[N]}

Observe U shares no common y-values with S or T, making the query result empty. We’ll first
consider execution with binary hash join, the foundation of our algorithm. Assume the optimizer
produces a left-deep join plan ((R »< S) >« T) >« U. The execution engine builds hash tables for S,
T, and U, mapping each x to (y, j) values in S, y to k values in T, and y to [values in U. Figure 1a?
illustrates the basis of the execution. For each (i, x) tuple in R, the hash table for S is probed for
the (y, j) values. T is probed with each pair (y, j) to determine the k values. This repeats for U.
Although the query produces no output, the execution takes Q(N?) time because it first computes
the join of R, S, and T. A closer look at the execution reveals the culprit: when the lookup on U
produces no result, (line 6), the algorithm continues to the next iteration of the loop over k values,
(line 3). The same value of y is used to probe into U again! To address this, the first key idea
of TTJ is to backjump?® to the level causing the probe failure. For clarity we use break to
represent the backjump, as shown in Figure 1b. When probing U with the key value y fails to return
a result, we break out of the current loop over k and continue to the next iteration of the second
loop level. That is because the unsuccessful lookup key value of y is assigned at that level. That
next iteration retrieves new y, j values, skipping over iterations for k values that are doomed to fail.
With this optimization, the execution finishes in O(N?) time, as it still needs to compute the join
of R and S. To improve the performance further: the second key idea of TT] is to delete the
tuple causing the probe failure. This is shown in Figure 1c: after the probe failure, the offending
tuple (x,y, j) is removed from the S hash table. This is safe to do, because that y value will always
fail to join with any tuple in U. In this way, all tuples from S are removed after looping over it the

2One may also recognize this as indexed nested loop join, which is equivalent [27].

3Backjumping is a concept in backtracking search algorithms; we use the term informally to mean the interruption of a
nested loop iteration to jump back to an outer loop, while referring to the original TreeTracker algorithm [15] for a precise
definition.

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 3

first time. Then, on all subsequent iterations of the loop over R, the probe into S fails immediately.
Overall, the algorithm finishes in O(N) time.

In general, TT) runs in linear time in the size of the input and output for full acyclic joins. But
the algorithm is not limited to acyclic queries: given the same query plan for any query, cyclic or
acyclic, TT) is guaranteed to match the performance of binary hash join, when measuring query
performance by counting the number of hash probes. In particular, when no probe fails TT) behaves
identically to binary join. This is in contrast to YA which always carries the overhead of semijoin
reduction, even if the reduction does not remove any tuple.

To address cyclic queries further we introduce a new method to break down a cyclic query into
acyclic parts called tree convolution. We use this method to analyze the run time of TTJ. A special
kind of tree convolution, called rooted convolution, eliminates materialization of intermediates
during query processing,.

In summary, our contributions include:

e Propose TTJ, a new join algorithm that runs in time O(|IN| + |OUT]|) on full acyclic queries.

e Prove that TT) matches or outperforms binary join given the same query plan, on both acyclic
and cyclic queries.

o Introduce tree convolution, a new method to break down cyclic queries into acyclic parts, and
use it to analyze the run time of TT) on cyclic queries.

e Improve the performance of TT) with further optimizations.

e Conduct experiments to evaluate the efficiency of TT) on acyclic queries.

2 Related Work

The observation that only one semijoin pass is necessary in YA has been a folklore in the database
community, with an early appearance in the theoretical work of Bagan, Durand, and Grandjean [3].
Their paper studies the problem of enumerating conjunctive query results with constant delay,
but without considering practical efficiency. Recent systems implementing such enumeration
algorithms take advantage of the same insight [31, 32]. Compared to this improved version of YA,
TT) has the guarantee of matching the performance of HJ given any query plan, and is often faster
in practice, as we will show in Section 6.

Since as early as the 80’s, researchers have investigated different ways to implement sideway
information passing [6, 14, 19, 26] to make database systems more robust. More recently, bitmap
filters have been used for such purposes in Microsoft SQLSever [9, 17]. Compared to these ap-
proaches, TT) requires no additional filter data structures and directly probes into the same hash
tables used by binary hash join. This also allows us to provide the strong zero-overhead guarantee,
where we prove that TT) incurs no more hash table operations than binary hash join.

Researchers have also explored ways to integrate elements of YA into existing systems. Zhu et
al. [41] propose lookahead information passing, using bloom filters to implement semijoins over
star schemas. Birler, Kemper, and Neumann [5] decompose every join operator into a lookup and
an expand, and prove that certain lookup-and-expand (L&E) plans are guaranteed to run in linear
time for acyclic queries. Bekkers et al. [4] implement L&E plans in a vectorized query engine, while
proving that their approach is guaranteed to match binary hash join for a class of well-behaved
query plans. The theoretical guarantees of TT) is complementary to these approaches: while TT)
guarantees to match binary hash join for left-deep plans, the well-behaved class defined by Bekkers
et al. [4] essentially contains right-deep plans with a slight generalization.

Two very recent papers proposing practical instantiations of YA are due to Wang et al. [34]
and Zhao et al. [40]. The Yannakakis+ algorithm by Wang et al. [34] is based on query rewriting,
which makes it easily applicable to any underlying database system. The Robust Predicate Transfer

, Vol. 1, No. 1, Article . Publication date: December 2025.

4 Anon.

algorithm by Zhao et al. [40] is a practical implementation of YA using bloom filters, which reduces
the overhead of the semijoin reduction passes while allowing for a modular implementation in
an existing system. Taking inspiration from these works, we design an optimized variant of TTJ,
called TTJ¢, and compare it with these two algorithms. Each of these algorithms makes a different
trade-off between ease of implementation and performance as we will discuss in detail in Section 6,
and all three contribute valuable insights to bring the theoretical guarantees of YA to practice.

Wang et al. [35] and Idris et al. [13] propose optimal algorithms for dynamic query processing,
where a system reacts to changes in the input by incrementally updating the output directly, without
recomputing intermediates. Incidentally, these algorithms turn out to be instance-optimal when
executed in batch mode, where each input relation is modeled as a batch of insertions provided
upfront. TT) can be understood as a dual to these algorithms. For example, the CROWN algorithm
by Wang et al. [35] traverses the join tree bottom-up, performing semijoin reduction while building
the hash table for each relation. In contrast, TT) piggybacks semijoins during the probe phase after
all base table hash tables are built. This allows building the hash tables in any order, in parallel,
or even pre-built as indices. Furthermore, TT) provably incurs no more hash table operations as
compared to binary hash join, while bottom-up algorithms may require up to 2x hash table probes
when the input database is already free of dangling tuples (in which case the semijoins are futile).

Going beyond acyclic queries, the standard way to handle cyclic queries is to break up the query
with (hyper-)tree decomposition [10]. Such decomposition results in smaller cyclic subqueries
connected by an acyclic “skeleton”. Each cyclic subquery can then be computed with worst-case
optimal join algorithms [22, 33]. With the result of each subquery materialized, the final output
can then be computed with YA. As we will show in Section 7, TTJ can support cyclic queries with
only a few modifications. Compared to the tree decomposition approach, TT) does not require
materializing intermediate results, thus requiring only constant space in addition to the linear
space required to store and index the input relations. While the worst-case time complexity of TT)
does not match that obtained by tree decompositions, the advantage of each approach depends on
the data.

As the name suggests, TreeTracker Join is a direct decendent of the TreeTracker algorithm [15]
from Constraint Satisfaction. The TreeTracker CSP algorithm resolved Dechter’s conjecture [7]
that there existed an optimal algorithm for acyclic CSPs free of any preprocessing. The connection
between query answering and constraint satisfaction is a recurring theme in the literature to the
extent that an expression emerged, the problems are two sides of the same coin [16, 20]. There are
substantive differences that make TreeTracker and TT]J different. First the constraint satisfaction
problem concerns the existence of a non-empty model for a large logical formula. Thus, constraint
satisfaction algorithms including TreeTracker stop execution and return TRUE upon identifying
what in a relational query would be just one row of the result. In contrast, TTJ produces all tuples in
the query output. Second, the TreeTracker algorithm does not make use of hash tables, and is thus
structured like a nested loop join rather than a hash join. This is because unlike the study of queries
in databases, constraint satisfaction rarely specializes the problem to only equality predicates.
Combining these two differences TreeTracker incorporates ad-hoc data structures, where TT)
employs recognized indices commonly used in databases. These difference clearly manifest in the
respective complexity analyses. The complexity of the best variation of the TreeTracker algorithm

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 5

is polynomial in the input size and does not consider the output size. We prove below TT) runs in
linear time in the total size of the input and output.

3 Preliminaries

In this section, we present the foundational concepts concerning acyclic join queries and the specific
definitions adopted in this paper.

3.1 Join Queries and Acyclicity

We consider natural join queries, also known as full conjunctive queries, of the form:
Q(x) = Ri(x1) > Ry(x2) > - - - >< Ry () (1)

where each R; is a relation name, each x; (and x) a tuple of distinct variables, and every x € x; also
appears in x. We call each R;(x;) an atom, and x; the schema of R;, denoted as %(R;). We extend
the notion of schema to tuples in the standard way and write 2(t) for the schema of t. The query
computes the set* O = {x | A ie[n] Xi € Ri}. We sometimes write Q and not Q(x) to reduce clutter,
and identify Q with its set of relations. For example, Q — {R;} denotes the query Q with R; removed.

Definition 3.1 (Join Tree). A join tree for a query Q is a tree where each node is an atom in Q,
with all atoms in Q appearing in the tree, and for every variable x, the nodes containing x form a
connected subtree.

A query Q is acyclic (more specifically a-acyclic) if there exists a join tree for Q.
For clarity we rewrite the query in example 1.1 and detail one of its join trees:

Ql = R(l’ X') > S(x’ y’J) > T(y> k) > U(ys l) (2)

One join tree has R(i, x) at the root, S(x, y, j) as its child, and T(y, k) and U(y,) as children of S.
We encourage the reader to draw a picture of this join tree for reference. One can construct a join
tree for any acyclic query with the GYO algorithm [12, 39], which works by finding a sequence of
ears. To define ear, we first define a key schema:

Definition 3.2 (Key Schema). For a query Q of the form (1), the key schema of an atom R;(x;) in
Q, denoted as keys(Q, R;), is the set of variables shared between R; (x;) with the other atoms in Q;

ie., keys(Q,Ri) = xi N Ujc[njnjzi X)-

Intuitively, keys(Q, R;) form the keys of R;’s hash table, if we compute (Q — {R;}) > R; using
binary hash join.

Definition 3.3 (Ear). Given a query Q of the form (1), an atom R;(x;) is an ear if it satisfies the
property 3j # i : x; 2 keys(Q, R;). In words, there is another atom R;(x;) that contains all the
variables in R;’s key schema. We call such an R; a parent of R;.

The parent concept is central to the TT) algorithm. The parent’s schema include all of its children’s
keys. When a hash lookup fails at a child, TT) will backjump to the parent. Figure 2b shows an
algorithm to find the first parent of an ear in Q, where Q is represented as a list of atoms.

The GYO algorithm for constructing join trees is shown in Figure 2a: we start with a forest where
each atom makes up its own tree, then for every ear, we attach it to its parent and remove that ear
from the query. Note that it is possible for the algorithm to produce a forest of disjoint trees when
the query contains Cartesian products. For simplicity, we will ignore such cases.

“For clarity we assume set semantics. No change is needed for TTJ to support bag semantics

, Vol. 1, No. 1, Article . Publication date: December 2025.

def GYO(Q):

forest = { tree(R) for R in Q }

while not Q.is_empty():
R = find-ear(Q)
P = parent(Q, R)
forest.set_parent(R, P)
Q.remove(R)

return forest

(a) The GYO alglorithm.

Anon.

def parent(R, Q):
if Q.is_empty(): return None
keys = %(R) N Useg-ry 2(S)
for S in Q - {R}:
if keys C X(S):
return S

return None

(b) Find a parent of R in Q if one exists.

Fig. 2. GYO reduction and parent computation.

def join(t, plan, i):
if i > plan.len(): print(t)
else:

R = plan[i]; k = ”keys(plan[1..i],R)(t)

for r in R[k]:
join(t+r, plan, i+1)

(a) Pipelined left-deep binary hash join

def YA(Q, order):
for R in order:
P = parent(Q, R); Q.remove(R)
if P is not None: P = P x R

return join((), reverse(order), 1)

(b) Yannakakis’s algorithm

Fig. 3. Binary hash join and Yannakakis’s algorithm. The plan array is 1-indexed.

Definition 3.4 (GYO reduction order). Given a query Q of the form (1), a GYO reduction order for
a query Q is a sequence [Ry,Ry,,...,Rp,] that is a permutation of [Ry, Ry, ..., Ry], such that for
every i < n, the atom Ry, is an ear in the (sub)query Ry, < --- <R, .

Equivalently, it is the same order of atoms as visited by the GYO algorithm. The reader can
verify [U, T, S, R]is a GYO reduction order for Q;. The existence of a GYO reduction order and the
existence of a join tree are equivalent.

THEOREM 3.5 ([12, 39]). A query Q has a join tree (i.e, Q is a-acyclic) if and only if it has a GYO
reduction order.

3.2 Binary Hash Join

In this paper we focus on hash-based join algorithms. For theoretical analyses we focus on left-deep
linear plans; for practical implementation we follow the standard practice and decompose each
bushy plan into a sequence of left-deep linear plans, materializing each intermediate result.

Definition 3.6 (Query Plan). A (left-deep linear) query plan for a query Q of the form (1) is a
sequence Ry, Ry, ..., R,,] that is a permutation of Q’s relations [Ry, Ry, ..., Ry].

For consistency we adopt 1-based indexing for query plans, so the first relation in the plan
is stored at i = 1. An example query plan for Q; in Equation (2) is [R, S, T, U]. One may notice
similarities between a GYO reduction order and a query plan. The reason for this will become clear.

We follow the push-based model [21] and specialize the binary hash join algorithm for pipelined
left-deep plans as shown in Figure 3a. We write 7(¢) to project the tuple ¢ onto the schema s, and
t + r to concatenate the tuples t and r while resolving the schema appropriately. Execution begins
by passing to join the empty tuple ¢t = (), a query plan, and i = 1. Although we do not need to build

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 7

a hash table for the left-most relation (the first relation in the plan), for simplicity we assume that
there is a (degenerate) hash table mapping the empty tuple () to the entire left-most relation. The
algorithm starts by checking if the plan has been exhausted and if so, output the tuple ¢. Otherwise,
we retrieve the i-th relation R,, from the plan, and lookup from R,, the matching tuples that join
with t. For each match, we concatenate it with ¢ and recursively call join.

It may be helpful to unroll the recursion over a query plan, and we encourage the reader to do
so for Q; in (2) with the plan [R, S, T, U]. This will generate the same code as in Figure 1a.

3.3 Yannakakis’s Algorithm

Yannakakis’s original algorithm [38] makes two preprocessing passes over the input relations. A
third pass computes the joins yielding the final output. Bagan, Durand, and Gandjean [2] improved
the original algorithm by eliminating the second preprocessing pass. For brevity we only describe
the latter algorithm. Following common usage, hereafter, we will refer to the improved version as
Yannakakis’s alglorithm (YA).

Shown in Figure 3b is, given a GYO reduction order, the relations are preprocessed using semijoins,
then the output is computed with standard hash join. Equivalently, the semijoin preprocessing step
can be performed by traversing a join tree bottom-up, and the output computed with hash join by
traversing the tree top-down.

Example 3.7. Given the query Q; in (2) and the GYO reduction order [U, T, S, R], YA first performs
the series of semijoins, S’ =Sx U, §” =S5 = T, and R’ = R =< §”, then computes the output with
the plan [R’,S”, T, U]. The reader may refer to the join tree of Q; and confirm we are traversing
the tree bottom-up then top-down.

4 TreeTracker Join

The TreeTracker Join algorithm is shown in Figure 4a. The algorithm follows the same structure as
binary hash join. The difference starts on line 5 right before the hash lookup R[k]. If this lookup
fails (i.e., it finds no match), and if R has a parent P that appears before R in the plan, then TT)
backjumps to the for-loop at P’s recursive level, by returning P (line 7). This is similar to throwing
an exception which is “caught” at the loop level of P, as we will explain on line 10. Otherwise, if the
lookup R[k] succeeds, the algorithm iterates over each matching tuple r and calls itself recursively
(line 9). This recursive call has three possible results. A result containing a relation (line 10) signifies
a backjump has occurred, with that relation as the backjumping point. If the backjumping point is
the same as the current relation R, then the tuple r is deleted from R (line 11). If the backjumping
point is different from R, then the backjump continues by returning result which interrupts the
current loop. Finally, if the recursive call (implicitly) returns None, the algorithm continues to the
next loop iteration.

Example 4.1. Tt can be helpful to unroll the recursive algorithm over a query plan. Given Q; in (2)
and the plan [R, S, T, U], Figure 4b shows the execution of TTJ. To make the code more intuitive,
we replace return statements with exception handling to simulate backjumping. We gray out dead
code and no-ops:

e Line 1 is unreachable because R[()] is always the entire relation R, and R has no parent.
o Line 3 (and 13) is a no-op, because it would just backjump to the immediately enclosing loop,
and removing a tuple from R is useless because R is at the outermost loop®.

5In Section 5 we will introduce an additional optimization that makes “removing” from the outermost relation meaningful.

, Vol. 1, No. 1, Article . Publication date: December 2025.

8 Anon.

def ttj(t, plan, i):

if i > plan.len(): print(t) for i,x in R:
else:
R = plan[il; k = fieys(planti..i1,r)(}) for y,j in S[x]:
P = parent(plan[1..i], R) try:
if R[k] is None & P is not None: for k in T[y]:
return P if U[Ly] is None: throw BJ(S)
for r in R[k]: for 1 in U[y]:
result = ttj(t+r, plan, i+1) output(x,y,i,j,k,1)
if result ==
R[k].delete(r)
elif: result is not None: catch BJ(S): S[x].delete(y,]j)

return result
(a) TreeTracker join (b) Execution of TT)J for Example 1.1

Fig. 4. The TreeTracker algorithm and an example execution.

e Technically the if-statement on line 5 is useful even though it only backjumps one level,
because the backjump would remove a tuple from S when caught (line 12). However for the
input data in Example 1.1 we do not need this, and we gray it out to reduce clutter.

e Finally, the innermost two try-catch pairs are unreachable, because U and T have no children.

At this point, the remaining code in black is essentially the same as the code in Figure 1c. As a side
note, a sufficiently smart compiler with partial evaluation or just-in-time compilation could remove
the dead code and no-ops as we have done above.

4.1 Correctness and Asymptotic Complexity

The correctness proof starts with an observation on the relationship between different calls to ttj:
ProrosITION 4.2. Ifttj(t;, p, j) recursively calls ttj(t;, p, i), thent; C t;.

Proor. The proposition follows from the definition of the algorithm, where the ¢; argument to
the nested call is constructed by appending tuples to ;. O

TT)J differs from binary join only upon a lookup failure. In that case it backjumps to the parent
of the relation that caused the failure, and deletes the tuple that caused the failure. Therefore, TT)
is correct as long as it never deletes or “backjumps over” any tuple that should be in the output. We
first prove that a deleted tuple can never contribute to any outupt. In the following we write 7g(t)
for the projection of ¢ onto the schema of R.

LEMMA 4.3. Suppose a tuple r; is deleted from R; during the execution of TTJ for a query Q using
plan p. ThenVtoy € Q : g, (tou) # 1.

Proor. Let p be [Ry,...,R,], and t; be the value of the argument ¢ in scope at the time of the
deletion. Because r; is deleted from Rj, there must be a failed lookup R;[k;] recursively nested
within the call to ttj(t; +rj, p, j + 1), and R; is the parent of R;. Let K; = keys(p[1,...,i],R;), and
let t; be the value of ¢ at the time of the lookup failure. Then t; + r; C t; by Proposition 4.2. By
definition of parent, K; C X(R;) C =(t; + rj) C 2(t;), so ki = g, (t;) = 7k, (t; H rj) = mx, (r)).
However, since the lookup failure implies no tuple in R; contains k;, any output tuple ¢4, cannot

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 9

contain k; either, i.e., Viou € Q : 7k, (four) # ki. Therefore, Viou € Q : 7k, (tout) # 7k, (rj) wWhich
implies Vout € Q : 7R, (tour) # 7R, (75)- O

Next, we show TTJ never backjumps over any tuple that contributes to the output. Given a plan
p = [Ry,...,Ry], denote by n(;)(¢) the projection of t onto J;c[;) 2(R;).

LEMMA 4.4. For any tuple toy; € Q, plan p for Q, and 1 <i < |p|, ttJ(syi—1] (fous), p, i) recursively
calls tt3 (i) (tous), ps i + 1).

Proor. Consider a lookup R[k] that is recursively nested within the call to ttj(m;—1](tout), p, i)
where R has a parent R; with j € [i — 1]. Then k C 7g; (fout) S fout, and because (k) € Z(R),
we have k C 7g(tout) € R. This means the lookup R[k] will not fail. This holds for all such R, so
the algorithm never backjumps from within the call ttj(7j;—1](tout), p, i) to any R; for j € [i —1].
The algorithm may still backjump to R;, but by Lemma 4.3, g, (tout) is never deleted from R;, and
therefore the algorithm will recursively call ttj(s[;—1](tout) + 7R, (fout), p, i + 1) which is the same
as ttj(l[[i] (out)s ps i + 1). m|

We arrive at the correctness of TT) by applying Lemma 4.4 inductively over the query plan.
THEOREM 4.5. Given any plan p for Q, ttj((),p,1) computes Q.

Proor. We prove the correctness of TT] in two directions: first, any tuple produced by TT) should
be in the output; second, TT) produces all tuples that should be in the output. The first direction
is straightforward, as any tuple produced by TTJ is also produced by binary hash join. We prove
the second direction by induction over the argument i, with the following inductive hypothesis:
ttj(mpi-1) (towr), p, i) will be invoked for all t,,; € Q and 1 < i < |p|. The base case when i = 1
holds because we start the execution of TTJ by calling ttj((), p, 1). For the inductive step, assume
ttj(mi—1] (tour), p, i) is invoked, then applying Lemma 4.4 shows ttj (7 (tou), p, i + 1) will also
be invoked. Therefore, ttj(fout, p, |p| + 1) will be invoked for all ¢, € Q, which produces all tuples
that should be in the output. O

Next, we prove TT) runs in linear time in the size of the input and output, for full acyclic queries.
We first introduce a condition on the query plan that is necessary for the linear time complexity:

LEMMA 4.6. Given a query Q and a plan p = [Ry,...,R,] for Q, parent returns None only for Ry
during the execution of TTJ, if p is the reverse of a GYO reduction order of Q.

PrROOF. If [R,,...,R;] is a GYO reduction order, then there is a join tree with R; as root, and
every non-root atom has a parent.]

TT)J is guaranteed to run in linear time given such a plan:

THEOREM 4.7. Fix a query Q and a plan p. If p is the reverse of a GYO reduction order for Q, then
tt3(O,p,1) computes Q in time O(|Q| + X; |Ril)-

Proor. We first note that in Figure 4a, ttj does constant work outside of the loops; each iteration
of the loop also does constant work and recursively calls ttj, so each call to ttj accounts for constant
work, therefore the total run time is linear in the number of calls to ttj. All we need to show now
is that there are a linear number of calls to ttj.

Because p is the reverse of a GYO reduction order for Q, the following holds from Lemma 4.6:
except for the one call to ttj on the root relation (when i = 1), every call to ttj has 3 possible
outcomes: (1) It outputs a tuple. (2) It backjumps and deletes a tuple from an input relation. (3) It
recursively calls ttj. Because the query plan has constant length, there can be at most a constant
number of recursive calls to ttj (case 3) until we reach cases 1 or 2. Therefore there are at most
O(|Q| + 2; |R;|) calls to ttj, and the algorithm runs in that time. O

, Vol. 1, No. 1, Article . Publication date: December 2025.

10 Anon.

By Theorem 3.5 every a-acyclic query can be GYO-reduced, therefore ttj runs in linear time:

COROLLARY 4.8. For any a-acyclic query Q, there is a plan p such that ttj((),p,1) computes Q in
time O(|Q| + 2; [Ril).

4.2 Comparison with Binary Join and YA

We now prove our claim that, for any given query plan, TTJ always matches or outperforms binary
hash join. Because TTJ and hash join build the exact same set of hash tables, they share the same
cost for hash building. We therefore focus on the cost of hash lookups which accounts for the
majority of the remaining cost for both algorithms. The following proofs take advantage of set
semantics, but it is easy to extend the reasoning for bag semantics, as we can convert a bag into a
set by appending a unique labeled null value to each tuple. We start with the following observation
to relate the run time of hash join and TT]J to the set of arguments they are invoked with:

LEMMA 4.9. Both hash join and TT]J, as defined in Figure 3a and Figure 4a, are invoked once for
each distinct combination of the arguments (¢, p, i).

Proor. We prove by induction over the argument i. In the base case when i = 1, both algorithms
are invoked once with t = (), i = 1. For the inductive step, first consider the hash join algorithm.
For every distinct ¢, join(t, plan, i) recursively calls join(t+r, plan, i+1) for every r € R;[k].
Since R; is a set, each r is distinct, so each t + r is also distinct. The same reasoning also applies to
TT), as the algorithm will call itself only for a subset of the tuples in R;[k]. O

In other words, the number of calls to each algorithm is the same as the number of distinct
arguments they are invoked with. We can now compare the algorithms, by bounding the number
of calls to TT) by that of binary join.

THEOREM 4.10. Given a query Q and a plan p for Q, computing Q with TT] using p makes at most
as many hash lookups as computing Q with binary join using p.

Proor. For clarity we have repeated the lookup R[k] three times in Figure 4a, but we really
only need to look up once and save the result to a local variable for reuse. Specifically, a pointer
to R[k] on line 6 can be used for the nullness check on the same line, the loop on line 8, as well
as the deletion®on line 11. This way, every call to ttj makes exactly one hash lookup. Since the
binary join algorithm in Figure 3a also makes exactly one hash lookup per call, it is sufficient to
bound the number of calls to ttj by that of binary join. By Lemma 4.9, it is sufficient to show the
distinct arguments TT] is invoked on is a subset of that for binary join. We prove this by induction
over the argument i. When i = 1, both TTJ and binary join are invoked with ¢ = () and i = 1.
For the inductive step, ttj(t, p, i) recursively calls ttj(t+r, p, i+1) only if r € R;[k], which
implies join(t, p, i) will also call join(t+r, p, i+1) in binary join. Therefore, every call to TT)
is accounted for with a call to binary join. O

Another cost in query execution comes from accessing the matching tuples after a successful
lookup, and one can prove that TT) accesses no more tuples than binary join, following the same
reasoning as above. Although backjumping and tuple deletion in TTJ may in principle carry an
overhead, we will show in Section 6 that such an overhead is negligible as compared to the cost of
hash lookups. Finally, we note the above proof does not assume an acyclic query. Section 7 analyzes
the run time of TTJ on cyclic queries.

¢Although the deletion occurs after a recursive function call, the recursion has constant depth, so the pointer dereference
has good temporal locality and is likely cheap.

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 11

While we guarantee TT) to always match binary join, we cannot make the same strong claim for
YA. We will see in Section 6 that YA performs better than TT) on some queries. Here we analyze a
few extreme cases for some intuition of how TTJ compares to YA:

Example 4.11. Consider a query where every tuple successfully joins, i.e., no lookup fails. In
this case binary join and TT) behaves identically. However, YA spends additional time futilely
computing semijoins (without removing any tuple), before following the same execution as binary
join and TT] to produce the output.

Example 4.12. The other extreme case is when a query has no output, and YA immediately detects
this and stops. In fact Example 1.1 is such a query: all YA needs to do is the semijoin T < U, where it
builds a (tiny) hash table for U and iterate over T once to detect nothing joins. In contrast, although
TTJ also runs in linear time, it must build the hash table for all of S, T and U.

4.3 Cartesian Products and Non-equality Joins

While we have focused on equality joins to simplify presentation, TT) supports both cartesian
products and non-equality joins. If the query contains a Cartesian product, TT) would simply never
backjump across the product operator, and the guarantees of instance-optimality and zero-overhead
continue to hold. The simplest way to handle non-equality joins is to apply non-equality predicates
after all equality joins, while range predicates can be seen as a generalization of hash lookup: if a
range predicate matches no results in a B+ tree index, we can safely backjump and delete just like
TTJ does for hash lookup failures. A recent work by Wang and Yi [36] presents optimal algorithms
for conjunctive queries with comparisons. Extending TT) to achieve similar optimality for such
queries is an interesting direction for future work.

5 Practical Considerations

Although TT]J has strong guarantees, its reliance on backjumping and deletion stands in the way of an
efficient implementation. Backjumping complicates the control flow and therefore hinders compiler
optimizations. Similarly, interleaving deletion with lookups also leads to more intricate code (e.g.,
requiring a while loop instead of a simpler for each loop), and is incompatible with vectorization
and parallelization. We address these issues in this section with an alternative formulation of
TT)J that trades off some of the theoretical guarantees for practical performance. Our approach
is inspired by earlier work using bloom filters and bitmap filters to implement various forms
of sideway information passing [6, 14, 19, 26]. However, unlike these prior work, we require no
additional filter data structures and directly probe into the same hash tables as used by binary hash
join. We discuss an additional optimization called no-good list in Appendix A.

5.1 Eliminating Backjumping

The main goal of backjumping in TT) is to avoid iterating over match results before performing
all applicable lookups. By jumping back upon a lookup failure, TT) guarantees the same failure
will not be repeated. Inspired by past work on pre-filtering using bitmap filters or bloom filters,
we replace TT)’s backjumping with early probing: for every relation R, we immediately probe into
all children of R before entering any subsequent loops. Unlike prior work on pre-filtering, our
approach does not require any additional data structures like bitmaps or bloom filters. Furthermore,
early probing still guarantees the resulting algorithm is zero-overhead to a certain extent, which
we will discuss in detail below. We note a similar technique was used in the Free Join algorithm by
Wang et al. [37] to implement worst-case optimal join for cyclic queries. However, Free Join is not
instance-optimal for acyclic queries.

, Vol. 1, No. 1, Article . Publication date: December 2025.

12 Anon.

Figure 5a shows the pseudocode for TT) with early probing, denoted as TTJ€. For each relation R
in the plan, we find all children relations C such that R is a parent of C. Then for each tuple r in R,
we probe into each child relation C. Upon any probe failure, we delete r from R and skip to the
next tuple. If all probes succeed, we recursively call TT)¢ after replacing each C with the lookup
result C[k]. Figure 5b shows an example execution of TTJ¢ for the query in Example 1.1. The root
relation R has only one child S, which is probed into at the top loop level. If the probe fails, the
tuple (i, x) is deleted from R. Otherwise, we proceed to iterate over the matching tuples (y, j) in
S[x]. S has two children T and U, and we probe into them at once. If either probe fails, the tuple
(y, j) is deleted from S[x]. Otherwise, we iterate over the matching tuples and output the final
result. Note that the execution example no longer contains any non-local loop exits. A vectorized
implementation may therefore perform lookups in batch; the simplified control flow also paves the
way for parallelization.

It is easy to see TTJ€ runs in linear time for acyclic queries, following the same reasoning in the
proof of Theorem 4.7:

THEOREM 5.1. Fix a full acyclic query Q and a plan p. If p is the reverse of a GYO reduction order
for Q, then ttj-e((),p,1) computes Q in time O(|Q| + X; |Ri|).

ProoF SKETCH. The body of the outer loop in Figure 5a does constant work per iteration (when
we regard the size of query as constant), and each iteration either recursively calls TTJ¢ or deletes
a tuple. Since the algorithm will produce an output after a constant number of recursive calls, the
entire algorithm must run in time O(|IN| + |OUT]). m]

Compared to TT) which guarantees to incur no more hash probes than HJ on any query plan,
TTJ®’s guarantee is less general. Intuitively, the early probing in TTJ¢ essentially reorders joins. Al-
though this reordering guarantees asymptotic optimality, it can introduce constant-factor overhead
on the specific input. Nevertheless, TTJ¢ still guarantees zero-overhead for query plans that are
“compatible” with a join tree (the difference with Theorem 4.10 is highlighted in bold):

THEOREM 5.2. Given a query Q and a plan p for Q such that for every R € Q and every child C
of R, any relation S between R and C in p is also a child of R, computing Q with TT) using p
makes at most as many hash lookups as computing Q with binary join using p.

Proor SkeTcH. If the query plan satisfies the above conditions, TTJ¢ performs hash lookups
in the same order as binary hash join, but avoids fruitless iteration over matched results when a
lookup fails. O

5.2 Avoiding Deletion

While TTJ¢ completely eliminates backjumping, deletion is still necessary to guarantee linear
time complexity for the general case. Nevertheless, we can avoid deletion as much as possible by
exploiting the structure of the query as well as primary/foreign key constraints in the data. In this
section we present several of this kind of semantic optimizations.

Shallow Join Trees. We have observed in Example 4.1 that deletion from the root relation of a
join tree is unnecessary, because the root relation appears at the top loop level, and every tuple
will only be considered once. Therefore, we can eliminate all deletions if the join tree has a depth
of two, i.e., all non-root relations have the root as parent. This is the case for star-schema queries,
where we may choose the fact table as root, and the dimension tables as children. In general, when
generating query plans, we favor shallow join trees over deep ones. This is implemented with the
maximum cardinality search algorithm by Tarjan and Yannakakis [29] which constructs a join tree

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 13

def ttj-e(t, plan, i): for i,x in R:
if i > plan.len(): print(t) if S[x] is None:
else: R.delete(i, x)
R = plan[i] else:
11: for r in R: for y,j in S[x]:
new_plan = clone(plan) if T[y] is None ||
for C in children(plan, R): ULy] is None:
k = mrnc(r) S[x].delete(y,j)
if C[k] is None: else:
R.delete(r); continue 11 for k in T[y]:
else: new_plan[C\C[k]] for 1 in U[y]:
ttj-e(t+r, new_plan, i+1) output(x,y,i,j,k,1)
(a) TTJ with early probing (TTJ€) (b) Execution of TTJ€ for Example 1.1

Fig. 5. TTJ with early probing (TTJ¢) and example execution.

root-to-leaf, while greedily attaching each child to the highest possible parent. After we generate
the structure of the join tree, we order the children of each relation based on cardinality estimates.

Primary/Foreign Key Constraints. The justification for skipping deletion at the root is that the
same tuple will never be considered again. We can extend this reasoning to non-root relations
that join with the root via primary/foreign keys. Specifically, if a relation S joins with the root R
with the condition S.f = R.p where p is a primary key of R and f is a foreign key of S referencing
p, then every tuple in S will only be visited once, and it is therefore safe to skip deletion from S.
Another way to exploit primary/foreign key constraints is to pre-compute intermediate results that
are guaranteed to have linear size. For example, if the query plan contains S >« T as a subplan, and
if that join is on a primary/foreign key, then the output size will not exceed the total size of S and T
We can therefore safely materialize this join (using regular binary hash join), which in turn makes
the join tree shallower and can further eliminate deletion.

6 Empirical Results

Since our primary contribution concerns the development of an algorithm that is both asymptotically
optimal and is competative in practice w.r.t. wall clock time, the primary goal of the empirical
assessment is to compare the execution time of the algorithms in as controlled of an experiment as
possible. All three algorithms, TTJ, binary hash join, HJ, and YA are implemented in the same Java
query execution engine written from scratch. We are certain our algorithm execution measurements
do not make calls to methods outside of our execution environment. Any data structure in our
execution environment whose definition is impacted by the definition of a data structure outside of
our Java execution environment is treated identically for all three algorithms. Where possible, code
is reused across algorithm implementation. The source code of the implementation is available at
https://anonymous.4open.science/r/treetracker.

Remaining aspects of query compilation and and DBMS implementation are “borrowed” from
other DBMS implementations. Query plans are an example of borrowing from other DBMS imple-
mentations. After loading a benchmark database instance and gathering catalog statistics left-deep
linear query plans are determined by SQLite, and bushy plans by PostgreSQL. The SQL EXPLAIN
command elicits the plans from the DBMSs. SQLite and PostgreSQL were chosen because of the
topology of the plans their optimizers generate. The linear time guarantee only holds for left-deep

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://anonymous.4open.science/r/treetracker

14 Anon.

« JOB « TPC-H o SSB « JOB « TPC-H o SSB * JOB s TPC-H o SSB

HJ time (s)
'~
8¢
TTJOPT time (s)
TTJOPT time (s)
% oW

.
.
O‘o
s
.
.

102 102 10 10t 100 102 Tot

10t 10° 10t 10° 10° 10"
PostgreSQL time (s) HJ time (s) YA time (s)

(a) HJ vs. PostgreSQL (b) TT) vs. HJ (c) TT) vs. YA

Fig. 6. Run time of TTJ, HJ, YA, and PostgreSQL on JOB, TPC-H, and SSB. Every data point corresponds to a
query, whose x- and y-coordinates correspond to the run time of the algorithms under comparison.

linear plans that are consistent with a GYO reduction order of the query. All the left-deep plans
produced by SQLite in our experiments are consistent with the GYO reduction requirement.

Workload. Our experments encompass left-deep plans, left-deep plans with optimizations inte-
grated into the TT) algorithm, and bushy plans. Only the acyclic join queries in three benchmarks
were evaluated, the Join Ordering Benchmark (JOB) [18], TPC-H [30] (scale factor = 1), and the
Star Schema Benchmark (SSB) [24] (scale factor = 1). Also omitted were single-relation queries, and
correlated subqueries. These criteria eliminated only 9 queries, all from TPC-H. Thus, the 113 JOB
queries, the 13 SSB queries and 13 out of 22 TPC-H queries were assessed, for a total of 139 queries.

Environment. Experiments were conducted on a single logical core of an AMD Ryzen 9 5900X
12-Core Processor @ 3.7Hz CPU. The computer contained 64 GB of RAM, and a 1TB PCle NVMe
Gen3 M.2 2280 Internal SSD. All data structures are allocated from JVM heap which was set to 20
GB. Since execution was otherwise identical for all algorithms under test, no techniques to reduce
the overhead of memory allocation or garbage collection were exploited. Measurements for each
query and algorithm pair were orchestrated by JMH [1] configured for 5 warmup forks and 10
measurement forks. Each of those forks contains 3 warmup and 5 measurement iterations.

Direct measurements of PostgreSQL, which can be seen as the control group (not a baseline), for
our implementations are the same as [18]. PostgreSQL measurements use an in-memory hash join,
indices were dropped and single process execution specified. Thus, we configured PostreSQL such
that measurements were made as similar to our Java implementations as we could make possible.
A timeout was set to 1 minute. Of all the queries only TPC-H Q20 exceeded the timeout.

6.1 Algorithm Comparison

Figure 6 illustrates our primary results. It contains 3 scatter plots that pairwise compare the execu-
tion time of 4 implementations for each query across the 3 benchmarks. First, Figure 6a compares
the performance of PostgreSQL, using hash joins with our implementation of HJ. Inspection of
the scatterplot shows that with few exceptions the execution time of the same query is less than
an order of magnitude apart. Most points are below the diagonal indicating our implementation
is faster than PostreSQL. The shape of the cluster suggests a consistent range in the disparity of
execution time.

Faster execution is not surprising. The results of a road race with PostgreSQL are not material to
this paper. Our execution environment contains no elements of transaction system overhead or

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 15

Baseline ‘ Benchmark ‘ Average ‘ Maximum ‘ Mininimum
JOB 1.11x | 12.6x (16b) | 0.9x (11b)

Hash Join TPC-H 1.09x | 1.9 (Q9) 1% Q7)
SSB 1.15% | 1.7 (Q2.2) | 0.8x (Q3.4)

- JOB 1.60x | 9.2x (16b) | 0.2x (6a)
Yxni‘ft‘ti; s TPC-H 1.40x | 3.7% (Q9) |0.7x (Q7)
& SSB 3.16x | 7.9 (Q22) | 1x (Q3.4)

Table 1. Speed-up of TreeTracker Join Relative to Hash Join and Yannakakis’s Algorithm.

buffer and memory hierarchy management. PostgreSQL execution time was measured as a control.
This first plot establishes that our Java implementation is within range of a commercially used
RDBMS and the consistency in the difference of execution speed lends credibility that the emperical
results from our execution environment will generalize to commercially deployed RDBMSs.

Figure 6b shows, on a per query basis, the relative speed of TTJ versus HJ. The visualization
in Figure 6b reveals that TT) is often faster than HJ, and for just a few queries the execution is
slower and when that is the case the performance disadvantage is marginal. Per Table 1, JOB query
11b and SSB query Q3.4, form the worst results for TT] are just 10% and 20% slower respectively.
The weighted average of TT) execution time over the three benchmarks is a hair better than 10%
faster. More sizable improvements appear in the maximum speed-up results. We remind the reader
the join orders are for plans that were optimized for left-deep linears hash-joins. Below we will
return to the question of the upside opportunity for TT) execution speed when, in future work, a
SQL optimizer includes cost models for TTJ and the optimization process includes both a choice
of join order and a choice of join algorithm. For instance the detailed examination of each query
execution revealed that TT)’s worst-relative performance, JOB query 11b is due to the inclusion of
the no-good list optimization which, often predictably, incures overhead without providing any
performance benefit.

For completeness, performance of TT) relative to YA is presented in Figure 6¢. The results
exemplify the paradox and challenge of YA. On all but 12 queries, TT) outperforms YA, with average
and maximum speedup of 1.4x and 9.2x. 8 of those queries, JOB 6a, 6b, 6c, 6d, 6e, 7b, 12b, and TPC-H
Q7, exhibit the most significant disadvantage of TT).

Review of the JOB queries reveals a foreseeable cause for YA execution speed advantage. The
first semijoin removes a large fraction of tuples from a large relation. For example, the first semijoin
for JOB query 6a reduces the largest relation, cast_info, from 36,000,000 tuples to 486 tuples. That
semijoin is executed before building the hash tables. Hash table build time for YA is 499ms. For TT)
that build time is 13,398ms and by itself comprises 98% of the execution time for TT).

The basis of TPC-H, Q7’s performance results are also due to the impact of the first semijoin, but
in a more involved way. Prior to any join processing a relational select on nation returns just 1
tuple. As an argument to the first semijoin, supplier < nation, over 90% of tuples from supplier are
removed. Where, in the first example the one semijoin reduction accounted for speed benefit, in
this example, by beginning with a single tuple, the entire chain of semijoin reductions resulted in
large reductions in the size of the join arguments repeat.

Review of hash table build times for YA relative to hash table build times for TTJ and HJ alone,
(these latter two always being equal), accounts for all the speed improvement of YA compared to
the other algorithms.

, Vol. 1, No. 1, Article . Publication date: December 2025.

16 Anon.

» JOB « TPC-H o SSB » JOB « TPC-H o SSB

.
*
gete

TT)OPT # of r;ash table probe
-

TTJOPT # of hash table probe
;

104 100 10°

10t 102 10® 10° 102 10° 10*
H) # of hash table probe YA # of hash table probe

(@) TT) vs. HJ (b) TTJ vs. YA

Fig. 7. Number of hash probes in different algorithms.

The specialized pattern embodied in SSB, star queries on a star schema, enables a quantitative
assessment that may be used in the future by a query optimizer. Notably a determination if the
integration of a no-good list is advantagous. For the special case of big data queries modeled by
SSB, the performance of TT] is largely determined by the effectiveness of the no-good list.

Recall the no-good list is a specialization for the leftmost argument of a join plan as hash-joins
do not typically create a hash-table for the leftmost argument. The no-good list forms a cache of the
tuple key values for the leftmost argument that have been determined to be dangling. Queries plans
for star schema typically start with the fact table as the leftmost relation in a plan, and provide the
key values for a series of joins on dimension tables. Any lookup failure will backjump to the fact
table and add to the no-good list. Thus the no-good list acts as a filter that prevents any processing
of a fact tuple whose join key values have already been determined to be fruitless.

Of 13 SSB queries evaluated TT)J is the fastest algorithm on 6, and, plus or minus, within 10%
margin of the best algorithm on 10 queries. We compared the queries that run relatively slower
in TTJ (Q1.2, Q3.4, Q4.1, and Q4.3) with those that run relatively faster (Q2.1, Q2.2, Q2.3, Q3.1,
03.2, and Q3.3), and measured the ratio between the intermediate result size reduction and the
size of no-good lists. We determined that for the slower queries, each element in the no-good
list, on average, reduces the intermediate result size by 182. For the faster queries the average is
318. Although an optimizer is not within the scope of this paper, we can conclude that for our
testbed more refined measurements would determine a tipping point value of a selectivity that falls
between 1/182 and 1/318. Selectivity below the tipping point indicates omitting the no-good list
will result in faster query execution and vice versa.

The scatter plot Figure 7a compares the number of hash probes for TT) vs. HJ for each query. A
small number of the scatter plot points appear on the diagonal, i.e. an equal number of hash probes.
The remainder of the points are below the diagonal. This emperically validates our theorem that
TTJ will execute fewer or an equal number of hash probes as HJ.

We have not made any claims as to the relative number of hash probes between TT) and YA.
Nevertheless we made that measurement. Figure 7b shows like HJ, TT) makes fewer hash probes
for YA. Yet YA runs faster for certain queries as hash building, not probing, sometimes dominates
query run time, as we have pointed out in the analysis of results in Figure 6c.

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 17

« JOB « TPC-H o SSB e JOB » TPC-H o SSB e« JOB » TPC-H o SSB
10° 107 10°
10 10 ' —_ 10 .
- n 0 .
w 2 4 <z
&, °
[J] . [} .
£ S .* € l. £ o, .-_..
=R . :l“. 3 =Rl Do
T £ = ° £ K
s . . & 03
& B
10 107t 107 7
10 1072 10

102 102 10 100 10! 107

HJ]tuime (s)]O TTJ- time (s)

10 10~ 10°

](;;stgrengL tim]:; (s)
(a) HJ v.s. PostgreSQL (b) TT) v.s. HJ (c)TT) v.s. TTJE

Fig. 8. Run time comparison of TT), TTJE, H) and PostgreSQL. TTJ uses left-deep linear plans generated by
SQLite (same as earlier experiments), while all other algorithms use bushy plans generated by PostgreSQL.

6.2 TT)J on Bushy Plans

Since every plan in Section 6.1 is compatible with a GYO reduction order, the runtime of TT] is
guaranteed to be linear. However, given the abundance of bushy plans (all the native PostgreSQL
plans we used here are bushy), a natural question to ask is whether TT) can still provide reasonably
good performance despite the loss of linear runtime guarantee. The results in this section give an
affirmative answer.

Figures 8a and 8b compare the run time of TTJ, HJ, and PostgreSQL using bushy plans produced
by PostgreSQL, and Figure 8c compares the run time of TT) using bushy plans with the same
algorithm using left-deep linear plans produced by SQLite, denoted by TTJL. Figure 8a shows our H]
baseline remains competitive with PostgreSQL under bushy plans. TT] is faster than HJ on all 113
JOB queries, and faster than TTJL on 101 (89%) of them. Compared to TTJ*, the maximum speed-up
is 5.7X (7b), the minimum speed-up is 0.5X (19d), and the average speed-up (geometric mean)
is 1.75%. Compared to HJ, the maximum speed-up is 2.1x (13d), the minimum speed-up is 1.1x
(19d), and the average speed-up (geometric mean) is 1.56x. From the figure, we observe that the
materialization of intermediate results due to bushy plans does not degrade TT) performance; in fact,
TT) performs much better than itself on linear plans in most cases due to the fact that intermediate
results generated in bushy plans are usually smaller than some of the largest input relations in JOB,
which allows TT) to spend less time building hash tables. As a result, the saving in join computation
becomes more salient than that over left-deep plans. Furthermore, the performance improvement
using TTJ on each individual linear plan has the compound effect that contribute to the overall
performance improvement of the queries. However, we do observe that some of the queries still
have better performance under linear plans than bushy plans such as 8c and 16b. This indicates that
linear time guarantee is still meaningful for query performance and optimization is still necessary
to bring out the best performance of TT) (e.g., decide which plan shape to use). An important topic
for future work is to optimize bushy plans that also have the guarantee of optimality.

6.3 Implementation-level Comparison

Although TT] offers strong theoretical guarantees and peforms well in the controlled experiments
in Sections 6.1 and 6.2, it is not competitive with state-of-the-art systems. To achieve stronger
performance, we have developed the TTJ€ variant of our algorithm, as described in Section 5. In this
section, we compare TTJ¢ with DuckDB [25], a state-of-the-art in-memory analytical database, as

, Vol. 1, No. 1, Article . Publication date: December 2025.

18 Anon.

Baseline ‘ Average‘ Maximum ‘ Minimum

DuckDB | 3.83x | 35.26x (4c) | 0.81x (33¢)
RPT 2.67x | 11.30x (3b) | 0.70x (17e)
YA* 542X | 30.22x (2b) | 1.28x (27b)

Table 2. Speed-up of TTJ¢ Relative to DuckDB, Robust Predicate Transfer (RPT), and Yannakakis* (YA*).

well as two recent practical instantiations of YA: Robust Predicate Transfer (RPT) by Zhao et al. [40]
and Yannakakis® (YA*) by Wang et al. [34]. RPT is implemented on top of DuckDB, while YA*
works by rewriting the input SQL query and is compatible with any underlying database system.
For consistency, we use the same DuckDB version (v0.9.2) used by Zhao et al. [40] for all baseline
systems. We focus on the Join Order Benchmark in this section. In their experiments, Wang et
al. [34] scaled up the input data by 10 to 100 times’. This introduced additional many-to-many
joins, and resulted in more pronounced speedup by YA*. For consistency, we supply the original
input data without change to all systems.

10! 10! 10!
n 100 1 o~ 100 o - 100
o 7. S T o
E10 L E10? [E10 :
= ot . + .8 +
= 10-2 £ 10-2 a E 10-2 .".
-3 -3 10-3
007 107 107 100 1ot 007 107 10t 100 1ot 1073 1072 107! 10° 10!
DuckDB time (s) RPT time (s) YA* time (s)
(a) TTJ¢ vs. DuckDB (b) TTJ€ vs. RPT (c) TTJE vs. YA*

Fig. 9. Run time of TTJ¢, RPT, YA*, and DuckDB on JOB. Every data point corresponds to a query, whose
x- and y-coordinates correspond to the run time of the algorithms under comparison. A point below the
diagonal indicates that the algorithm on the y-axis is faster than the one on the x-axis.

Figure 9 and Table 2 show the experiment results. Appendix C contains additional comparisons
of TT)J with the baselines. Overall, TT)¢ matches or outperforms all three baselines. The comparison
with RPT and YA™ show a slight trend of greater speedup for smaller (short-running) queries. This
demonstrates the impact of TT)¢’s zero-overhead guarantee: smaller queries finish quickly, so any
overhead becomes more pronounced. But the impact of overhead also carries over to larger queries.
Query 30b joins together 12 relations (with two self joins), and TTJ€ is 2.8% faster than RPT and 4.2x
faster than YA*. This is because that query involves 6 large relations each containing several million
tuples, totalling over 60 million rows. Although RPT’s implementation of semijoin based on bloom

"Wang et al. [34] suggested that due to the prevalence of primary key/foreign key constraints in JOB, regular binary hash
join can already achieve linear time performance, so there is little to gain from YA-style algorithms. However, we have
observed superlinear behavior in practice: even if all joins are on primary/foreign keys, the same primary key may be joined
with multiple foreign keys, and the optimizer may choose (perhaps based on bad cardinality estimate) to join foreign keys
with each other first, leading to superlinear blowup.

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 19

filters is very fast, it still requires two semijoin passes in general®, incurring significant overhead.
The overhead for YA* comes from two sources. First, YA* works by rewriting the input SQL query.
To ensure the underlying database follows the prescribed query plan, YA* creates one temporary
view per operation. According to Wang et al. [34] this carries an overhead, and for query 30b the
rewritten query creates 22 views. Second, when the final result is aggregated YA™ aggressively
pushes down aggregation to eliminate the need for semijoin reduction. This guarantees linear time
complexity, but may introduce additional overhead. For example, when each group-by value has
low degree (i.e., they appear in a small number of tuples), early aggregation cannot effectively
reduce the relation size but still adds a full scan. And if a large number of groups are eventually
removed by a later join, the aggregation work on them would be wasted. The rewritten plan by
YA* for query 30b contains 25 MIN aggregates, while the original query has only 4.

There are a few queries where TTJ€ is slightly slower than the baseline compared. The reason
is mostly the inaccuracy of the cardinality estimation of our optimizer for TTJ)¢, which leads to
suboptimal plans. For example, in 27b, TTJ¢ has a speed-up 0.89x over DuckDB. In this query,
movie_keyword is the largest with around 4.5 million tuples. After joining with keyword, the
relation has around 10 thousands remaining tuples, which is the smallest among all the relations
joining on movie_id. DuckDB optimizer estimates that fact accurately and evaluates this join first,
which effectively uses it as a filter to prune out dangling tuples from other relations and saves the
hash-table build time during the query evaluation. On the other hand, our optimizer estimates the
join result to be the second smallest, which misses some opportunities to prune dangling tuples
early. Contrast these observations with the findings by Zhao et al. [40]: they found RPT to have
similar performance regardless of the query plan, concluding the algorithm to be robust. This is
because the semijoin in RPT is based on bloom filters, so each probe has a constant cost. And since
RPT performs two full semijoin passes, which involves scanning each relation and probing into the
neighboring bloom filters, there is no significant variation in run time. During the final join phase,
there is also a fixed cost per output tuple, so the overall run time is predictable. In contrast, TTJ¢
eliminates the second semijoin pass and directly probes into the hash tables without relying on
additional filter structures. On one hand, this leads to lower overhead, and on the other TTJ€ is
more sensitive to the query plan. If stability is desirable, bloom filters can also be added to TTJ to
trade off strong best-case performance to improve the average case.

7 Cyclic Queries

The TT) algorithm as defined in Figure 4a supports both acyclic and cyclic queries. The guarantee
to match or outperform binary join (Theorem 4.10) also holds for cyclic queries. However, the
linear-time guarantee only applies to acyclic queries. To analyze the run time of TT)J on cyclic
queries, we introduce a new method called tree convolution to break down a cyclic query in to
acyclic parts. The next example illustrates the intuition behind tree convolution.

Example 7.1. Consider the following query whose query graph is shown in Figure 10a:
Qs 1 -Ri (1, x2) > R (2, x3) »< R3(x3, x4) > Ry (x4, x1) »<
S51(x1,y) >< Sy (x2, y) > S3(x3,) > Sy(x4, 1)

In the query graph, each node is a variable, and there is an edge between two nodes if the corre-
sponding variables appear in the same atom, for example the edge Ry between x; and x; corresponds
to the atom Ry (x1, x2). Clearly the query is cyclic. However, we can compute the query by breaking
it down into two acyclic steps: First, we compute the join S; »< Sz > S5 >« Sy and store the result in
a temporary relation S. Then we compute the final result with Ry >« Ry >« R3 >« Ry »a S. Any acyclic

80nly when the join phase plan coincides with the second semijoin phase plan, RPT skips the second semijoin phase.

, Vol. 1, No. 1, Article . Publication date: December 2025.

20 Anon.

S1

X1 S R; . X2 S J

1 AR 3
Ry R, 52 5’3 54

y Sy Sy
51 5 / \ / \

X4 Ry X3 R, Ry R;3 Ry Ri Ry Rs Ry
(a) Quey graph of Qg. (b) A tree convolution of Qg. (c) Another tree convolution of Qg.

Fig. 10. Query graph and tree convolutions of Qg in Example 7.1.

join algorithm can be used to compute each step, and, as we will show later, using TT)J can avoid
materializing the intermediate result S. The total run time is therefore O(|IN| + |[OUT| + |S]).

To formally define tree convolutions, we first identify a (full conjunctive) query with the set of
atoms in its body, and define a subquery of a query Q as a subset of the atoms in Q. Then, a tree
convolution for a query is a nested tree, defined recursively as follows:

Definition 7.2. A tree convolution of a query Q, written (Q), is a tree where each node is
either an atom in Q, or a tree convolution of a subquery of Q. Each atom in Q appears exactly once
anywhere in 7 (Q), and every tree T in I (Q) forms a join tree of the corresponding (sub-)query,
after replacing each non-atom node v € T with a fresh atom over all variables in v.

Note that the recursive definition above will lead to nested trees, because each tree node can
consist of a tree convolution of a subquery. Figure 10b shows a tree convolution corresponding to
the computation of Qg in Example 7.1: first join together the S relations, then join the result with
the R relations. Figure 10c shows a different convolution, where we first compute three acyclic
subqueries, then join together the results. Another convolution with four nesting levels is shown
in Figure 11b.

We can compute any cyclic query using a tree convolution. Starting from the most deeply nested
trees, we run any acyclic join algorithm to materialize intermediate results, until we reach the
top-level tree that produces the final output. However, TT) can avoid the expensive materialization
by using a special kind of tree convolution called rooted convolution.

Definition 7.3. A convolution is rooted if nested convolutions only appear at the root of each tree.

The convolution in Figure 10b is rooted, while the one in Figure 10c is not. We can generate a
plan p for TTJ by traversing a rooted convolution inside-out: starting with the most deeply nested
tree, initialize p with the reverse of the GYO-reduction order of this tree; then, as we go up each
level, append the reverse of the GYO-reduction order to the end of p.

Example 7.4. The rooted convolution in Figure 10b generates the plan [S1, Sz, S3, Ss, R1, Rz, R3, Ry].

A small adjustment to the TT]J algorithm is necessary to fully exploit rooted convolutions. If we
execute TT) as-is using the plan in Example 7.4, none of the relations Ry, .. ., Ry have a parent in the
plan, yet we need to compute the join S >« Ry b< - - - >« Ry in time O(|S| + X; |R;| + |Ql), where S is
the join of Sy, . . ., S4. We therefore introduce additional backjumps from each R; to S4, but without
deleting any tuple from Sy. This is achieved by defining the parent function to work over rooted
convolutions: given a tree convolution C and a relation R, if the parent node of R in some tree of C

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 21

is an atom P, then assign P as the parent of R; otherwise if the parent node is a nested tree, then
assign the last relation in that tree (i.e. the first relation in its GYO-reduction order) as the parent
of R. For example, the parent of each R; in Example 7.4 is S,.

Finally, when backjumping to a parent in a nested convolution, we do not delete any tuple from
that parent. We are now ready to analyze the run time of TTJ on cyclic queries.

Given a rooted tree convolution 7 (Q), we generate a query plan p as follows. Suppose T (Q)
consists of m nested trees Ty, . . ., T,,, where T is the most deeply nested tree and T,,, is the outermost
tree. Let py, .. ., pm be the plans corresponding to Ty, . . ., Tp,. Then, each p; is a plan that corresponds
to the reverse of a GYO-reduction order of T;, where the first relation in p; is result of p;_; fori > 1.
The outermost plan p,, then computes the final result of Q.

ProrosITION 7.5. During ttj execution on a given rooted convolution I of a query Q, if a lookup
fails at R that belongs to p; but not in p;_; (i > 2), ttj either backjumps to an atom that is in p; but
not in p;_1 or backjumps to the last atom of p;_1.

Proor. For any p; with i > 2, since p; is the reverse of a GYO-reduction order of the i-th tree of
J and by the modified parent function, every relation in p; but not in p;_; has parent. Furthermore,
if lookup fails at R that is in p; but not in p;_1, ttj backjumps to R’s parent. Then, the result follows
by the definition of the modified parent function. m]

In p4, if the parent of a relation is the first relation of p;, ttj backjumps to the first relation. We
can treat the first relation of p; as py (i.e., the most deeply nested tree in 7 is now a node of an atom
of Q) and the relation is also the last atom of py. Therefore, we can remove the restriction of i > 2
in Proposition 7.5. In the following proof, we reference the Proposition 7.5 with the understanding
that it holds for i > 1.

THEOREM 7.6. Given a rooted convolution 7 (Q) of Q, there is a plan p such that TTJ runs in time
O(|IN| + |OUT| + 3; |Si|) on p where |S;| is the size of the join of all relations in the i-th tree of T (Q).

Proor. Since there is no change to ttj except using the modified parent function for 7, like
Proof of Theorem 4.7, we only need to show the algorithm makes O(|IN| + |OUT| + }; |S;|) number
of calls to ttj.

Excep for the initial call to ttj with ttj((), p, 1), every call to ttj has three possible outcomes:
(1) It outputs a tuple. (2) It backjumps and possibly deletes a tuple from an input relation. (3) It
recursively calls ttj. Because the query plan has constant length, there can be at most a constant
number of recursive calls to ttj (case 3) until we reach cases 1 or 2. There can be O(|Q|) ttj calls
for case 1. Since lookup cannot fail at the first relation of p, the relation that lookup fails at is in
some p; but not in p;_;. Let R be a relation that a lookup fails at. By Proposition 7.5, there can be
two cases on where ttj backjumps to. If ttj backjumps to an atom that is also in p; but not in
pi-1, a tuple is deleted. This case can happen O(]IN|) times. If ttj backjumps to the last atom of
pi-1, since ttj works no different than binary join from this moment until next lookup failure, this
can happen O(|S;-;|) times; the tuples computed at the last atom of p;_; is S;_;. Therefore, given
1 < i < m, there are at most O([IN| + |OUT| + Y7, ' |S;|) calls to ttj, and the algorithm runs in
that time. O

We conclude this section by noting that tree convolution generalizes several exisiting ideas in
databases and constraint satisfaction. First, classic binary join plans are a special case, where every
tree in the tree convolution is of size 2. For example, the convolution in Figure 11b corresponds
to the binary join plan in Figure 11a. In other words, traditional hash join can be thought of as
computing a convolution one binary join at a time, and we have generalized this to computing a
multi-way acyclic join at a time. In a similar way, rooted convolutions generalize left-deep linear

, Vol. 1, No. 1, Article . Publication date: December 2025.

22 Anon.

—)
Sy
> |
— ~
> B S3| Rs| R3
/ \ / \ —
> R3 > Ry /:I:/
ANA 5)
/ \ / \
Sy §3 51 54 \M Rl)
(a) A binary join plan for Qg. (b) A tree convolution for Qg.

Fig. 11. A binary join plan for the query in Example 7.1 and the corresponding tree convolution.

plans, as the top-half of Figure 11b corresponds to the left-half in Figure 11a. Second, in constraint
satisfaction a cycle cut set is a subset of the constraints whose exclusion makes the constraint
problem acyclic. In database terms, it is a subset of the atoms of Q whose removal leaves an acyclic
subquery. Tree convolution generalizes cycle cut sets in the sense that it “cuts” the query in multiple
rounds, with each round producing acyclic subqueries that can be computed in linear time. Finally,
many of the properties of tree convolution are shared with tree decomposition of hypergraphs [10]
in database theory. One difference is that tree convolution allows nesting, while tree decomposition
is a flat partitioning of the query graph. Another difference is that tree decomposition usually
requires different algorithms for joining within each bag (e.g. worst-case optimal join [23]) and
for joining the bags together (e.g. YA), while tree convolution uses the same algorithm for all
nesting levels. This is enabled precisely by the nesting structure: at every nesting level the subquery
forms a tree, and can be computed by an acyclic join algorithm. Finally, while complexity bounds
derived from tree decompositions are known to be tight [11], further research is needed to study
the tightness of tree convolution-based bounds.

8 Future Work and Conclusion

In this paper we have proposed our new join algorithm, TreeTracker Join (TTJ). The algorithm runs
in time O(|IN| + |OUT]|) on acyclic queries, and guarantees to make no more hash probes than
binary hash join on the same query plan. We have shown empirically that TT) is competitive with
binary hash join and Yannakakis’s algorithm.

Although our implementation already beats PostgreSQL in our experiments, challenges remain
for TT) to compete with highly optimized systems. Decades of research on binary join has produced
effective techniques like column-oriented storage, vectorized execution, and parallel execution, just
to name a few. In the following, we outline several directions for future work.

Query Optimization. Another avenue for future work is to develop a dedicated query optimizer
for TT). As this paper’s focus is on algorithm-level comparison, we have opted to reuse existing
systems to produce binary hash join plans, which are then executed using TT). Tailoring the
optimizer to TT) may yield plans with better performance. For instance, estimating the number of
hash probe failures instead of intermediate result sizes shall more accurately model the execution
cost of TTJ. On the other hand, extending TT) to also guarantee a linear time complexity on bushy
plans is also an interesting challenge. Our theoretical analyses of TT) reveal a close connection
between GYO-reduction orders and left-deep linear plans, both of which are total orders. Since
bushy plans and join trees both define partial orders, we conjecture there exists a algorithm that

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast 23

runs in linear time on any bushy plan that corresponds to a join tree, with the same guarantee of
matching binary hash join on the same plan.

An alternative is to tag each tuple with a boolean
tombstone that is atomically set whenever that tuple is deleted. The TTJ¢ variant of the algorithm
also leverages query structure and primary/foreign key constraints to avoid unnecessary deletions,
which should make the algorithm more amenable to parallelization.

Cyclic Queries. Our experiments focus on acyclic queries due to their prevalence in traditional
workloads. However, with the rise of graph databases practitioners begin to encounter more
and more cyclic queries. Additional research on TT) for cyclic queries, both in terms of practical
performance and theoretical guarantees, will be very valuable. Some open problems include: Given
any hypergraph, what is the minimum nesting depth of any tree convolution? How does this number
related to other measures like various notions of hypergraph widths? And what is the complexity
of finding the optimal tree convolution given a cost function? Answering theses questions will aid
the development of a query optimizer for TT) on cyclic queries.

Integration with Existing Systems. Bringing ideas from the lab into production requires significant
engineering effort. While a full integration of TTJ into a mainstream database is out of the scope
of this paper, we discuss challenges in doing so and sketch a blueprint for an implementation in
SQLite in Appendix B.

References

[1] [n.d.]. Java Microbenchmark Harness (JMH). https://github.com/openjdk/jmh

[2] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic Conjunctive Queries and Constant Delay
Enumeration. In Annual Conference for Computer Science Logic. https://api.semanticscholar.org/CorpusID:15398587

[3] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic Conjunctive Queries and Constant Delay
Enumeration. In Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference of the EACSL,
Lausanne, Switzerland, September 11-15, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4646), Jacques Duparc
and Thomas A. Henzinger (Eds.). Springer, 208-222. doi:10.1007/978-3-540-74915-8_18

[4] Liese Bekkers, Frank Neven, Stijn Vansummeren, and Yisu Remy Wang. 2024. Instance-Optimal Acyclic Join Processing
Without Regret: Engineering the Yannakakis Algorithm in Column Stores. CoRR abs/2411.04042 (2024). doi:10.48550/
ARXIV.2411.04042 arXiv:2411.04042

[5] Altan Birler, Alfons Kemper, and Thomas Neumann. 2024. Robust Join Processing with Diamond Hardened Joins. Proc.
VLDB Endow. 17, 11 (2024), 3215-3228. d0i:10.14778/3681954.3681995

[6] Dean Daniels. 1982. Query compilation in a distributed database system. Ph.D. Dissertation. Massachusetts Institute of
Technology, Department of Electrical Engineering

[7] Rina Dechter. 1990. Enhancement Schemes for Constraint Processing: Backjumping, Learning, and Cutset Decomposi-
tion. Artif. Intell. 41, 3 (1990), 273-312. doi:10.1016/0004-3702(90)90046-3

[8] Kevin P. Gaffney, Martin Prammer, Laurence C. Brasfield, D. Richard Hipp, Dan R. Kennedy, and Jignesh M. Patel. 2022.
SQLite: Past, Present, and Future. Proc. VLDB Endow. 15, 12 (2022), 3535-3547. do0i:10.14778/3554821.3554842

[9] César A. Galindo-Legaria, Torsten Grabs, Sreenivas Gukal, Steve Herbert, Aleksandras Surna, Shirley Wang, Wei Yu,

Peter Zabback, and Shin Zhang. 2008. Optimizing Star Join Queries for Data Warehousing in Microsoft SQL Server. In

Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Canciin, Mexico, Gustavo

Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer Society, 1190-1199. doi:10.1109/ICDE.2008.4497528

Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016. Hypertree Decompositions: Questions

and Answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems

(San Francisco, California, USA) (PODS ’16). Association for Computing Machinery, New York, NY, USA, 57-74.

doi:10.1145/2902251.2902309

Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016. Hypertree Decompositions: Questions

and Answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,

[10

[t

[11

—

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://github.com/openjdk/jmh
https://api.semanticscholar.org/CorpusID:15398587
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.48550/ARXIV.2411.04042
https://doi.org/10.48550/ARXIV.2411.04042
https://arxiv.org/abs/2411.04042
https://doi.org/10.14778/3681954.3681995
https://doi.org/10.1016/0004-3702(90)90046-3
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.1109/ICDE.2008.4497528
https://doi.org/10.1145/2902251.2902309

24

[12]

(13

—

[14]

[15

[

[16]
[17]

[18]

(19

—

[20

=

[21

—

[22]
[23]
[24]

[25]

[26]

[27]
[28]

[29]

[30]
[31]
[32]

[33]

Anon.

PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, Tova Milo and Wang-Chiew Tan (Eds.). ACM, 57-74.
doi:10.1145/2902251.2902309

M. Graham. 1980. On the universal relation. Technical Report. University of Toronto, Computer Systems Research
Group.

Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. 2017. The Dynamic Yannakakis Algorithm: Compact and
Efficient Query Processing Under Updates. In Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova,
Jun Yang, and Dan Suciu (Eds.). ACM, 1259-1274. doi:10.1145/3035918.3064027

Zachary G. Ives and Nicholas E. Taylor. 2008. Sideways Information Passing for Push-Style Query Processing. In
Proceedings of the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Canciin, Mexico, Gustavo
Alonso, José A. Blakeley, and Arbee L. P. Chen (Eds.). IEEE Computer Society, 774-783. doi:10.1109/ICDE.2008.4497486
Roberto J. Bayardo Jr. and Daniel P. Miranker. 1994. An Optimal Backtrack Algorithm for Tree-Structured Constraint
Satisfaction problems. Artif. Intell. 71, 1 (1994), 159-181. doi:10.1016/0004-3702(94)90064-7

Phokion G. Kolaitis and Moshe Y. Vardi. 2000. Conjunctive-Query Containment and Constraint Satisfaction. J. Comput.
Syst. Sci. 61, 2 (2000), 302-332. doi:10.1006/JCSS.2000.1713

Kukjin Lee, Anshuman Dutt, Vivek R. Narasayya, and Surajit Chaudhuri. 2023. Analyzing the Impact of Cardinality
Estimation on Execution Plans in Microsoft SQL Server. Proc. VLDB Endow. 16, 11 (2023), 2871-2883. d0i:10.14778/
3611479.3611494

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How Good
Are Query Optimizers, Really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204-215. doi:10.14778/2850583.2850594

Lothar F. Mackert and Guy M. Lohman. 1986. R* Optimizer Validation and Performance Evaluation for Distributed
Queries. In VLDB’86 Twelfth International Conference on Very Large Data Bases, August 25-28, 1986, Kyoto, Japan,
Proceedings, Wesley W. Chu, Georges Gardarin, Setsuo Ohsuga, and Yahiko Kambayashi (Eds.). Morgan Kaufmann,
149-159. http://www.vldb.org/conf/1986/P149.PDF

Daniel P. Miranker, Roberto J. Bayardo, and Vasilis Samoladas. 1997. Query Evaluation as Constraint Search; An
Overview of Early Results. In International Symposium on the Applications of Constraint Databases. https://api.
semanticscholar.org/CorpusID:8644835

Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern Hardware. Proc. VLDB Endow. 4, 9
(2011), 539-550. doi:10.14778/2002938.2002940

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-Case Optimal Join Algorithms. J. ACM 65, 3,
Article 16 (March 2018), 40 pages. doi:10.1145/3180143

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case Optimal Join Algorithms. J. ACM 65, 3
(2018), 16:1-16:40. doi:10.1145/3180143

Pat O’Neil, Betty O’Neil, and Xuedong Chen. 2009. Star Schema Bechmark - Revision 3, June 5, 2009. resreport.
UMass/Boston. https://www.cs.umb.edu/~poneil/StarSchemaB.PDF

Mark Raasveldt and Hannes Mithleisen. 2019. DuckDB: An Embeddable Analytical Database. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing
Machinery, New York, NY, USA, 1981-1984. doi:10.1145/3299869.3320212

Praveen Seshadri, Joseph M. Hellerstein, Hamid Pirahesh, T. Y. Cliff Leung, Raghu Ramakrishnan, Divesh Srivastava,
Peter J. Stuckey, and S. Sudarshan. 1996. Cost-Based Optimization for Magic: Algebra and Implementation. In
Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June
4-6, 1996, H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM Press, 435-446. doi:10.1145/233269.233360

SQLite Documentation. 2024. Query Planning and Optimization. https://www.sqlite.org/optoverview.html#hash_joins.
Accessed: 2024-07-24.

SQLite Documentation Team. 2025. The SQLite Bytecode Engine. https://www.sqlite.org/opcode.html. Accessed:
2025-08-21.

Robert Endre Tarjan and Mihalis Yannakakis. 1984. Simple Linear-Time Algorithms to Test Chordality of Graphs,
Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. SIAM J. Comput. 13, 3 (1984), 566-579.
doi:10.1137/0213035

Transaction Processing Performance Council (TPC). [n. d.]. TPC-H Benchmark. Online. http://tpc.org/tpc_documents_
current_versions/pdf/tpc-h_v3.0.0.pdf Accessed on 11-18-2021.

Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2022. Any-k Algorithms for Enumerating Ranked
Answers to Conjunctive Queries. CoRR abs/2205.05649 (2022). doi:10.48550/ARXIV.2205.05649 arXiv:2205.05649
Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2024. Ranked Enumeration for Database Queries.
SIGMOD Rec. 53, 3 (2024), 6—19. do0i:10.1145/3703922.3703924

Todd L. Veldhuizen. 2012. Leapfrog Triejoin: a worst-case optimal join algorithm. CoRR abs/1210.0481 (2012).
arXiv:1210.0481 http://arxiv.org/abs/1210.0481

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.1109/ICDE.2008.4497486
https://doi.org/10.1016/0004-3702(94)90064-7
https://doi.org/10.1006/JCSS.2000.1713
https://doi.org/10.14778/3611479.3611494
https://doi.org/10.14778/3611479.3611494
https://doi.org/10.14778/2850583.2850594
http://www.vldb.org/conf/1986/P149.PDF
https://api.semanticscholar.org/CorpusID:8644835
https://api.semanticscholar.org/CorpusID:8644835
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.1145/3180143
https://doi.org/10.1145/3180143
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/233269.233360
https://www.sqlite.org/optoverview.html#hash_joins
https://www.sqlite.org/opcode.html
https://doi.org/10.1137/0213035
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://doi.org/10.48550/ARXIV.2205.05649
https://arxiv.org/abs/2205.05649
https://doi.org/10.1145/3703922.3703924
https://arxiv.org/abs/1210.0481
http://arxiv.org/abs/1210.0481

TreeTracker Join: Simple, Optimal, Fast 25

[34] Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin. 2025. Yannakakis+: Practical Acyclic
Query Evaluation with Theoretical Guarantees. Proc. ACM Manag. Data 3, 3, Article 235 (June 2025), 28 pages.
doi:10.1145/3725423

[35] Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. 2023. Change Propagation Without Joins. Proc. VLDB Endow. 16, 5
(2023), 1046-1058. doi:10.14778/3579075.3579080

[36] Qichen Wang and Ke Yi. 2022. Conjunctive Queries with Comparisons. In SIGMOD °22: International Conference on
Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022, Zachary G. Ives, Angela Bonifati, and Amr El Abbadi
(Eds.). ACM, 108-121. doi:10.1145/3514221.3517830

[37] Yisu Remy Wang, Max Willsey, and Dan Suciu. 2023. Free Join: Unifying Worst-Case Optimal and Traditional Joins.
Proc. ACM Manag. Data 1, 2 (2023), 150:1-150:23. doi:10.1145/3589295

[38] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In Very Large Data Bases, 7th International
Conference, September 9-11, 1981, Cannes, France, Proceedings. IEEE Computer Society, 82-94.

[39] Clement T. Yu and M. Z. Ozsoyoglu. 1979. An algorithm for tree-query membership of a distributed query. In Annual
International Computer Software and Applications Conference. https://api.semanticscholar.org/CorpusID:7812638

[40] Junyi Zhao, Kai Su, Yifei Yang, Xiangyao Yu, Paraschos Koutris, and Huanchen Zhang. 2025. Debunking the Myth of
Join Ordering: Toward Robust SQL Analytics. Proceedings of the ACM on Management of Data 3, 3, Article 146 (June
2025), 28 pages. doi:10.1145/3725283

[41] Jiangiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. 2017. Looking Ahead Makes Query Plans Robust.
Proc. VLDB Endow. 10, 8 (2017), 889-900. doi:10.14778/3090163.3090167

, Vol. 1, No. 1, Article . Publication date: December 2025.

https://doi.org/10.1145/3725423
https://doi.org/10.14778/3579075.3579080
https://doi.org/10.1145/3514221.3517830
https://doi.org/10.1145/3589295
https://api.semanticscholar.org/CorpusID:7812638
https://doi.org/10.1145/3725283
https://doi.org/10.14778/3090163.3090167

26 Anon.

A No-Good List

We had remarked in Section 4 that removing a tuple from the root relation is pointless, as the same
tuple would never be considered again. However, any tuple in the root relation that shares the same
values with an offending tuple over the key schema will also fail. The no-good list optimization
comprises adding that set of values to a blacklist. Each tuple from the root relation is tested for
membership in the blacklist. Since membership in that list mean certain failure no further effort to
join that tuple is necessary. This optimization requires three changes to Figure 4a.

First, the key values must be included as parameters and passed to the parent relation, line 7:

return (P, mr(t))

When catching the backjump (line 10) at the root relation, those key values are added to the
blacklist:

if result == (R, vals):
if i == 0: no_good.add(vals) else: R[k].delete(r)

When iterating over the root relation, (after line 8), each tuple is tested for membership in the
no-good list and if present further processing is skipped.

if i == @ & r.matches(no_good): continue

The no-good list, ng, can be implemented as a hash table. Suppose the root relation, R, has m
children Sy, ..., Sy The lookup key for ng is (S;, ;) where ¢; is a set containing 7yeys(r;s;) (£) (called
no-goods) for a tuple t from R that caused a lookup failure at S; for i € [m]. The impact of the
no-good list is almost identical to semijoin reduction in YA. The algorithmic difference is in lieu of
a semijoin removing dangling tuples prior to the join, the R tuples are checked against a collection
of values accumulated on the fly and at anytime during execution are a subset of the contents of
the complementary antijoin. Like YA itself, the effectiveness of the no-good list depends on how
much the argument is reduced and the size of the intermediate result. i.e. the semijoin and join
selectivity.

B SQLite Implementation

Two main challenges of implementing TT] are the interruption of control flow by backjumping and
the need to delete tuples while probing hash tables. After reviewing the source code of SQLite, we
find it to be uniquely suited for integrating TT). First, SQLite’s query execution engine is based
on a bytecode virtual machine [28], where loops are already implemented with G0TO-like jumps.
Backjumping in TT) can therefore be implemented by analyzing the join tree structure to determine
backjumping points, then generating the bytecode to perform the jumps upon hash lookup failures.
Second, deletion during iteration may lead to undefined behavior without care. Fortunately, the
documentation of SQLite’s DELETE bytecode specifically calls out that “it is ok to delete a record
from within a loop” [28]. The introduction of bloom filters in SQLite [8] also makes it possible to
implement the TTJ¢ variant of our algorithm. Specifically, for each parent in a join tree we can
simultaneously probe into the bloom filter of all child relations, and delete the current tuple from the

, Vol. 1, No. 1, Article . Publication date: December 2025.

TreeTracker Join: Simple, Optimal, Fast

27

parent relation should any probe fail. One complication is that SQLite constructs temporary B-tree
indices (standing in for hash tables) lazily, so early probing as in TTJ¢ is not always possible. On
one hand, to guarantee instance-optimality, early probing is crucial; on the other, lazy construction
is only beneficial when the join result is empty, which is rarely the case for OLAP queries.

C Performance Comparison of TTJ with TTJ¢, RPT and YA™
Figure 12 compares the performance of TTJ, TTJ¢, RPT and YA* on JOB.

10! o
B
Wi
0 PR)
5 10 e R
o LA
E10
=
F 102
1073
1073 1072 107! 10° 10!
TTJE time (s)

@ TTJ)vs. TT)

10t

O 10t =
gl . 5
—_ 100 - 0.:’0. % - 100 - *)
) o A) R34
o -t o AR
E10? E10?
=1 =
'Z 1072 |: 1072
0-3 -3
1073 1072 10! 10° 10! 103 1072 107! 10° 10!
RPT time (s) YA* time (s)

(b) TT) vs. RPT

(c) TTJ vs. YA*

Fig. 12. Run time of TTJ, TTJ, RPT, and YA* on JOB. Every data point corresponds to a query, whose x- and

y-coordinates correspond to the run time of the algorithms under comparison. A point below the diagonal
indicates that the algorithm on the y-axis is faster than the one on the x-axis.

, Vol. 1, No. 1, Article . Publication date: December 2025.

We thank the referees for their thoughtful comments. In the following, we will first address some
common concerns. Then, we address the comments of each referee in detail. Relevant changes to
common concerns in the paper are highlighted in red.

Comparison with recent work

Referee 2&3 requested additional experiments comparing with recent practical implementations of
Yannakakis’ algorithm. We added comparison with two most recent papers, Yannakakis+ (YA*) by
Wang et al. [34] and Robust Predicate Transfer (RPT) by Zhao et al. [40]. Both papers appeared at
SIGMOD 2025.

To make our algorithm competitive with these approaches, we developed a new variant of the
TT) algorithm which we call TTJ¢, described in Section 5. Despite its strong theoretical guarantees,
the performance of the original TTJ algorithm is held back by two aspects. First, its reliance on
backjumping complicates the control flow, resulting in complex code that is difficult for the compiler
to optimize, and stands in the way of vectorization. Second, the interleaving of deletion and lookup
also prevents optimizations applicable to read-only algorithms. The new TTJ¢ variant completely
eliminates backjumping and instead performs early probing. This is inspired by previous work
on sideway information passing using bloom filters/bitmap filters. But unlike prior work, TTJ¢
requires no additional filter data structure and retains the strong theoretical guarantees of TT)J, as
we discuss in Section 5.1. Another inspiration is the work on Free Join by Wang et al. [37]. While
Free Join is worst-case optimal (with the appropriate plan), TT) and TTJ¢ are instance-optimal
for acyclic queries and guarantee to incur zero overhead compared to binary hash join. We also
take inspiration from Yannakakis+ [34] and avoid deletion when possible by leveraging the query
structure as well as primary/foreign key constraints, which we discuss in Section 5.2.

Section 6.3 contains the details of the comparison among the algorithms. At a high level, we see
the three approaches (TTJ¢, Robust Predicate Transfer, Yannakakis+) as making different tradeoffs
in the design space. On one end, Yannakakis+ is based on query rewriting and easily applicable to
any underlying database system; on the other, TT)¢ requires implementing a new algorithm and
achieves the best performance in our experiments. In the middle, Robust Predicate Transfer uses
bloom filters, making it possible to modularly extend an existing system (DuckDB in their paper),
while leading to performance between that of TTJ¢ and Yannakakis+.

While the new TTJ€ variant shows strong performance, we decided to keep the comparison
among the original TT), Hash Join, and Yannakakis’ algorithm in Section 6.1 because it was done in
a controlled setting where all algorithms are implemented from scratch in the same environment.
A “textbook” implementation of hash join using the iterator model is used as the control, whereas
YA and TT) are implemented as simple extensions of the hash join implementation. The original
experiments can be seen as algorithm-level comparisons and the new ones implementation-level
comparisons

Definition of tree convolution

Referee 2 and 3 expressed confusion around the definition of tree convolution. Perhaps the con-
fusion arises from the fact that tree convolution is defined recursively. We added a clarification
after Definition 7.2 to point out it will lead to nesting. Both referees also asked for the relationship
between tree convolution and tree decomposition, and referee 2 correctly pointed out that a tree
decomposition with only the root containing more than 1 relation can also be pipelined. However,
the difference is that tree decomposition usually requires different algorithms for joining within
the bag (e.g. worst-case optimal join) and joining the bags together (e.g. Yannakakis’), while tree
convolution is only a conceptual device we use to analyze the behavior of TTJ, i.e., the same
algorithm is used for joins nested at every level. This is enabled precisely by the nesting structure:

at every nesting level the subquery forms a tree, and can be computed by an acyclic join algorithm.
Finally, while complexity bounds derived from tree decompositions are known to be tight, further
research is needed to study the tightness of tree convolution-based bounds. We added these details
to the end of Section 7.

Response to Referee 1

Relevant changes in the paper are highlighted in

How can we safely eliminate tuples during multi-threaded execution? We focus on the single-
threaded execution in this paper, but we agree with the reviewer that multi-threaded execution
introduces additional challenges. The new TTJ€ variant eliminates backjumping and avoids deletion
when possible, which should make multi-threading easier. We added a paragraph in Section 8 to
discuss several ideas for future research making TT) multi-threaded.

Handling cartesian products and non-equality joins. TT) is compatible with cartesian products
and non-equality joins, and we added a discussion in Section 4.3. If the query contains a Cartesian
product, TT) would simply never backjump across the product operator, and the guarantees of
instance-optimality and zero-overhead continue to hold. The simplest way to handle non-equality
joins is to apply the predicates after all joins, while range predicates can be seen as a generalization
of hash lookup: if a range predicate matches no results in a B+ tree index, we can safely backjump
and delete just like TT) does for hash lookup failures.

Purpose of the no-good list. We replaced Section 5 with the new TTJ€ variant which shows greater
speedup compared to the optimizations that used to be in that section, and moved the no-good
optimization to Appendix A. The benefit of the no-good list is data-dependent: when failures are
concentrated on a few values, the no-good list will be small, and checking it can be faster than
probing into a large hash table. Another case when the no-good list is useful is when the deletion
happens after backjumping multiple levels. Then, checking the no-good list requires one single
probe as opposed to probing into each level that was backjumped over.

Relationship to Free Join. We added a discussion of Free Join in Section 2. The new TTJ¢ variant
is directly inspired by Free Join, where we replace backjumping with early probing to avoid large
intermediates. TTJ¢ has stronger theoretical guarantees as compared to Free Join. Both TT) and
TTJ€ are instance-optimal for acyclic queries, while Free Join is not — the deletion step is crucial for
instance-optimality.

Response to Referee 2

Relevant changes in the paper are highlighted in green.

Implementation in an existing system. We appreciate how Yannakakis+ [34] brings the theoretical
guarantee of Yannakakis’ algorithm to existing systems, with a low barrier of adoption. However,
we would like to argue that “ease of implementation” is a spectrum, and different design points in
the space pose unique tradeoffs. Integrating TT) (and the new TTJ¢ variant) requires modifying the
query execution engine, involving engineering effort that is out of the scope for the current paper.
However, our experiments show this effort can be worthwhile, as our prototype implementation
of TTJ€ significantly outperforms the rewrite-based Yannakakis+. Moreover, we believe the new
TTJ€ variant makes implementation easier (compared to TTJ) with the elimination of backjumping
and deletion (the latter when possible). The Robust Predicate Transfer paper [40] presents yet
another design point: their implementation using bloom filters is simpler than TT)€ but still requires
modifying the execution engine, and its performance sits between that of TT)¢ and Yannakakis+.

Nevertheless, the implementation of RPT requires changing hundreds of files, and has yet to be
merged into DuckDB. Finally, we discuss challenges and potential solutions for integrating TT] to
SQLite in Appendix B.

Left-deep plan and Bushy plans. TT) supports both left-deep and bushy plans, and we evaluate on
bushy plans in Section 6.2. When the plan is bushy, we simply materialize each left-deep segment,
as is commonly done for pipelined hash joins. We separate left-deep plans from bushy plans for
theoretical analysis: TT) guarantees to run in O(|IN| + |OUT]|) only for left-deep plans and for each
left-deep segment in a bushy plan, while the zero-overhead (in terms of hash probes) guarantee
holds for arbitrary plans.

Relationship with CROWN and Dynamic Yannakakis. Thank you for pointing us to these papers,
we added discussion on how TT] relates to them in Section 2. TTJ is not the same as CROWN or
Dynamic Yannakakis; in fact, it can be seen as a dual to these algorithms: while CROWN/Dynamic
Yannakakis executes by traversing a join tree bottom-up, TTJ follows the join tree top-down
(note that the bottom relation in a left-deep plan becomes the top of the join tree). As the referee
pointed out, CROWN requires building the hash tables following a bottom-up order of the join tree,
performing semijoins as it goes up. In contrast, TTJ imposes no constraint on the order of hash
building, and they can even be built in parallel at the same time, or be pre-built as indices. This
is because TTJ removes dangling tuples while probing the hash tables, whereas CROWN does so
during the construction of the hash tables. Moreover, while TT) guarantees to incur no additional
hash table operations as compared to binary hash join on the same plan, bottom-up algorithms like
CROWN cannot make such guarantees. Consider the case where the database contains no dangling
tuples. Then, consider building the hash table for relation R, with a child R, in the join tree. In
order to semijoin R, with R on-the-fly during the hash table build, the algorithm must probe into
R, for each tuple in R,. But because there are no dangling tuples, these probes will always return
true. After all hash tables are built, to output the final join result the algorithm must perform the
same probe again, and overall incurs 2x hash probes as compared to binary hash join.

Definition of Tree Convolution. Addressed above under common concerns.

Comparison with Recent Work. Addressed above under common concerns.

Response to Referee 3

Relevant changes in the paper are highlighted in purple.

Bloom and Bitmap Filters. As addressed above under common concerns, we added a comparison
with Robust Predicate Transfer [40] which is the most recent work using approximate filters for
robust query processing. We also took inspiration from this line of work and designed a new variant
(described in Section 5), TTJ¢, that performs better in practice. As our results show, the use of filters
incurs additional overhead, while both TT) and TT)J¢ are provably zero-overhead when hash table
operations are taken to be the main cost. We added a discussion of the related work in Section 2.

Implementation of tuple deletion. We use hash tables provided by the standard library. As we
discuss in a footnote in Section 4.2, deletion is fast because we save a pointer to the tuple being
deleted on the stack to avoid an additional hash table lookup, and each deletion occurs immediately
after a hash probe failure, exhibiting good temporal locality. In the new TTJ¢ variant, we further
avoid deletion by taking advantage of the query structure as well as primary/foreign key constraints.
We also discuss potential challenges surrounding deletion in the multi-threaded setting in Section 8.

Tree convolution and Tree Decomposition. Addressed above under common concerns.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Join Queries and Acyclicity
	3.2 Binary Hash Join
	3.3 Yannakakis's Algorithm

	4 TreeTracker Join
	4.1 Correctness and Asymptotic Complexity
	4.2 Comparison with Binary Join and YA
	4.3 Cartesian Products and Non-equality Joins

	5 Practical Considerations
	5.1 Eliminating Backjumping
	5.2 Avoiding Deletion

	6 Empirical Results
	6.1 Algorithm Comparison
	6.2 TTJ on Bushy Plans
	6.3 Implementation-level Comparison

	7 Cyclic Queries
	8 Future Work and Conclusion
	References
	A No-Good List
	B SQLite Implementation
	C Performance Comparison of TTJ with TTJ, RPT and YA +

