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We present a novel linear-time acyclic join algorithm, TreeTracker Join (TTJ). The algorithm can be understood

as the pipelined binary hash join with a simple twist: upon a hash lookup failure, TTJ resets execution to

the binding of the tuple causing the failure, and removes the offending tuple from its relation. Compared to

the best known linear-time acyclic join algorithm, Yannakakis’s algorithm, TTJ shares the same asymptotic

complexity while imposing lower overhead. Further, we prove that when measuring query performance by

counting the number of hash probes, TTJ will match or outperform binary hash join on the same plan. This

property holds independently of the plan and independently of acyclicity. We are able to extend our theoretical

results to cyclic queries by introducing a new hypergraph decomposition method called tree convolution. Tree

convolution iteratively identifies and contracts acyclic subgraphs of the query hypergraph. The method avoids

redundant calculations associated with tree decomposition and may be of independent interest. Empirical

results on TPC-H, the Join Order Benchmark, and the Star Schema Benchmark demonstrate favorable results.
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1 Introduction
Yannakakis [38] was the first to describe a linear-time join algorithm (hereafter YA) running in time

𝑂 ( |IN| + |OUT|), where |IN| is the input size and |OUT| is the output size. In principle, this is the

best asymptotic complexity one can hope for, because in most cases the algorithm must read the

entire input and write the entire output. However, virtually no modern database systems implement

YA. A major factor is its high overhead. Prior to executing the join, YA performs two passes over

the input relations, using semijoins to reduce the input size. The reduction is lossless and enables

optimally joining the reduced relations. Since the cost of a semijoin is proportional to the size of

its arguments, this immediately incurs a 2× overhead in the input size. An improved version of

YA [2] achieves the same result in one semijoin pass, but the overhead of this pass remains. Another

practical challenge is that YA is “too different” from traditional binary join algorithms, making it

difficult to integrate into existing systems. For example, the efficiency of YA critically depends on

a query’s join tree which is different from the query plan used by binary joins
1
. Where there is

a wealth of techniques to optimize query plans for binary joins, little is known about cost-based

optimization of join trees for YA.
In this paper, we propose a new linear-time join algorithm called TreeTracker Join (TTJ), inspired

by the TreeTracker algorithm [15] in Constraint Satisfaction. TTJ can be understood as the traditional
binary hash join with a twist: when a hash lookup fails, backtrack to the tuple causing the failure,

and remove that tuple from its relation. The backtracking points depend only on the query, not the

data, and are determined by the query compiler prior to query execution. The execution deviates

1
By join tree we mean (hyper-)tree decomposition of hypertree width 1, not the tree of binary join operators commonly

seen in relational algebra query plans.
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2 Anon.

1 for i,x in R:

2 for y,j in S[x]:

3 for k in T[y]:

4 # lines left blank

5 # intentionally

6 for l in U[y]:

7 print(x,y,i,j,k,l)

(a) Binary join

for i,x in R:

for y,j in S[x]:

for k in T[y]:

if U[y] is None:

break

for l in U[y]:

print(x,y,i,j,k,l)

(b) Backjumping

1for i,x in R:

2for y,j in S[x]:

3for k in T[y]:

4if U[y] is None:

5S[x].del((y,j)); break

6for l in U[y]:

7print(x,y,i,j,k,l)

(c) Tuple deletion

Fig. 1. Instantiation of binary hash join on example 1.1, with backjumping, and with tuple deletion. S[x]
denotes a hash lookup into the hash table for 𝑆 using 𝑥 as key.

from binary hash join only when a dangling tuple is detected and deleted. Thus the tuple is excluded

from any computation going forward. Hence, when using identical query plans TTJ is guaranteed
to match or outperform binary hash join (Section 4.2).

The following example illustrates the main ideas of TTJ.

Example 1.1. Consider the natural join of the relations 𝑅(𝑖, 𝑥), 𝑆 (𝑥,𝑦, 𝑗), 𝑇 (𝑦, 𝑘), and 𝑈 (𝑦, 𝑙),
where we use 𝑅(𝑖, 𝑥) to denote that the schema of 𝑅 is {𝑖, 𝑥}. The set {1, . . . , 𝑁 } is denoted by [𝑁 ].
Let the relations be defined as follows:

𝑅 = {(𝑖, 1) | 𝑖 ∈ [𝑁 ]} 𝑆 = {(1, 1, 𝑗) | 𝑗 ∈ [𝑁 ]} 𝑇 = {(1, 𝑘) | 𝑘 ∈ [𝑁 ]} 𝑈 = {(0, 𝑙) | 𝑙 ∈ [𝑁 ]}

Observe 𝑈 shares no common 𝑦-values with 𝑆 or 𝑇 , making the query result empty. We’ll first

consider execution with binary hash join, the foundation of our algorithm. Assume the optimizer

produces a left-deep join plan ((𝑅 ⊲⊳ 𝑆) ⊲⊳ 𝑇 ) ⊲⊳ 𝑈 . The execution engine builds hash tables for 𝑆 ,

𝑇 , and 𝑈 , mapping each 𝑥 to (𝑦, 𝑗) values in 𝑆 , 𝑦 to 𝑘 values in 𝑇 , and 𝑦 to 𝑙 values in 𝑈 . Figure 1a
2

illustrates the basis of the execution. For each (𝑖, 𝑥) tuple in 𝑅, the hash table for 𝑆 is probed for

the (𝑦, 𝑗) values. T is probed with each pair (𝑦, 𝑗) to determine the 𝑘 values. This repeats for 𝑈 .

Although the query produces no output, the execution takes Ω(𝑁 3) time because it first computes

the join of 𝑅, 𝑆 , and 𝑇 . A closer look at the execution reveals the culprit: when the lookup on 𝑈

produces no result, (line 6), the algorithm continues to the next iteration of the loop over 𝑘 values,

(line 3). The same value of 𝑦 is used to probe into 𝑈 again! To address this, the first key idea
of TTJ is to backjump3 to the level causing the probe failure. For clarity we use break to

represent the backjump, as shown in Figure 1b. When probing𝑈 with the key value 𝑦 fails to return

a result, we break out of the current loop over 𝑘 and continue to the next iteration of the second

loop level. That is because the unsuccessful lookup key value of 𝑦 is assigned at that level. That

next iteration retrieves new 𝑦, 𝑗 values, skipping over iterations for 𝑘 values that are doomed to fail.

With this optimization, the execution finishes in 𝑂 (𝑁 2) time, as it still needs to compute the join

of 𝑅 and 𝑆 . To improve the performance further: the second key idea of TTJ is to delete the
tuple causing the probe failure. This is shown in Figure 1c: after the probe failure, the offending

tuple (𝑥,𝑦, 𝑗) is removed from the 𝑆 hash table. This is safe to do, because that 𝑦 value will always

fail to join with any tuple in 𝑈 . In this way, all tuples from 𝑆 are removed after looping over it the

2
One may also recognize this as indexed nested loop join, which is equivalent [27].

3
Backjumping is a concept in backtracking search algorithms; we use the term informally to mean the interruption of a

nested loop iteration to jump back to an outer loop, while referring to the original TreeTracker algorithm [15] for a precise

definition.
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TreeTracker Join: Simple, Optimal, Fast 3

first time. Then, on all subsequent iterations of the loop over 𝑅, the probe into 𝑆 fails immediately.

Overall, the algorithm finishes in 𝑂 (𝑁 ) time.

In general, TTJ runs in linear time in the size of the input and output for full acyclic joins. But

the algorithm is not limited to acyclic queries: given the same query plan for any query, cyclic or

acyclic, TTJ is guaranteed to match the performance of binary hash join, when measuring query

performance by counting the number of hash probes. In particular, when no probe fails TTJ behaves
identically to binary join. This is in contrast to YA which always carries the overhead of semijoin

reduction, even if the reduction does not remove any tuple.

To address cyclic queries further we introduce a new method to break down a cyclic query into

acyclic parts called tree convolution. We use this method to analyze the run time of TTJ. A special

kind of tree convolution, called rooted convolution, eliminates materialization of intermediates

during query processing.

In summary, our contributions include:

• Propose TTJ, a new join algorithm that runs in time 𝑂 ( |IN| + |OUT|) on full acyclic queries.

• Prove that TTJmatches or outperforms binary join given the same query plan, on both acyclic

and cyclic queries.

• Introduce tree convolution, a new method to break down cyclic queries into acyclic parts, and

use it to analyze the run time of TTJ on cyclic queries.

• Improve the performance of TTJ with further optimizations.

• Conduct experiments to evaluate the efficiency of TTJ on acyclic queries.

2 Related Work
The observation that only one semijoin pass is necessary in YA has been a folklore in the database

community, with an early appearance in the theoretical work of Bagan, Durand, and Grandjean [3].

Their paper studies the problem of enumerating conjunctive query results with constant delay,

but without considering practical efficiency. Recent systems implementing such enumeration

algorithms take advantage of the same insight [31, 32]. Compared to this improved version of YA,
TTJ has the guarantee of matching the performance of HJ given any query plan, and is often faster

in practice, as we will show in Section 6.

Since as early as the 80’s, researchers have investigated different ways to implement sideway

information passing [6, 14, 19, 26] to make database systems more robust. More recently, bitmap

filters have been used for such purposes in Microsoft SQLSever [9, 17]. Compared to these ap-

proaches, TTJ requires no additional filter data structures and directly probes into the same hash

tables used by binary hash join. This also allows us to provide the strong zero-overhead guarantee,
where we prove that TTJ incurs no more hash table operations than binary hash join.

Researchers have also explored ways to integrate elements of YA into existing systems. Zhu et

al. [41] propose lookahead information passing, using bloom filters to implement semijoins over

star schemas. Birler, Kemper, and Neumann [5] decompose every join operator into a lookup and
an expand, and prove that certain lookup-and-expand (L&E) plans are guaranteed to run in linear

time for acyclic queries. Bekkers et al. [4] implement L&E plans in a vectorized query engine, while

proving that their approach is guaranteed to match binary hash join for a class of well-behaved
query plans. The theoretical guarantees of TTJ is complementary to these approaches: while TTJ
guarantees to match binary hash join for left-deep plans, the well-behaved class defined by Bekkers

et al. [4] essentially contains right-deep plans with a slight generalization.

Two very recent papers proposing practical instantiations of YA are due to Wang et al. [34]

and Zhao et al. [40]. The Yannakakis+ algorithm by Wang et al. [34] is based on query rewriting,

which makes it easily applicable to any underlying database system. The Robust Predicate Transfer
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4 Anon.

algorithm by Zhao et al. [40] is a practical implementation of YA using bloom filters, which reduces

the overhead of the semijoin reduction passes while allowing for a modular implementation in

an existing system. Taking inspiration from these works, we design an optimized variant of TTJ,
called TTJ𝜖 , and compare it with these two algorithms. Each of these algorithms makes a different

trade-off between ease of implementation and performance as we will discuss in detail in Section 6,

and all three contribute valuable insights to bring the theoretical guarantees of YA to practice.

Wang et al. [35] and Idris et al. [13] propose optimal algorithms for dynamic query processing,
where a system reacts to changes in the input by incrementally updating the output directly, without

recomputing intermediates. Incidentally, these algorithms turn out to be instance-optimal when

executed in batch mode, where each input relation is modeled as a batch of insertions provided

upfront. TTJ can be understood as a dual to these algorithms. For example, the CROWN algorithm

by Wang et al. [35] traverses the join tree bottom-up, performing semijoin reduction while building

the hash table for each relation. In contrast, TTJ piggybacks semijoins during the probe phase after
all base table hash tables are built. This allows building the hash tables in any order, in parallel,

or even pre-built as indices. Furthermore, TTJ provably incurs no more hash table operations as

compared to binary hash join, while bottom-up algorithms may require up to 2x hash table probes

when the input database is already free of dangling tuples (in which case the semijoins are futile).

Going beyond acyclic queries, the standard way to handle cyclic queries is to break up the query

with (hyper-)tree decomposition [10]. Such decomposition results in smaller cyclic subqueries

connected by an acyclic “skeleton”. Each cyclic subquery can then be computed with worst-case

optimal join algorithms [22, 33]. With the result of each subquery materialized, the final output

can then be computed with YA. As we will show in Section 7, TTJ can support cyclic queries with

only a few modifications. Compared to the tree decomposition approach, TTJ does not require
materializing intermediate results, thus requiring only constant space in addition to the linear

space required to store and index the input relations. While the worst-case time complexity of TTJ
does not match that obtained by tree decompositions, the advantage of each approach depends on

the data.

Wang et al. [37] proposed Free Join as an algorithm combining the strengths of worst-case

optimal join and traditional hash join. The TTJ𝜖 variant of our algorithm is directly inspired by Free

Join, where we eagerly pull up hash table probes to avoid large intermediates. Our algorithms have

stronger theoretical guarantees as compared to Free Join. Both TTJ and TTJ𝜖 are instance-optimal

for acyclic queries, while Free Join is not – the deletion step is crucial for instance-optimality.

As the name suggests, TreeTracker Join is a direct decendent of the TreeTracker algorithm [15]

from Constraint Satisfaction. The TreeTracker CSP algorithm resolved Dechter’s conjecture [7]

that there existed an optimal algorithm for acyclic CSPs free of any preprocessing. The connection

between query answering and constraint satisfaction is a recurring theme in the literature to the

extent that an expression emerged, the problems are two sides of the same coin [16, 20]. There are

substantive differences that make TreeTracker and TTJ different. First the constraint satisfaction
problem concerns the existence of a non-empty model for a large logical formula. Thus, constraint

satisfaction algorithms including TreeTracker stop execution and return TRUE upon identifying

what in a relational query would be just one row of the result. In contrast, TTJ produces all tuples in
the query output. Second, the TreeTracker algorithm does not make use of hash tables, and is thus

structured like a nested loop join rather than a hash join. This is because unlike the study of queries

in databases, constraint satisfaction rarely specializes the problem to only equality predicates.

Combining these two differences TreeTracker incorporates ad-hoc data structures, where TTJ
employs recognized indices commonly used in databases. These difference clearly manifest in the

respective complexity analyses. The complexity of the best variation of the TreeTracker algorithm
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is polynomial in the input size and does not consider the output size. We prove below TTJ runs in
linear time in the total size of the input and output.

3 Preliminaries
In this section, we present the foundational concepts concerning acyclic join queries and the specific

definitions adopted in this paper.

3.1 JoinQueries and Acyclicity
We consider natural join queries, also known as full conjunctive queries, of the form:

𝑄 (𝒙) = 𝑅1 (𝒙1) ⊲⊳ 𝑅2 (𝒙2) ⊲⊳ · · · ⊲⊳ 𝑅𝑛 (𝒙𝑛) (1)

where each 𝑅𝑖 is a relation name, each 𝒙𝑖 (and 𝒙) a tuple of distinct variables, and every 𝑥 ∈ 𝒙𝑖 also
appears in 𝒙 . We call each 𝑅𝑖 (𝒙𝑖 ) an atom, and 𝑥𝑖 the schema of 𝑅𝑖 , denoted as Σ(𝑅𝑖 ). We extend

the notion of schema to tuples in the standard way and write Σ(𝑡) for the schema of 𝑡 . The query

computes the set
4 𝑄 = {𝒙 | ∧𝑖∈[𝑛] 𝒙𝑖 ∈ 𝑅𝑖 }. We sometimes write 𝑄 and not 𝑄 (𝒙) to reduce clutter,

and identify𝑄 with its set of relations. For example,𝑄 − {𝑅𝑖 } denotes the query𝑄 with 𝑅𝑖 removed.

Definition 3.1 (Join Tree). A join tree for a query 𝑄 is a tree where each node is an atom in 𝑄 ,

with all atoms in 𝑄 appearing in the tree, and for every variable 𝑥 , the nodes containing 𝑥 form a

connected subtree.

A query 𝑄 is acyclic (more specifically 𝛼-acyclic) if there exists a join tree for Q.
For clarity we rewrite the query in example 1.1 and detail one of its join trees:

𝑄1 = 𝑅(𝑖, 𝑥) ⊲⊳ 𝑆 (𝑥,𝑦, 𝑗) ⊲⊳ 𝑇 (𝑦, 𝑘) ⊲⊳ 𝑈 (𝑦, 𝑙) (2)

One join tree has 𝑅(𝑖, 𝑥) at the root, 𝑆 (𝑥,𝑦, 𝑗) as its child, and 𝑇 (𝑦, 𝑘) and 𝑈 (𝑦, 𝑙) as children of 𝑆 .

We encourage the reader to draw a picture of this join tree for reference. One can construct a join

tree for any acyclic query with the GYO algorithm [12, 39], which works by finding a sequence of

ears. To define ear, we first define a key schema:

Definition 3.2 (Key Schema). For a query 𝑄 of the form (1), the key schema of an atom 𝑅𝑖 (𝒙𝑖 ) in
𝑄 , denoted as keys(𝑄, 𝑅𝑖 ), is the set of variables shared between 𝑅𝑖 (𝒙𝑖 ) with the other atoms in 𝑄 ;

i.e., keys(𝑄, 𝑅𝑖 ) = 𝒙𝑖 ∩
⋃
𝑗∈[𝑛]∧𝑗≠𝑖 𝒙 𝑗 .

Intuitively, keys(𝑄, 𝑅𝑖 ) form the keys of 𝑅𝑖 ’s hash table, if we compute (𝑄 − {𝑅𝑖 }) ⊲⊳ 𝑅𝑖 using
binary hash join.

Definition 3.3 (Ear). Given a query 𝑄 of the form (1), an atom 𝑅𝑖 (𝒙𝑖 ) is an ear if it satisfies the
property ∃ 𝑗 ≠ 𝑖 : 𝒙 𝑗 ⊇ keys(𝑄, 𝑅𝑖 ). In words, there is another atom 𝑅 𝑗 (𝒙 𝑗 ) that contains all the
variables in 𝑅𝑖 ’s key schema. We call such an 𝑅 𝑗 a parent of 𝑅𝑖 .

The parent concept is central to the TTJ algorithm. The parent’s schema include all of its children’s

keys. When a hash lookup fails at a child, TTJ will backjump to the parent. Figure 2b shows an

algorithm to find the first parent of an ear in 𝑄 , where 𝑄 is represented as a list of atoms.

The GYO algorithm for constructing join trees is shown in Figure 2a: we start with a forest where

each atom makes up its own tree, then for every ear, we attach it to its parent and remove that ear

from the query. Note that it is possible for the algorithm to produce a forest of disjoint trees when

the query contains Cartesian products. For simplicity, we will ignore such cases.

4
For clarity we assume set semantics. No change is needed for TTJ to support bag semantics
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6 Anon.

1 def GYO(Q):

2 forest = { tree(R) for R in Q }

3 while not Q.is_empty():

4 R = find-ear(Q)

5 P = parent(Q, R)

6 forest.set_parent(R, P)

7 Q.remove(R)

8 return forest

(a) The GYO alglorithm.

1 def parent(R, Q):

2 if Q.is_empty(): return None

3 keys = Σ(R) ∩⋃
S∈Q-{R} Σ(S)

4 for S in Q - {R}:

5 if keys ⊆ Σ(S):

6 return S

7 # we did not find a valid parent

8 return None

(b) Find a parent of 𝑅 in 𝑄 if one exists.

Fig. 2. GYO reduction and parent computation.

1 def join(t, plan, i):

2 if i > plan.len(): print(t)

3 else:

4 R = plan[i]; k = 𝜋keys(plan[1..i],R) (𝑡)
5 for r in R[k]:

6 join(t++r, plan, i+1)

(a) Pipelined left-deep binary hash join

1 def YA(Q, order):

2 for R in order: # semijoins reduction

3 P = parent(Q, R); Q.remove(R)

4 if P is not None: P = P ⋉ R

5 # compute the output with hash join

6 return join((), reverse(order), 1)

(b) Yannakakis’s algorithm

Fig. 3. Binary hash join and Yannakakis’s algorithm. The plan array is 1-indexed.

Definition 3.4 (GYO reduction order). Given a query 𝑄 of the form (1), a GYO reduction order for
a query 𝑄 is a sequence [𝑅𝑝1 , 𝑅𝑝2 , . . . , 𝑅𝑝𝑛 ] that is a permutation of [𝑅1, 𝑅2, . . . , 𝑅𝑛], such that for

every 𝑖 < 𝑛, the atom 𝑅𝑝𝑖 is an ear in the (sub)query 𝑅𝑝𝑖 ⊲⊳ · · · ⊲⊳ 𝑅𝑝𝑛 .

Equivalently, it is the same order of atoms as visited by the GYO algorithm. The reader can

verify [𝑈 ,𝑇 , 𝑆, 𝑅]is a GYO reduction order for 𝑄1. The existence of a GYO reduction order and the

existence of a join tree are equivalent.

Theorem 3.5 ([12, 39]). A query 𝑄 has a join tree (i.e., 𝑄 is 𝛼-acyclic) if and only if it has a GYO
reduction order.

3.2 Binary Hash Join
In this paper we focus on hash-based join algorithms. For theoretical analyses we focus on left-deep

linear plans; for practical implementation we follow the standard practice and decompose each

bushy plan into a sequence of left-deep linear plans, materializing each intermediate result.

Definition 3.6 (Query Plan). A (left-deep linear) query plan for a query 𝑄 of the form (1) is a

sequence [𝑅𝑝1 , 𝑅𝑝2 , . . . , 𝑅𝑝𝑛 ] that is a permutation of 𝑄’s relations [𝑅1, 𝑅2, . . . , 𝑅𝑛].

For consistency we adopt 1-based indexing for query plans, so the first relation in the plan

is stored at 𝑖 = 1. An example query plan for 𝑄1 in Equation (2) is [𝑅, 𝑆,𝑇 ,𝑈 ]. One may notice

similarities between a GYO reduction order and a query plan. The reason for this will become clear.

We follow the push-based model [21] and specialize the binary hash join algorithm for pipelined

left-deep plans as shown in Figure 3a. We write 𝜋𝑠 (𝑡) to project the tuple 𝑡 onto the schema 𝑠 , and

𝑡 ++ 𝑟 to concatenate the tuples 𝑡 and 𝑟 while resolving the schema appropriately. Execution begins

by passing to join the empty tuple 𝑡 = (), a query plan, and 𝑖 = 1. Although we do not need to build
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a hash table for the left-most relation (the first relation in the plan), for simplicity we assume that

there is a (degenerate) hash table mapping the empty tuple () to the entire left-most relation. The

algorithm starts by checking if the plan has been exhausted and if so, output the tuple 𝑡 . Otherwise,

we retrieve the 𝑖-th relation 𝑅𝑝𝑖 from the plan, and lookup from 𝑅𝑝𝑖 the matching tuples that join

with 𝑡 . For each match, we concatenate it with 𝑡 and recursively call join.

It may be helpful to unroll the recursion over a query plan, and we encourage the reader to do

so for 𝑄1 in (2) with the plan [𝑅, 𝑆,𝑇 ,𝑈 ]. This will generate the same code as in Figure 1a.

3.3 Yannakakis’s Algorithm
Yannakakis’s original algorithm [38] makes two preprocessing passes over the input relations. A

third pass computes the joins yielding the final output. Bagan, Durand, and Gandjean [2] improved

the original algorithm by eliminating the second preprocessing pass. For brevity we only describe

the latter algorithm. Following common usage, hereafter, we will refer to the improved version as

Yannakakis’s alglorithm (YA).
Shown in Figure 3b is, given a GYO reduction order, the relations are preprocessed using semijoins,

then the output is computed with standard hash join. Equivalently, the semijoin preprocessing step

can be performed by traversing a join tree bottom-up, and the output computed with hash join by

traversing the tree top-down.

Example 3.7. Given the query𝑄1 in (2) and the GYO reduction order [𝑈 ,𝑇 , 𝑆, 𝑅], YA first performs

the series of semijoins, 𝑆 ′ = 𝑆 ⋉𝑈 , 𝑆 ′′ = 𝑆 ′ ⋉𝑇 , and 𝑅′ = 𝑅 ⋉ 𝑆 ′′, then computes the output with

the plan [𝑅′, 𝑆 ′′,𝑇 ,𝑈 ]. The reader may refer to the join tree of 𝑄1 and confirm we are traversing

the tree bottom-up then top-down.

4 TreeTracker Join
The TreeTracker Join algorithm is shown in Figure 4a. The algorithm follows the same structure as

binary hash join. The difference starts on line 5 right before the hash lookup R[k]. If this lookup

fails (i.e., it finds no match), and if 𝑅 has a parent 𝑃 that appears before 𝑅 in the plan, then TTJ
backjumps to the for-loop at 𝑃 ’s recursive level, by returning P (line 7). This is similar to throwing

an exception which is “caught” at the loop level of P, as we will explain on line 10. Otherwise, if the

lookup R[k] succeeds, the algorithm iterates over each matching tuple 𝑟 and calls itself recursively

(line 9). This recursive call has three possible results. A result containing a relation (line 10) signifies

a backjump has occurred, with that relation as the backjumping point. If the backjumping point is

the same as the current relation 𝑅, then the tuple 𝑟 is deleted from 𝑅 (line 11). If the backjumping

point is different from 𝑅, then the backjump continues by returning result which interrupts the

current loop. Finally, if the recursive call (implicitly) returns None, the algorithm continues to the

next loop iteration.

Example 4.1. It can be helpful to unroll the recursive algorithm over a query plan. Given𝑄1 in (2)

and the plan [𝑅, 𝑆,𝑇 ,𝑈 ], Figure 4b shows the execution of TTJ. To make the code more intuitive,

we replace return statements with exception handling to simulate backjumping. We gray out dead

code and no-ops:

• Line 1 is unreachable because R[()] is always the entire relation 𝑅, and 𝑅 has no parent.

• Line 3 (and 13) is a no-op, because it would just backjump to the immediately enclosing loop,

and removing a tuple from 𝑅 is useless because 𝑅 is at the outermost loop
5
.

5
In Section 5 we will introduce an additional optimization that makes “removing” from the outermost relation meaningful.
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1 def ttj(t, plan, i):

2 if i > plan.len(): print(t)

3 else:

4 R = plan[i]; k = 𝜋keys(plan[1..i],R) (𝑡)
5 P = parent(plan[1..i], R)

6 if R[k] is None & P is not None:

7 return P # backjump to P

8 for r in R[k]:

9 result = ttj(t++r, plan, i+1)

10 if result == R: # catch backjump

11 R[k].delete(r)

12 elif: result is not None:

13 return result # continue backjump

(a) TreeTracker join

1if R[()] is None: throw BJ(None)

2for i,x in R:

3try: if S[x] is None: throw BJ(R)

4for y,j in S[x]:

5try: if T[y] is None: throw BJ(S)

6for k in T[y]:

7try: if U[y] is None: throw BJ(S)

8for l in U[y]:

9try: output(x,y,i,j,k,l)

10catch BJ(U): U[y].delete(l)

11catch BJ(T): T[y].delete(k)

12catch BJ(S): S[x].delete(y,j)

13catch BJ(R): R[()].delete(i, x)

(b) Execution of TTJ for Example 1.1

Fig. 4. The TreeTracker algorithm and an example execution.

• Technically the if-statement on line 5 is useful even though it only backjumps one level,

because the backjump would remove a tuple from 𝑆 when caught (line 12). However for the

input data in Example 1.1 we do not need this, and we gray it out to reduce clutter.

• Finally, the innermost two try-catch pairs are unreachable, because𝑈 and𝑇 have no children.

At this point, the remaining code in black is essentially the same as the code in Figure 1c. As a side

note, a sufficiently smart compiler with partial evaluation or just-in-time compilation could remove

the dead code and no-ops as we have done above.

4.1 Correctness and Asymptotic Complexity
The correctness proof starts with an observation on the relationship between different calls to ttj:

Proposition 4.2. If ttj(𝑡 𝑗 , 𝑝, 𝑗) recursively calls ttj(𝑡𝑖 , 𝑝, 𝑖), then 𝑡 𝑗 ⊆ 𝑡𝑖 .

Proof. The proposition follows from the definition of the algorithm, where the 𝑡𝑖 argument to

the nested call is constructed by appending tuples to 𝑡 𝑗 . □

TTJ differs from binary join only upon a lookup failure. In that case it backjumps to the parent

of the relation that caused the failure, and deletes the tuple that caused the failure. Therefore, TTJ
is correct as long as it never deletes or “backjumps over” any tuple that should be in the output. We

first prove that a deleted tuple can never contribute to any outupt. In the following we write 𝜋𝑅 (𝑡)
for the projection of 𝑡 onto the schema of 𝑅.

Lemma 4.3. Suppose a tuple 𝑟 𝑗 is deleted from 𝑅 𝑗 during the execution of TTJ for a query 𝑄 using
plan 𝑝 . Then ∀𝑡out ∈ 𝑄 : 𝜋𝑅 𝑗

(𝑡out) ≠ 𝑟 𝑗 .

Proof. Let 𝑝 be [𝑅1, . . . , 𝑅𝑛], and 𝑡 𝑗 be the value of the argument 𝑡 in scope at the time of the

deletion. Because 𝑟 𝑗 is deleted from 𝑅 𝑗 , there must be a failed lookup 𝑅𝑖 [𝑘𝑖 ] recursively nested

within the call to ttj(𝑡 𝑗 ++ 𝑟 𝑗 , 𝑝, 𝑗 + 1), and 𝑅 𝑗 is the parent of 𝑅𝑖 . Let 𝐾𝑖 = keys(𝑝 [1, . . . , 𝑖], 𝑅𝑖 ), and
let 𝑡𝑖 be the value of 𝑡 at the time of the lookup failure. Then 𝑡 𝑗 ++ 𝑟 𝑗 ⊆ 𝑡𝑖 by Proposition 4.2. By

definition of parent, 𝐾𝑖 ⊆ Σ(𝑅 𝑗 ) ⊆ Σ(𝑡 𝑗 ++ 𝑟 𝑗 ) ⊆ Σ(𝑡𝑖 ), so 𝑘𝑖 = 𝜋𝐾𝑖
(𝑡𝑖 ) = 𝜋𝐾𝑖

(𝑡 𝑗 ++ 𝑟 𝑗 ) = 𝜋𝐾𝑖
(𝑟 𝑗 ).

However, since the lookup failure implies no tuple in 𝑅𝑖 contains 𝑘𝑖 , any output tuple 𝑡out cannot
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contain 𝑘𝑖 either, i.e., ∀𝑡out ∈ 𝑄 : 𝜋𝐾𝑖
(𝑡out) ≠ 𝑘𝑖 . Therefore, ∀𝑡out ∈ 𝑄 : 𝜋𝐾𝑖

(𝑡out) ≠ 𝜋𝐾𝑖
(𝑟 𝑗 ) which

implies ∀𝑡out ∈ 𝑄 : 𝜋𝑅 𝑗
(𝑡out) ≠ 𝜋𝑅 𝑗

(𝑟 𝑗 ). □

Next, we show TTJ never backjumps over any tuple that contributes to the output. Given a plan

𝑝 = [𝑅1, . . . , 𝑅𝑛], denote by 𝜋 [𝑖 ] (𝑡) the projection of 𝑡 onto
⋃
𝑗∈[𝑖 ] Σ(𝑅 𝑗 ).

Lemma 4.4. For any tuple 𝑡out ∈ 𝑄 , plan 𝑝 for 𝑄 , and 1 ≤ 𝑖 ≤ |𝑝 |, ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) recursively
calls ttj(𝜋 [𝑖 ] (𝑡out), 𝑝, 𝑖 + 1).

Proof. Consider a lookup 𝑅 [𝑘] that is recursively nested within the call to ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖)
where 𝑅 has a parent 𝑅 𝑗 with 𝑗 ∈ [𝑖 − 1]. Then 𝑘 ⊆ 𝜋𝑅 𝑗

(𝑡out) ⊆ 𝑡out, and because Σ(𝑘) ⊆ Σ(𝑅),
we have 𝑘 ⊆ 𝜋𝑅 (𝑡out) ∈ 𝑅. This means the lookup 𝑅 [𝑘] will not fail. This holds for all such 𝑅, so
the algorithm never backjumps from within the call ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) to any 𝑅 𝑗 for 𝑗 ∈ [𝑖 − 1].
The algorithm may still backjump to 𝑅𝑖 , but by Lemma 4.3, 𝜋𝑅𝑖 (𝑡out) is never deleted from 𝑅𝑖 , and

therefore the algorithm will recursively call ttj(𝜋 [𝑖−1] (𝑡out) ++ 𝜋𝑅𝑖 (𝑡out), 𝑝, 𝑖 + 1) which is the same

as ttj(𝜋 [𝑖 ] (𝑡out), 𝑝, 𝑖 + 1). □

We arrive at the correctness of TTJ by applying Lemma 4.4 inductively over the query plan.

Theorem 4.5. Given any plan p for 𝑄 , ttj((),p,1) computes 𝑄 .

Proof. We prove the correctness of TTJ in two directions: first, any tuple produced by TTJ should
be in the output; second, TTJ produces all tuples that should be in the output. The first direction

is straightforward, as any tuple produced by TTJ is also produced by binary hash join. We prove

the second direction by induction over the argument 𝑖 , with the following inductive hypothesis:

ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) will be invoked for all 𝑡out ∈ 𝑄 and 1 ≤ 𝑖 ≤ |𝑝 |. The base case when 𝑖 = 1

holds because we start the execution of TTJ by calling ttj((), 𝑝, 1). For the inductive step, assume

ttj(𝜋 [𝑖−1] (𝑡out), 𝑝, 𝑖) is invoked, then applying Lemma 4.4 shows ttj(𝜋 [𝑖 ] (𝑡out), 𝑝, 𝑖 + 1) will also
be invoked. Therefore, ttj(𝑡out, 𝑝, |𝑝 | + 1) will be invoked for all 𝑡out ∈ 𝑄 , which produces all tuples

that should be in the output. □

Next, we prove TTJ runs in linear time in the size of the input and output, for full acyclic queries.

We first introduce a condition on the query plan that is necessary for the linear time complexity:

Lemma 4.6. Given a query 𝑄 and a plan 𝑝 = [𝑅1, . . . , 𝑅𝑛] for 𝑄 , parent returns None only for 𝑅1
during the execution of TTJ, if 𝑝 is the reverse of a GYO reduction order of 𝑄 .

Proof. If [𝑅𝑛, . . . , 𝑅1] is a GYO reduction order, then there is a join tree with 𝑅1 as root, and

every non-root atom has a parent. □

TTJ is guaranteed to run in linear time given such a plan:

Theorem 4.7. Fix a query 𝑄 and a plan 𝑝 . If 𝑝 is the reverse of a GYO reduction order for 𝑄 , then
ttj((),p,1) computes 𝑄 in time 𝑂 ( |𝑄 | +∑

𝑖 |𝑅𝑖 |).
Proof. We first note that in Figure 4a, ttj does constant work outside of the loops; each iteration

of the loop also does constant work and recursively calls ttj, so each call to ttj accounts for constant

work, therefore the total run time is linear in the number of calls to ttj. All we need to show now

is that there are a linear number of calls to ttj.

Because 𝑝 is the reverse of a GYO reduction order for 𝑄 , the following holds from Lemma 4.6:

except for the one call to ttj on the root relation (when 𝑖 = 1), every call to ttj has 3 possible

outcomes: (1) It outputs a tuple. (2) It backjumps and deletes a tuple from an input relation. (3) It

recursively calls ttj. Because the query plan has constant length, there can be at most a constant

number of recursive calls to ttj (case 3) until we reach cases 1 or 2. Therefore there are at most

𝑂 ( |𝑄 | +∑
𝑖 |𝑅𝑖 |) calls to ttj, and the algorithm runs in that time. □
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By Theorem 3.5 every 𝛼-acyclic query can be GYO-reduced, therefore ttj runs in linear time:

Corollary 4.8. For any 𝛼-acyclic query 𝑄 , there is a plan 𝑝 such that ttj((),p,1) computes 𝑄 in
time 𝑂 ( |𝑄 | +∑

𝑖 |𝑅𝑖 |).

4.2 Comparison with Binary Join and YA
We now prove our claim that, for any given query plan, TTJ always matches or outperforms binary

hash join. Because TTJ and hash join build the exact same set of hash tables, they share the same

cost for hash building. We therefore focus on the cost of hash lookups which accounts for the

majority of the remaining cost for both algorithms. The following proofs take advantage of set

semantics, but it is easy to extend the reasoning for bag semantics, as we can convert a bag into a

set by appending a unique labeled null value to each tuple. We start with the following observation

to relate the run time of hash join and TTJ to the set of arguments they are invoked with:

Lemma 4.9. Both hash join and TTJ, as defined in Figure 3a and Figure 4a, are invoked once for
each distinct combination of the arguments (𝑡, 𝑝, 𝑖).

Proof. We prove by induction over the argument 𝑖 . In the base case when 𝑖 = 1, both algorithms

are invoked once with 𝑡 = (), 𝑖 = 1. For the inductive step, first consider the hash join algorithm.

For every distinct 𝑡 , join(t, plan, i) recursively calls join(t++r, plan, i+1) for every 𝑟 ∈ 𝑅𝑖 [𝑘].
Since 𝑅𝑖 is a set, each 𝑟 is distinct, so each 𝑡 ++ 𝑟 is also distinct. The same reasoning also applies to

TTJ, as the algorithm will call itself only for a subset of the tuples in 𝑅𝑖 [𝑘]. □

In other words, the number of calls to each algorithm is the same as the number of distinct

arguments they are invoked with. We can now compare the algorithms, by bounding the number

of calls to TTJ by that of binary join.

Theorem 4.10. Given a query 𝑄 and a plan 𝑝 for 𝑄 , computing 𝑄 with TTJ using 𝑝 makes at most
as many hash lookups as computing 𝑄 with binary join using 𝑝 .

Proof. For clarity we have repeated the lookup R[k] three times in Figure 4a, but we really

only need to look up once and save the result to a local variable for reuse. Specifically, a pointer

to R[k] on line 6 can be used for the nullness check on the same line, the loop on line 8, as well

as the deletion
6
on line 11. This way, every call to ttj makes exactly one hash lookup. Since the

binary join algorithm in Figure 3a also makes exactly one hash lookup per call, it is sufficient to

bound the number of calls to ttj by that of binary join. By Lemma 4.9, it is sufficient to show the

distinct arguments TTJ is invoked on is a subset of that for binary join. We prove this by induction

over the argument 𝑖 . When 𝑖 = 1, both TTJ and binary join are invoked with 𝑡 = () and 𝑖 = 1.

For the inductive step, ttj(t, p, i) recursively calls ttj(t++r, p, i+1) only if 𝑟 ∈ 𝑅𝑖 [𝑘], which
implies join(t, p, i) will also call join(t++r, p, i+1) in binary join. Therefore, every call to TTJ
is accounted for with a call to binary join. □

Another cost in query execution comes from accessing the matching tuples after a successful

lookup, and one can prove that TTJ accesses no more tuples than binary join, following the same

reasoning as above. Although backjumping and tuple deletion in TTJ may in principle carry an

overhead, we will show in Section 6 that such an overhead is negligible as compared to the cost of

hash lookups. Finally, we note the above proof does not assume an acyclic query. Section 7 analyzes

the run time of TTJ on cyclic queries.

6
Although the deletion occurs after a recursive function call, the recursion has constant depth, so the pointer dereference

has good temporal locality and is likely cheap.
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While we guarantee TTJ to always match binary join, we cannot make the same strong claim for

YA. We will see in Section 6 that YA performs better than TTJ on some queries. Here we analyze a

few extreme cases for some intuition of how TTJ compares to YA:

Example 4.11. Consider a query where every tuple successfully joins, i.e., no lookup fails. In

this case binary join and TTJ behaves identically. However, YA spends additional time futilely

computing semijoins (without removing any tuple), before following the same execution as binary

join and TTJ to produce the output.

Example 4.12. The other extreme case is when a query has no output, and YA immediately detects

this and stops. In fact Example 1.1 is such a query: all YA needs to do is the semijoin𝑇 ⋉𝑈 , where it

builds a (tiny) hash table for𝑈 and iterate over𝑇 once to detect nothing joins. In contrast, although

TTJ also runs in linear time, it must build the hash table for all of 𝑆 , 𝑇 and𝑈 .

4.3 Cartesian Products and Non-equality Joins
While we have focused on equality joins to simplify presentation, TTJ supports both cartesian

products and non-equality joins. If the query contains a Cartesian product, TTJ would simply never

backjump across the product operator, and the guarantees of instance-optimality and zero-overhead

continue to hold. The simplest way to handle non-equality joins is to apply non-equality predicates

after all equality joins, while range predicates can be seen as a generalization of hash lookup: if a

range predicate matches no results in a B+ tree index, we can safely backjump and delete just like

TTJ does for hash lookup failures. A recent work by Wang and Yi [36] presents optimal algorithms

for conjunctive queries with comparisons. Extending TTJ to achieve similar optimality for such

queries is an interesting direction for future work.

5 Practical Considerations
Although TTJ has strong guarantees, its reliance on backjumping and deletion stands in theway of an

efficient implementation. Backjumping complicates the control flow and therefore hinders compiler

optimizations. Similarly, interleaving deletion with lookups also leads to more intricate code (e.g.,

requiring a while loop instead of a simpler for each loop), and is incompatible with vectorization

and parallelization. We address these issues in this section with an alternative formulation of

TTJ that trades off some of the theoretical guarantees for practical performance. Our approach

is inspired by earlier work using bloom filters and bitmap filters to implement various forms

of sideway information passing [6, 14, 19, 26]. However, unlike these prior work, we require no

additional filter data structures and directly probe into the same hash tables as used by binary hash

join. We discuss an additional optimization called no-good list in Appendix A.

5.1 Eliminating Backjumping
The main goal of backjumping in TTJ is to avoid iterating over match results before performing

all applicable lookups. By jumping back upon a lookup failure, TTJ guarantees the same failure

will not be repeated. Inspired by past work on pre-filtering using bitmap filters or bloom filters,

we replace TTJ’s backjumping with early probing: for every relation 𝑅, we immediately probe into

all children of 𝑅 before entering any subsequent loops. Unlike prior work on pre-filtering, our

approach does not require any additional data structures like bitmaps or bloom filters. Furthermore,

early probing still guarantees the resulting algorithm is zero-overhead to a certain extent, which

we will discuss in detail below. We note a similar technique was used in the Free Join algorithm by

Wang et al. [37] to implement worst-case optimal join for cyclic queries. However, Free Join is not

instance-optimal for acyclic queries.
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Figure 5a shows the pseudocode for TTJ with early probing, denoted as TTJ𝜖 . For each relation 𝑅

in the plan, we find all children relations 𝐶 such that 𝑅 is a parent of 𝐶 . Then for each tuple 𝑟 in 𝑅,

we probe into each child relation 𝐶 . Upon any probe failure, we delete 𝑟 from 𝑅 and skip to the

next tuple. If all probes succeed, we recursively call TTJ𝜖 after replacing each 𝐶 with the lookup

result 𝐶 [𝑘]. Figure 5b shows an example execution of TTJ𝜖 for the query in Example 1.1. The root

relation 𝑅 has only one child 𝑆 , which is probed into at the top loop level. If the probe fails, the

tuple (𝑖, 𝑥) is deleted from 𝑅. Otherwise, we proceed to iterate over the matching tuples (𝑦, 𝑗) in
𝑆 [𝑥]. 𝑆 has two children 𝑇 and𝑈 , and we probe into them at once. If either probe fails, the tuple

(𝑦, 𝑗) is deleted from 𝑆 [𝑥]. Otherwise, we iterate over the matching tuples and output the final

result. Note that the execution example no longer contains any non-local loop exits. A vectorized

implementation may therefore perform lookups in batch; the simplified control flow also paves the

way for parallelization.

It is easy to see TTJ𝜖 runs in linear time for acyclic queries, following the same reasoning in the

proof of Theorem 4.7:

Theorem 5.1. Fix a full acyclic query 𝑄 and a plan 𝑝 . If 𝑝 is the reverse of a GYO reduction order
for 𝑄 , then ttj-e((),p,1) computes 𝑄 in time 𝑂 ( |𝑄 | +∑

𝑖 |𝑅𝑖 |).

Proof Sketch. The body of the outer loop in Figure 5a does constant work per iteration (when

we regard the size of query as constant), and each iteration either recursively calls TTJ𝜖 or deletes
a tuple. Since the algorithm will produce an output after a constant number of recursive calls, the

entire algorithm must run in time 𝑂 ( |IN| + |OUT|). □

Compared to TTJ which guarantees to incur no more hash probes than HJ on any query plan,

TTJ𝜖 ’s guarantee is less general. Intuitively, the early probing in TTJ𝜖 essentially reorders joins. Al-

though this reordering guarantees asymptotic optimality, it can introduce constant-factor overhead

on the specific input. Nevertheless, TTJ𝜖 still guarantees zero-overhead for query plans that are

“compatible” with a join tree (the difference with Theorem 4.10 is highlighted in bold):

Theorem 5.2. Given a query𝑄 and a plan 𝑝 for𝑄 such that for every 𝑅 ∈ 𝑄 and every child𝐶
of 𝑅, any relation 𝑆 between 𝑅 and 𝐶 in 𝑝 is also a child of 𝑅, computing 𝑄 with TTJ𝜖 using 𝑝
makes at most as many hash lookups as computing 𝑄 with binary join using 𝑝 .

Proof Sketch. If the query plan satisfies the above conditions, TTJ𝜖 performs hash lookups

in the same order as binary hash join, but avoids fruitless iteration over matched results when a

lookup fails. □

5.2 Avoiding Deletion
While TTJ𝜖 completely eliminates backjumping, deletion is still necessary to guarantee linear

time complexity for the general case. Nevertheless, we can avoid deletion as much as possible by

exploiting the structure of the query as well as primary/foreign key constraints in the data. In this

section we present several of this kind of semantic optimizations.

Shallow Join Trees. We have observed in Example 4.1 that deletion from the root relation of a

join tree is unnecessary, because the root relation appears at the top loop level, and every tuple

will only be considered once. Therefore, we can eliminate all deletions if the join tree has a depth

of two, i.e., all non-root relations have the root as parent. This is the case for star-schema queries,

where we may choose the fact table as root, and the dimension tables as children. In general, when

generating query plans, we favor shallow join trees over deep ones. This is implemented with the

maximum cardinality search algorithm by Tarjan and Yannakakis [29] which constructs a join tree
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1 def ttj-e(t, plan, i):

2 if i > plan.len(): print(t)

3 else:

4 R = plan[i]

5 l1: for r in R:

6 new_plan = clone(plan)

7 for C in children(plan, R):

8 k = 𝜋𝑅∩𝐶 (𝑟 )
9 if C[k] is None:

10 R.delete(r); continue l1

11 else: new_plan[C\C[k]]

12 ttj-e(t++r, new_plan, i+1)

(a) TTJ with early probing (TTJ𝜖 )

1for i,x in R:

2if S[x] is None:

3R.delete(i, x)

4else:

5for y,j in S[x]:

6if T[y] is None ||

7U[y] is None:

8S[x].delete(y,j)

9else:

10for k in T[y]:

11for l in U[y]:

12output(x,y,i,j,k,l)

(b) Execution of TTJ𝜖 for Example 1.1

Fig. 5. TTJ with early probing (TTJ𝜖 ) and example execution.

root-to-leaf, while greedily attaching each child to the highest possible parent. After we generate

the structure of the join tree, we order the children of each relation based on cardinality estimates.

Primary/Foreign Key Constraints. The justification for skipping deletion at the root is that the

same tuple will never be considered again. We can extend this reasoning to non-root relations

that join with the root via primary/foreign keys. Specifically, if a relation 𝑆 joins with the root 𝑅

with the condition 𝑆.𝑓 = 𝑅.𝑝 where 𝑝 is a primary key of 𝑅 and 𝑓 is a foreign key of 𝑆 referencing

𝑝 , then every tuple in 𝑆 will only be visited once, and it is therefore safe to skip deletion from 𝑆 .

Another way to exploit primary/foreign key constraints is to pre-compute intermediate results that

are guaranteed to have linear size. For example, if the query plan contains 𝑆 ⊲⊳ 𝑇 as a subplan, and

if that join is on a primary/foreign key, then the output size will not exceed the total size of 𝑆 and𝑇 .

We can therefore safely materialize this join (using regular binary hash join), which in turn makes

the join tree shallower and can further eliminate deletion.

6 Empirical Results
Since our primary contribution concerns the development of an algorithm that is both asymptotically

optimal and is competative in practice w.r.t. wall clock time, the primary goal of the empirical

assessment is to compare the execution time of the algorithms in as controlled of an experiment as

possible. All three algorithms, TTJ, binary hash join, HJ, and YA are implemented in the same Java

query execution engine written from scratch. We are certain our algorithm execution measurements

do not make calls to methods outside of our execution environment. Any data structure in our

execution environment whose definition is impacted by the definition of a data structure outside of

our Java execution environment is treated identically for all three algorithms. Where possible, code

is reused across algorithm implementation. The source code of the implementation is available at

https://anonymous.4open.science/r/treetracker.

Remaining aspects of query compilation and and DBMS implementation are “borrowed” from

other DBMS implementations. Query plans are an example of borrowing from other DBMS imple-

mentations. After loading a benchmark database instance and gathering catalog statistics left-deep

linear query plans are determined by SQLite, and bushy plans by PostgreSQL. The SQL EXPLAIN

command elicits the plans from the DBMSs. SQLite and PostgreSQL were chosen because of the

topology of the plans their optimizers generate. The linear time guarantee only holds for left-deep
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Fig. 6. Run time of TTJ, HJ, YA, and PostgreSQL on JOB, TPC-H, and SSB. Every data point corresponds to a
query, whose 𝑥- and 𝑦-coordinates correspond to the run time of the algorithms under comparison.

linear plans that are consistent with a GYO reduction order of the query. All the left-deep plans

produced by SQLite in our experiments are consistent with the GYO reduction requirement.

Workload. Our experments encompass left-deep plans, left-deep plans with optimizations inte-

grated into the TTJ algorithm, and bushy plans. Only the acyclic join queries in three benchmarks

were evaluated, the Join Ordering Benchmark (JOB) [18], TPC-H [30] (scale factor = 1), and the

Star Schema Benchmark (SSB) [24] (scale factor = 1). Also omitted were single-relation queries, and

correlated subqueries. These criteria eliminated only 9 queries, all from TPC-H. Thus, the 113 JOB

queries, the 13 SSB queries and 13 out of 22 TPC-H queries were assessed, for a total of 139 queries.

Environment. Experiments were conducted on a single logical core of an AMD Ryzen 9 5900X

12-Core Processor @ 3.7Hz CPU. The computer contained 64 GB of RAM, and a 1TB PCIe NVMe

Gen3 M.2 2280 Internal SSD. All data structures are allocated from JVM heap which was set to 20

GB. Since execution was otherwise identical for all algorithms under test, no techniques to reduce

the overhead of memory allocation or garbage collection were exploited. Measurements for each

query and algorithm pair were orchestrated by JMH [1] configured for 5 warmup forks and 10

measurement forks. Each of those forks contains 3 warmup and 5 measurement iterations.

Direct measurements of PostgreSQL, which can be seen as the control group (not a baseline), for

our implementations are the same as [18]. PostgreSQL measurements use an in-memory hash join,

indices were dropped and single process execution specified. Thus, we configured PostreSQL such

that measurements were made as similar to our Java implementations as we could make possible.

A timeout was set to 1 minute. Of all the queries only TPC-H Q20 exceeded the timeout.

6.1 Algorithm Comparison
Figure 6 illustrates our primary results. It contains 3 scatter plots that pairwise compare the execu-

tion time of 4 implementations for each query across the 3 benchmarks. First, Figure 6a compares

the performance of PostgreSQL, using hash joins with our implementation of HJ. Inspection of

the scatterplot shows that with few exceptions the execution time of the same query is less than

an order of magnitude apart. Most points are below the diagonal indicating our implementation

is faster than PostreSQL. The shape of the cluster suggests a consistent range in the disparity of

execution time.

Faster execution is not surprising. The results of a road race with PostgreSQL are not material to

this paper. Our execution environment contains no elements of transaction system overhead or
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Baseline Benchmark Average Maximum Mininimum

Hash Join

JOB 1.11× 12.6× (16b) 0.9× (11b)

TPC-H 1.09× 1.9× (Q9) 1× (Q7)

SSB 1.15× 1.7× (Q2.2) 0.8× (Q3.4)

Yannakakis’s

Algorithm

JOB 1.60× 9.2× (16b) 0.2× (6a)

TPC-H 1.40× 3.7× (Q9) 0.7× (Q7)

SSB 3.16× 7.9× (Q2.2) 1× (Q3.4)

Table 1. Speed-up of TreeTracker Join Relative to Hash Join and Yannakakis’s Algorithm.

buffer and memory hierarchy management. PostgreSQL execution time was measured as a control.

This first plot establishes that our Java implementation is within range of a commercially used

RDBMS and the consistency in the difference of execution speed lends credibility that the emperical

results from our execution environment will generalize to commercially deployed RDBMSs.

Figure 6b shows, on a per query basis, the relative speed of TTJ versus HJ. The visualization
in Figure 6b reveals that TTJ is often faster than HJ, and for just a few queries the execution is

slower and when that is the case the performance disadvantage is marginal. Per Table 1, JOB query

11b and SSB query Q3.4, form the worst results for TTJ are just 10% and 20% slower respectively.

The weighted average of TTJ execution time over the three benchmarks is a hair better than 10%

faster. More sizable improvements appear in the maximum speed-up results. We remind the reader

the join orders are for plans that were optimized for left-deep linears hash-joins. Below we will

return to the question of the upside opportunity for TTJ execution speed when, in future work, a

SQL optimizer includes cost models for TTJ and the optimization process includes both a choice

of join order and a choice of join algorithm. For instance the detailed examination of each query

execution revealed that TTJ’s worst-relative performance, JOB query 11b is due to the inclusion of

the no-good list optimization which, often predictably, incures overhead without providing any

performance benefit.

For completeness, performance of TTJ relative to YA is presented in Figure 6c. The results

exemplify the paradox and challenge of YA. On all but 12 queries, TTJ outperforms YA, with average

and maximum speedup of 1.4x and 9.2x. 8 of those queries, JOB 6a, 6b, 6c, 6d, 6e, 7b, 12b, and TPC-H

Q7, exhibit the most significant disadvantage of TTJ.
Review of the JOB queries reveals a foreseeable cause for YA execution speed advantage. The

first semijoin removes a large fraction of tuples from a large relation. For example, the first semijoin

for JOB query 6a reduces the largest relation, cast_info, from 36,000,000 tuples to 486 tuples. That

semijoin is executed before building the hash tables. Hash table build time for YA is 499ms. For TTJ
that build time is 13,398ms and by itself comprises 98% of the execution time for TTJ.

The basis of TPC-H, Q7’s performance results are also due to the impact of the first semijoin, but

in a more involved way. Prior to any join processing a relational select on nation returns just 1

tuple. As an argument to the first semijoin, supplier ⋉ nation, over 90% of tuples from supplier are
removed. Where, in the first example the one semijoin reduction accounted for speed benefit, in

this example, by beginning with a single tuple, the entire chain of semijoin reductions resulted in

large reductions in the size of the join arguments repeat.

Review of hash table build times for YA relative to hash table build times for TTJ and HJ alone,
(these latter two always being equal), accounts for all the speed improvement of YA compared to

the other algorithms.
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Fig. 7. Number of hash probes in different algorithms.

The specialized pattern embodied in SSB, star queries on a star schema, enables a quantitative

assessment that may be used in the future by a query optimizer. Notably a determination if the

integration of a no-good list is advantagous. For the special case of big data queries modeled by

SSB, the performance of TTJ is largely determined by the effectiveness of the no-good list.

Recall the no-good list is a specialization for the leftmost argument of a join plan as hash-joins

do not typically create a hash-table for the leftmost argument. The no-good list forms a cache of the

tuple key values for the leftmost argument that have been determined to be dangling. Queries plans

for star schema typically start with the fact table as the leftmost relation in a plan, and provide the

key values for a series of joins on dimension tables. Any lookup failure will backjump to the fact

table and add to the no-good list. Thus the no-good list acts as a filter that prevents any processing

of a fact tuple whose join key values have already been determined to be fruitless.

Of 13 SSB queries evaluated TTJ is the fastest algorithm on 6, and, plus or minus, within 10%

margin of the best algorithm on 10 queries. We compared the queries that run relatively slower

in TTJ (Q1.2, Q3.4, Q4.1, and Q4.3) with those that run relatively faster (Q2.1, Q2.2, Q2.3, Q3.1,

Q3.2, and Q3.3), and measured the ratio between the intermediate result size reduction and the

size of no-good lists. We determined that for the slower queries, each element in the no-good

list, on average, reduces the intermediate result size by 182. For the faster queries the average is

318. Although an optimizer is not within the scope of this paper, we can conclude that for our

testbed more refined measurements would determine a tipping point value of a selectivity that falls

between 1/182 and 1/318. Selectivity below the tipping point indicates omitting the no-good list

will result in faster query execution and vice versa.

The scatter plot Figure 7a compares the number of hash probes for TTJ vs. HJ for each query. A

small number of the scatter plot points appear on the diagonal, i.e. an equal number of hash probes.

The remainder of the points are below the diagonal. This emperically validates our theorem that

TTJ will execute fewer or an equal number of hash probes as HJ.
We have not made any claims as to the relative number of hash probes between TTJ and YA.

Nevertheless we made that measurement. Figure 7b shows like HJ, TTJ makes fewer hash probes

for YA. Yet YA runs faster for certain queries as hash building, not probing, sometimes dominates

query run time, as we have pointed out in the analysis of results in Figure 6c.
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Fig. 8. Run time comparison of TTJ, TTJ𝐿 , HJ and PostgreSQL. TTJ𝐿 uses left-deep linear plans generated by
SQLite (same as earlier experiments), while all other algorithms use bushy plans generated by PostgreSQL.

6.2 TTJ on Bushy Plans
Since every plan in Section 6.1 is compatible with a GYO reduction order, the runtime of TTJ is
guaranteed to be linear. However, given the abundance of bushy plans (all the native PostgreSQL

plans we used here are bushy), a natural question to ask is whether TTJ can still provide reasonably

good performance despite the loss of linear runtime guarantee. The results in this section give an

affirmative answer.

Figures 8a and 8b compare the run time of TTJ, HJ, and PostgreSQL using bushy plans produced

by PostgreSQL, and Figure 8c compares the run time of TTJ using bushy plans with the same

algorithm using left-deep linear plans produced by SQLite, denoted by TTJ𝐿 . Figure 8a shows ourHJ
baseline remains competitive with PostgreSQL under bushy plans. TTJ is faster than HJ on all 113

JOB queries, and faster than TTJ𝐿 on 101 (89%) of them. Compared to TTJ𝐿 , the maximum speed-up

is 5.7× (7b), the minimum speed-up is 0.5× (19d), and the average speed-up (geometric mean)

is 1.75×. Compared to HJ, the maximum speed-up is 2.1× (13d), the minimum speed-up is 1.1×
(19d), and the average speed-up (geometric mean) is 1.56×. From the figure, we observe that the

materialization of intermediate results due to bushy plans does not degrade TTJ performance; in fact,

TTJ performs much better than itself on linear plans in most cases due to the fact that intermediate

results generated in bushy plans are usually smaller than some of the largest input relations in JOB,

which allows TTJ to spend less time building hash tables. As a result, the saving in join computation

becomes more salient than that over left-deep plans. Furthermore, the performance improvement

using TTJ on each individual linear plan has the compound effect that contribute to the overall

performance improvement of the queries. However, we do observe that some of the queries still

have better performance under linear plans than bushy plans such as 8c and 16b. This indicates that

linear time guarantee is still meaningful for query performance and optimization is still necessary

to bring out the best performance of TTJ (e.g., decide which plan shape to use). An important topic

for future work is to optimize bushy plans that also have the guarantee of optimality.

6.3 Implementation-level Comparison
Although TTJ offers strong theoretical guarantees and peforms well in the controlled experiments

in Sections 6.1 and 6.2, it is not competitive with state-of-the-art systems. To achieve stronger

performance, we have developed the TTJ𝜖 variant of our algorithm, as described in Section 5. In this

section, we compare TTJ𝜖 with DuckDB [25], a state-of-the-art in-memory analytical database, as
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Baseline Average Maximum Minimum

DuckDB 3.83× 35.26× (4c) 0.81× (33c)

RPT 2.67× 11.30× (3b) 0.70× (17e)

YA+
5.42× 30.22× (2b) 1.28× (27b)

Table 2. Speed-up of TTJ𝜖 Relative to DuckDB, Robust Predicate Transfer (RPT), and Yannakakis+ (YA+).

well as two recent practical instantiations of YA: Robust Predicate Transfer (RPT) by Zhao et al. [40]
and Yannakakis

+
(YA+

) by Wang et al. [34]. RPT is implemented on top of DuckDB, while YA+

works by rewriting the input SQL query and is compatible with any underlying database system.

For consistency, we use the same DuckDB version (v0.9.2) used by Zhao et al. [40] for all baseline

systems. We focus on the Join Order Benchmark in this section. In their experiments, Wang et

al. [34] scaled up the input data by 10 to 100 times
7
. This introduced additional many-to-many

joins, and resulted in more pronounced speedup by YA+
. For consistency, we supply the original

input data without change to all systems.

10 3 10 2 10 1 100 101

DuckDB time (s)
10 3

10 2

10 1

100

101

TT
J 

tim
e 

(s
)

(a) TTJ𝜖 vs. DuckDB

10 3 10 2 10 1 100 101

RPT time (s)
10 3

10 2

10 1

100

101

TT
J 

tim
e 

(s
)

(b) TTJ𝜖 vs. RPT

10 3 10 2 10 1 100 101

YA +  time (s)
10 3

10 2

10 1

100

101

TT
J 

tim
e 

(s
)

(c) TTJ𝜖 vs. YA+

Fig. 9. Run time of TTJ𝜖 , RPT, YA+, and DuckDB on JOB. Every data point corresponds to a query, whose
𝑥- and 𝑦-coordinates correspond to the run time of the algorithms under comparison. A point below the
diagonal indicates that the algorithm on the 𝑦-axis is faster than the one on the 𝑥-axis.

Figure 9 and Table 2 show the experiment results. Appendix C contains additional comparisons

of TTJwith the baselines. Overall, TTJ𝜖 matches or outperforms all three baselines. The comparison

with RPT and YA+
show a slight trend of greater speedup for smaller (short-running) queries. This

demonstrates the impact of TTJ𝜖 ’s zero-overhead guarantee: smaller queries finish quickly, so any

overhead becomes more pronounced. But the impact of overhead also carries over to larger queries.

Query 30b joins together 12 relations (with two self joins), and TTJ𝜖 is 2.8× faster than RPT and 4.2×
faster than YA+

. This is because that query involves 6 large relations each containing several million

tuples, totalling over 60 million rows. Although RPT’s implementation of semijoin based on bloom

7
Wang et al. [34] suggested that due to the prevalence of primary key/foreign key constraints in JOB, regular binary hash

join can already achieve linear time performance, so there is little to gain from YA-style algorithms. However, we have

observed superlinear behavior in practice: even if all joins are on primary/foreign keys, the same primary key may be joined

with multiple foreign keys, and the optimizer may choose (perhaps based on bad cardinality estimate) to join foreign keys

with each other first, leading to superlinear blowup.
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filters is very fast, it still requires two semijoin passes in general
8
, incurring significant overhead.

The overhead for YA+
comes from two sources. First, YA+

works by rewriting the input SQL query.

To ensure the underlying database follows the prescribed query plan, YA+
creates one temporary

view per operation. According to Wang et al. [34] this carries an overhead, and for query 30b the

rewritten query creates 22 views. Second, when the final result is aggregated YA+
aggressively

pushes down aggregation to eliminate the need for semijoin reduction. This guarantees linear time

complexity, but may introduce additional overhead. For example, when each group-by value has

low degree (i.e., they appear in a small number of tuples), early aggregation cannot effectively

reduce the relation size but still adds a full scan. And if a large number of groups are eventually

removed by a later join, the aggregation work on them would be wasted. The rewritten plan by

YA+
for query 30b contains 25 MIN aggregates, while the original query has only 4.

There are a few queries where TTJ𝜖 is slightly slower than the baseline compared. The reason

is mostly the inaccuracy of the cardinality estimation of our optimizer for TTJ𝜖 , which leads to

suboptimal plans. For example, in 27b, TTJ𝜖 has a speed-up 0.89× over DuckDB. In this query,

movie_keyword is the largest with around 4.5 million tuples. After joining with keyword, the
relation has around 10 thousands remaining tuples, which is the smallest among all the relations

joining on movie_id. DuckDB optimizer estimates that fact accurately and evaluates this join first,

which effectively uses it as a filter to prune out dangling tuples from other relations and saves the

hash-table build time during the query evaluation. On the other hand, our optimizer estimates the

join result to be the second smallest, which misses some opportunities to prune dangling tuples

early. Contrast these observations with the findings by Zhao et al. [40]: they found RPT to have

similar performance regardless of the query plan, concluding the algorithm to be robust. This is

because the semijoin in RPT is based on bloom filters, so each probe has a constant cost. And since

RPT performs two full semijoin passes, which involves scanning each relation and probing into the

neighboring bloom filters, there is no significant variation in run time. During the final join phase,

there is also a fixed cost per output tuple, so the overall run time is predictable. In contrast, TTJ𝜖

eliminates the second semijoin pass and directly probes into the hash tables without relying on

additional filter structures. On one hand, this leads to lower overhead, and on the other TTJ𝜖 is
more sensitive to the query plan. If stability is desirable, bloom filters can also be added to TTJ𝜖 to
trade off strong best-case performance to improve the average case.

7 CyclicQueries
The TTJ algorithm as defined in Figure 4a supports both acyclic and cyclic queries. The guarantee

to match or outperform binary join (Theorem 4.10) also holds for cyclic queries. However, the

linear-time guarantee only applies to acyclic queries. To analyze the run time of TTJ on cyclic

queries, we introduce a new method called tree convolution to break down a cyclic query in to

acyclic parts. The next example illustrates the intuition behind tree convolution.

Example 7.1. Consider the following query whose query graph is shown in Figure 10a:

𝑄⊠ : -𝑅1 (𝑥1, 𝑥2) ⊲⊳ 𝑅2 (𝑥2, 𝑥3) ⊲⊳ 𝑅3 (𝑥3, 𝑥4) ⊲⊳ 𝑅4 (𝑥4, 𝑥1) ⊲⊳
𝑆1 (𝑥1, 𝑦) ⊲⊳ 𝑆2 (𝑥2, 𝑦) ⊲⊳ 𝑆3 (𝑥3, 𝑦) ⊲⊳ 𝑆4 (𝑥4, 𝑦)

In the query graph, each node is a variable, and there is an edge between two nodes if the corre-

sponding variables appear in the same atom, for example the edge 𝑅1 between 𝑥1 and 𝑥2 corresponds

to the atom 𝑅1 (𝑥1, 𝑥2). Clearly the query is cyclic. However, we can compute the query by breaking

it down into two acyclic steps: First, we compute the join 𝑆1 ⊲⊳ 𝑆2 ⊲⊳ 𝑆3 ⊲⊳ 𝑆4 and store the result in

a temporary relation 𝑆 . Then we compute the final result with 𝑅1 ⊲⊳ 𝑅2 ⊲⊳ 𝑅3 ⊲⊳ 𝑅4 ⊲⊳ 𝑆 . Any acyclic

8
Only when the join phase plan coincides with the second semijoin phase plan, RPT skips the second semijoin phase.
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Fig. 10. Query graph and tree convolutions of 𝑄⊠ in Example 7.1.

join algorithm can be used to compute each step, and, as we will show later, using TTJ can avoid

materializing the intermediate result 𝑆 . The total run time is therefore 𝑂 ( |IN| + |OUT| + |𝑆 |).

To formally define tree convolutions, we first identify a (full conjunctive) query with the set of

atoms in its body, and define a subquery of a query 𝑄 as a subset of the atoms in 𝑄 . Then, a tree

convolution for a query is a nested tree, defined recursively as follows:

Definition 7.2. A tree convolution of a query 𝑄 , written 𝒯(𝑄), is a tree where each node is

either an atom in 𝑄 , or a tree convolution of a subquery of 𝑄 . Each atom in 𝑄 appears exactly once

anywhere in𝒯(𝑄), and every tree 𝑇 in𝒯(𝑄) forms a join tree of the corresponding (sub-)query,

after replacing each non-atom node 𝑣 ∈ 𝑇 with a fresh atom over all variables in 𝑣 .

Note that the recursive definition above will lead to nested trees, because each tree node can

consist of a tree convolution of a subquery. Figure 10b shows a tree convolution corresponding to

the computation of 𝑄⊠ in Example 7.1: first join together the 𝑆 relations, then join the result with

the 𝑅 relations. Figure 10c shows a different convolution, where we first compute three acyclic

subqueries, then join together the results. Another convolution with four nesting levels is shown

in Figure 11b.

We can compute any cyclic query using a tree convolution. Starting from the most deeply nested

trees, we run any acyclic join algorithm to materialize intermediate results, until we reach the

top-level tree that produces the final output. However, TTJ can avoid the expensive materialization

by using a special kind of tree convolution called rooted convolution.

Definition 7.3. A convolution is rooted if nested convolutions only appear at the root of each tree.

The convolution in Figure 10b is rooted, while the one in Figure 10c is not. We can generate a

plan 𝑝 for TTJ by traversing a rooted convolution inside-out: starting with the most deeply nested

tree, initialize 𝑝 with the reverse of the GYO-reduction order of this tree; then, as we go up each

level, append the reverse of the GYO-reduction order to the end of 𝑝 .

Example 7.4. The rooted convolution in Figure 10b generates the plan [𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑅1, 𝑅2, 𝑅3, 𝑅4].

A small adjustment to the TTJ algorithm is necessary to fully exploit rooted convolutions. If we

execute TTJ as-is using the plan in Example 7.4, none of the relations 𝑅1, . . . , 𝑅4 have a parent in the

plan, yet we need to compute the join 𝑆 ⊲⊳ 𝑅1 ⊲⊳ · · · ⊲⊳ 𝑅4 in time 𝑂 ( |𝑆 | +∑
𝑖 |𝑅𝑖 | + |𝑄 |), where 𝑆 is

the join of 𝑆1, . . . , 𝑆4. We therefore introduce additional backjumps from each 𝑅𝑖 to 𝑆4, but without

deleting any tuple from 𝑆4. This is achieved by defining the parent function to work over rooted

convolutions: given a tree convolution 𝐶 and a relation 𝑅, if the parent node of 𝑅 in some tree of 𝐶
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is an atom 𝑃 , then assign 𝑃 as the parent of 𝑅; otherwise if the parent node is a nested tree, then

assign the last relation in that tree (i.e. the first relation in its GYO-reduction order) as the parent

of 𝑅. For example, the parent of each 𝑅𝑖 in Example 7.4 is 𝑆4.

Finally, when backjumping to a parent in a nested convolution, we do not delete any tuple from

that parent. We are now ready to analyze the run time of TTJ on cyclic queries.

Given a rooted tree convolution𝒯(𝑄), we generate a query plan 𝑝 as follows. Suppose𝒯(𝑄)
consists of𝑚 nested trees𝑇1, . . . ,𝑇𝑚 where𝑇1 is the most deeply nested tree and𝑇𝑚 is the outermost

tree. Let 𝑝1, . . . , 𝑝𝑚 be the plans corresponding to𝑇1, . . . ,𝑇𝑚 . Then, each 𝑝𝑖 is a plan that corresponds

to the reverse of a GYO-reduction order of𝑇𝑖 , where the first relation in 𝑝𝑖 is result of 𝑝𝑖−1 for 𝑖 > 1.

The outermost plan 𝑝𝑚 then computes the final result of 𝑄 .

Proposition 7.5. During ttj execution on a given rooted convolution 𝒯 of a query 𝑄 , if a lookup
fails at 𝑅 that belongs to 𝑝𝑖 but not in 𝑝𝑖−1 (𝑖 ≥ 2), ttj either backjumps to an atom that is in 𝑝𝑖 but
not in 𝑝𝑖−1 or backjumps to the last atom of 𝑝𝑖−1.

Proof. For any 𝑝𝑖 with 𝑖 ≥ 2, since 𝑝𝑖 is the reverse of a GYO-reduction order of the 𝑖-th tree of

𝒯 and by the modified parent function, every relation in 𝑝𝑖 but not in 𝑝𝑖−1 has parent. Furthermore,

if lookup fails at 𝑅 that is in 𝑝𝑖 but not in 𝑝𝑖−1, ttj backjumps to 𝑅’s parent. Then, the result follows

by the definition of the modified parent function. □

In 𝑝1, if the parent of a relation is the first relation of 𝑝1, ttj backjumps to the first relation. We

can treat the first relation of 𝑝1 as 𝑝0 (i.e., the most deeply nested tree in𝒯 is now a node of an atom

of 𝑄) and the relation is also the last atom of 𝑝0. Therefore, we can remove the restriction of 𝑖 ≥ 2

in Proposition 7.5. In the following proof, we reference the Proposition 7.5 with the understanding

that it holds for 𝑖 ≥ 1.

Theorem 7.6. Given a rooted convolution 𝒯(𝑄) of 𝑄 , there is a plan 𝑝 such that TTJ runs in time
𝑂 ( |IN| + |OUT| +∑

𝑖 |𝑆𝑖 |) on 𝑝 where |𝑆𝑖 | is the size of the join of all relations in the 𝑖-th tree of𝒯(𝑄).

Proof. Since there is no change to ttj except using the modified parent function for 𝒯, like

Proof of Theorem 4.7, we only need to show the algorithm makes𝑂 ( |IN| + |OUT| +∑
𝑖 |𝑆𝑖 |) number

of calls to ttj.

Excep for the initial call to ttj with ttj((), p, 1), every call to ttj has three possible outcomes:

(1) It outputs a tuple. (2) It backjumps and possibly deletes a tuple from an input relation. (3) It

recursively calls ttj. Because the query plan has constant length, there can be at most a constant

number of recursive calls to ttj (case 3) until we reach cases 1 or 2. There can be 𝑂 ( |𝑄 |) ttj calls
for case 1. Since lookup cannot fail at the first relation of 𝑝 , the relation that lookup fails at is in

some 𝑝𝑖 but not in 𝑝𝑖−1. Let 𝑅 be a relation that a lookup fails at. By Proposition 7.5, there can be

two cases on where ttj backjumps to. If ttj backjumps to an atom that is also in 𝑝𝑖 but not in

𝑝𝑖−1, a tuple is deleted. This case can happen 𝑂 ( |IN|) times. If ttj backjumps to the last atom of

𝑝𝑖−1, since ttj works no different than binary join from this moment until next lookup failure, this

can happen 𝑂 ( |𝑆𝑖−1 |) times; the tuples computed at the last atom of 𝑝𝑖−1 is 𝑆𝑖−1. Therefore, given
1 ≤ 𝑖 ≤ 𝑚, there are at most 𝑂 ( |IN| + |OUT| +∑𝑚−1

𝑖=1 |𝑆𝑖 |) calls to ttj, and the algorithm runs in

that time. □

We conclude this section by noting that tree convolution generalizes several exisiting ideas in

databases and constraint satisfaction. First, classic binary join plans are a special case, where every

tree in the tree convolution is of size 2. For example, the convolution in Figure 11b corresponds

to the binary join plan in Figure 11a. In other words, traditional hash join can be thought of as

computing a convolution one binary join at a time, and we have generalized this to computing a

multi-way acyclic join at a time. In a similar way, rooted convolutions generalize left-deep linear
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(a) A binary join plan for 𝑄⊠. (b) A tree convolution for 𝑄⊠.

Fig. 11. A binary join plan for the query in Example 7.1 and the corresponding tree convolution.

plans, as the top-half of Figure 11b corresponds to the left-half in Figure 11a. Second, in constraint

satisfaction a cycle cut set is a subset of the constraints whose exclusion makes the constraint

problem acyclic. In database terms, it is a subset of the atoms of 𝑄 whose removal leaves an acyclic

subquery. Tree convolution generalizes cycle cut sets in the sense that it “cuts” the query in multiple

rounds, with each round producing acyclic subqueries that can be computed in linear time. Finally,

many of the properties of tree convolution are shared with tree decomposition of hypergraphs [10]

in database theory. One difference is that tree convolution allows nesting, while tree decomposition

is a flat partitioning of the query graph. Another difference is that tree decomposition usually

requires different algorithms for joining within each bag (e.g. worst-case optimal join [23]) and

for joining the bags together (e.g. YA), while tree convolution uses the same algorithm for all

nesting levels. This is enabled precisely by the nesting structure: at every nesting level the subquery

forms a tree, and can be computed by an acyclic join algorithm. Finally, while complexity bounds

derived from tree decompositions are known to be tight [11], further research is needed to study

the tightness of tree convolution-based bounds.

8 Future Work and Conclusion
In this paper we have proposed our new join algorithm, TreeTracker Join (TTJ). The algorithm runs

in time 𝑂 ( |IN| + |OUT|) on acyclic queries, and guarantees to make no more hash probes than

binary hash join on the same query plan. We have shown empirically that TTJ is competitive with

binary hash join and Yannakakis’s algorithm.

Although our implementation already beats PostgreSQL in our experiments, challenges remain

for TTJ to compete with highly optimized systems. Decades of research on binary join has produced

effective techniques like column-oriented storage, vectorized execution, and parallel execution, just

to name a few. In the following, we outline several directions for future work.

Query Optimization. Another avenue for future work is to develop a dedicated query optimizer

for TTJ. As this paper’s focus is on algorithm-level comparison, we have opted to reuse existing

systems to produce binary hash join plans, which are then executed using TTJ. Tailoring the

optimizer to TTJ may yield plans with better performance. For instance, estimating the number of

hash probe failures instead of intermediate result sizes shall more accurately model the execution

cost of TTJ. On the other hand, extending TTJ to also guarantee a linear time complexity on bushy

plans is also an interesting challenge. Our theoretical analyses of TTJ reveal a close connection
between GYO-reduction orders and left-deep linear plans, both of which are total orders. Since

bushy plans and join trees both define partial orders, we conjecture there exists a algorithm that
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runs in linear time on any bushy plan that corresponds to a join tree, with the same guarantee of

matching binary hash join on the same plan.

Multi-threading. Nearly all modern database systems are multi-threaded. While we have focused

on single-threaded execution in this paper, making TTJ multi-threaded brings unique challenges.

The current design of TTJ interleaves deletion and probes on hash tables, and a naïve parallelization

using locks would lead to bad performance. An alternative is to tag each tuple with a boolean

tombstone that is atomically set whenever that tuple is deleted. The TTJ𝜖 variant of the algorithm
also leverages query structure and primary/foreign key constraints to avoid unnecessary deletions,

which should make the algorithm more amenable to parallelization.

Cyclic Queries. Our experiments focus on acyclic queries due to their prevalence in traditional

workloads. However, with the rise of graph databases practitioners begin to encounter more

and more cyclic queries. Additional research on TTJ for cyclic queries, both in terms of practical

performance and theoretical guarantees, will be very valuable. Some open problems include: Given

any hypergraph, what is the minimum nesting depth of any tree convolution? How does this number

related to other measures like various notions of hypergraph widths? And what is the complexity

of finding the optimal tree convolution given a cost function? Answering theses questions will aid

the development of a query optimizer for TTJ on cyclic queries.

Integration with Existing Systems. Bringing ideas from the lab into production requires significant

engineering effort. While a full integration of TTJ into a mainstream database is out of the scope

of this paper, we discuss challenges in doing so and sketch a blueprint for an implementation in

SQLite in Appendix B.
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A No-Good List
We had remarked in Section 4 that removing a tuple from the root relation is pointless, as the same

tuple would never be considered again. However, any tuple in the root relation that shares the same

values with an offending tuple over the key schema will also fail. The no-good list optimization

comprises adding that set of values to a blacklist. Each tuple from the root relation is tested for

membership in the blacklist. Since membership in that list mean certain failure no further effort to

join that tuple is necessary. This optimization requires three changes to Figure 4a.

First, the key values must be included as parameters and passed to the parent relation, line 7:

return (P, 𝜋𝑅(t))

When catching the backjump (line 10) at the root relation, those key values are added to the

blacklist:

if result == (R, vals):

if i == 0: no_good.add(vals) else: R[k].delete(r)

When iterating over the root relation, (after line 8), each tuple is tested for membership in the

no-good list and if present further processing is skipped.

if i == 0 & r.matches(no_good): continue

Example A.1. Consider the join 𝑇 (𝑦, 𝑘) ⊲⊳ 𝑈 (𝑦, 𝑙) with the relations as defined in Example 1.1.

As we iterate over 𝑇 , the first lookup 𝑈 [𝑦 = 1] immediately fails. Upon this we add 𝑦 = 1 to the

no-good list for 𝑇 , then in subsequent iterations we need only check the no-good list instead of

probing into𝑈 . When failures are concentrated on a few values, the no-good list will be small, and

checking it can be faster than probing into a large hash table. Another case when the no-good list is

useful is when the deletion happens after backjumping multiple levels. Then, checking the no-good

list requires one single probe as opposed to probing into each level that was backjumped over.

The no-good list, 𝑛𝑔, can be implemented as a hash table. Suppose the root relation, 𝑅, has 𝑚

children 𝑆1, . . . , 𝑆𝑚 . The lookup key for 𝑛𝑔 is ⟨𝑆𝑖 , ℓ𝑖⟩ where ℓ𝑖 is a set containing 𝜋keys(𝑅,𝑆𝑖 ) (𝑡) (called
no-goods) for a tuple 𝑡 from 𝑅 that caused a lookup failure at 𝑆𝑖 for 𝑖 ∈ [𝑚]. The impact of the

no-good list is almost identical to semijoin reduction in YA. The algorithmic difference is in lieu of

a semijoin removing dangling tuples prior to the join, the 𝑅 tuples are checked against a collection

of values accumulated on the fly and at anytime during execution are a subset of the contents of

the complementary antijoin. Like YA itself, the effectiveness of the no-good list depends on how

much the argument is reduced and the size of the intermediate result. i.e. the semijoin and join

selectivity.

B SQLite Implementation
Two main challenges of implementing TTJ are the interruption of control flow by backjumping and

the need to delete tuples while probing hash tables. After reviewing the source code of SQLite, we

find it to be uniquely suited for integrating TTJ. First, SQLite’s query execution engine is based

on a bytecode virtual machine [28], where loops are already implemented with GOTO-like jumps.

Backjumping in TTJ can therefore be implemented by analyzing the join tree structure to determine

backjumping points, then generating the bytecode to perform the jumps upon hash lookup failures.

Second, deletion during iteration may lead to undefined behavior without care. Fortunately, the

documentation of SQLite’s DELETE bytecode specifically calls out that “it is ok to delete a record

from within a loop” [28]. The introduction of bloom filters in SQLite [8] also makes it possible to

implement the TTJ𝜖 variant of our algorithm. Specifically, for each parent in a join tree we can

simultaneously probe into the bloom filter of all child relations, and delete the current tuple from the
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parent relation should any probe fail. One complication is that SQLite constructs temporary B-tree

indices (standing in for hash tables) lazily, so early probing as in TTJ𝜖 is not always possible. On
one hand, to guarantee instance-optimality, early probing is crucial; on the other, lazy construction

is only beneficial when the join result is empty, which is rarely the case for OLAP queries.

C Performance Comparison of TTJ with TTJ𝜖 , RPT and YA+

Figure 12 compares the performance of TTJ, TTJ𝜖 , RPT and YA+
on JOB.
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10 3 10 2 10 1 100 101

RPT time (s)
10 3

10 2

10 1

100

101
TT

J t
im

e 
(s

)

(b) TTJ vs. RPT
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Fig. 12. Run time of TTJ, TTJ𝜖 , RPT, and YA+ on JOB. Every data point corresponds to a query, whose 𝑥- and
𝑦-coordinates correspond to the run time of the algorithms under comparison. A point below the diagonal
indicates that the algorithm on the 𝑦-axis is faster than the one on the 𝑥-axis.
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We thank the referees for their thoughtful comments. In the following, we will first address some

common concerns. Then, we address the comments of each referee in detail. Relevant changes to

common concerns in the paper are highlighted in red.

Comparison with recent work
Referee 2&3 requested additional experiments comparing with recent practical implementations of

Yannakakis’ algorithm. We added comparison with two most recent papers, Yannakakis+ (YA+
) by

Wang et al. [34] and Robust Predicate Transfer (RPT) by Zhao et al. [40]. Both papers appeared at

SIGMOD 2025.

To make our algorithm competitive with these approaches, we developed a new variant of the

TTJ algorithm which we call TTJ𝜖 , described in Section 5. Despite its strong theoretical guarantees,

the performance of the original TTJ algorithm is held back by two aspects. First, its reliance on

backjumping complicates the control flow, resulting in complex code that is difficult for the compiler

to optimize, and stands in the way of vectorization. Second, the interleaving of deletion and lookup

also prevents optimizations applicable to read-only algorithms. The new TTJ𝜖 variant completely

eliminates backjumping and instead performs early probing. This is inspired by previous work

on sideway information passing using bloom filters/bitmap filters. But unlike prior work, TTJ𝜖

requires no additional filter data structure and retains the strong theoretical guarantees of TTJ, as
we discuss in Section 5.1. Another inspiration is the work on Free Join by Wang et al. [37]. While

Free Join is worst-case optimal (with the appropriate plan), TTJ and TTJ𝜖 are instance-optimal

for acyclic queries and guarantee to incur zero overhead compared to binary hash join. We also

take inspiration from Yannakakis+ [34] and avoid deletion when possible by leveraging the query

structure as well as primary/foreign key constraints, which we discuss in Section 5.2.

Section 6.3 contains the details of the comparison among the algorithms. At a high level, we see

the three approaches (TTJ𝜖 , Robust Predicate Transfer, Yannakakis+) as making different tradeoffs

in the design space. On one end, Yannakakis+ is based on query rewriting and easily applicable to

any underlying database system; on the other, TTJ𝜖 requires implementing a new algorithm and

achieves the best performance in our experiments. In the middle, Robust Predicate Transfer uses

bloom filters, making it possible to modularly extend an existing system (DuckDB in their paper),

while leading to performance between that of TTJ𝜖 and Yannakakis+.

While the new TTJ𝜖 variant shows strong performance, we decided to keep the comparison

among the original TTJ, Hash Join, and Yannakakis’ algorithm in Section 6.1 because it was done in

a controlled setting where all algorithms are implemented from scratch in the same environment.

A “textbook” implementation of hash join using the iterator model is used as the control, whereas
YA and TTJ are implemented as simple extensions of the hash join implementation. The original

experiments can be seen as algorithm-level comparisons and the new ones implementation-level

comparisons

Definition of tree convolution
Referee 2 and 3 expressed confusion around the definition of tree convolution. Perhaps the con-

fusion arises from the fact that tree convolution is defined recursively. We added a clarification

after Definition 7.2 to point out it will lead to nesting. Both referees also asked for the relationship

between tree convolution and tree decomposition, and referee 2 correctly pointed out that a tree

decomposition with only the root containing more than 1 relation can also be pipelined. However,

the difference is that tree decomposition usually requires different algorithms for joining within

the bag (e.g. worst-case optimal join) and joining the bags together (e.g. Yannakakis’), while tree

convolution is only a conceptual device we use to analyze the behavior of TTJ, i.e., the same

algorithm is used for joins nested at every level. This is enabled precisely by the nesting structure:



at every nesting level the subquery forms a tree, and can be computed by an acyclic join algorithm.

Finally, while complexity bounds derived from tree decompositions are known to be tight, further

research is needed to study the tightness of tree convolution-based bounds. We added these details

to the end of Section 7.

Response to Referee 1
Relevant changes in the paper are highlighted in orange.

How can we safely eliminate tuples during multi-threaded execution? We focus on the single-

threaded execution in this paper, but we agree with the reviewer that multi-threaded execution

introduces additional challenges. The new TTJ𝜖 variant eliminates backjumping and avoids deletion

when possible, which should make multi-threading easier. We added a paragraph in Section 8 to

discuss several ideas for future research making TTJ multi-threaded.

Handling cartesian products and non-equality joins. TTJ is compatible with cartesian products

and non-equality joins, and we added a discussion in Section 4.3. If the query contains a Cartesian

product, TTJ would simply never backjump across the product operator, and the guarantees of

instance-optimality and zero-overhead continue to hold. The simplest way to handle non-equality

joins is to apply the predicates after all joins, while range predicates can be seen as a generalization

of hash lookup: if a range predicate matches no results in a B+ tree index, we can safely backjump

and delete just like TTJ does for hash lookup failures.

Purpose of the no-good list. We replaced Section 5 with the new TTJ𝜖 variant which shows greater

speedup compared to the optimizations that used to be in that section, and moved the no-good

optimization to Appendix A. The benefit of the no-good list is data-dependent: when failures are

concentrated on a few values, the no-good list will be small, and checking it can be faster than

probing into a large hash table. Another case when the no-good list is useful is when the deletion

happens after backjumping multiple levels. Then, checking the no-good list requires one single

probe as opposed to probing into each level that was backjumped over.

Relationship to Free Join. We added a discussion of Free Join in Section 2. The new TTJ𝜖 variant
is directly inspired by Free Join, where we replace backjumping with early probing to avoid large

intermediates. TTJ𝜖 has stronger theoretical guarantees as compared to Free Join. Both TTJ and
TTJ𝜖 are instance-optimal for acyclic queries, while Free Join is not – the deletion step is crucial for

instance-optimality.

Response to Referee 2
Relevant changes in the paper are highlighted in green.

Implementation in an existing system. We appreciate how Yannakakis+ [34] brings the theoretical

guarantee of Yannakakis’ algorithm to existing systems, with a low barrier of adoption. However,

we would like to argue that “ease of implementation” is a spectrum, and different design points in

the space pose unique tradeoffs. Integrating TTJ (and the new TTJ𝜖 variant) requires modifying the

query execution engine, involving engineering effort that is out of the scope for the current paper.

However, our experiments show this effort can be worthwhile, as our prototype implementation

of TTJ𝜖 significantly outperforms the rewrite-based Yannakakis+. Moreover, we believe the new

TTJ𝜖 variant makes implementation easier (compared to TTJ) with the elimination of backjumping

and deletion (the latter when possible). The Robust Predicate Transfer paper [40] presents yet

another design point: their implementation using bloom filters is simpler than TTJ𝜖 but still requires
modifying the execution engine, and its performance sits between that of TTJ𝜖 and Yannakakis+.



Nevertheless, the implementation of RPT requires changing hundreds of files, and has yet to be

merged into DuckDB. Finally, we discuss challenges and potential solutions for integrating TTJ to
SQLite in Appendix B.

Left-deep plan and Bushy plans. TTJ supports both left-deep and bushy plans, and we evaluate on

bushy plans in Section 6.2. When the plan is bushy, we simply materialize each left-deep segment,

as is commonly done for pipelined hash joins. We separate left-deep plans from bushy plans for

theoretical analysis: TTJ guarantees to run in𝑂 ( |IN| + |OUT|) only for left-deep plans and for each

left-deep segment in a bushy plan, while the zero-overhead (in terms of hash probes) guarantee

holds for arbitrary plans.

Relationship with CROWN and Dynamic Yannakakis. Thank you for pointing us to these papers,

we added discussion on how TTJ relates to them in Section 2. TTJ is not the same as CROWN or

Dynamic Yannakakis; in fact, it can be seen as a dual to these algorithms: while CROWN/Dynamic

Yannakakis executes by traversing a join tree bottom-up, TTJ follows the join tree top-down

(note that the bottom relation in a left-deep plan becomes the top of the join tree). As the referee

pointed out, CROWN requires building the hash tables following a bottom-up order of the join tree,

performing semijoins as it goes up. In contrast, TTJ imposes no constraint on the order of hash

building, and they can even be built in parallel at the same time, or be pre-built as indices. This

is because TTJ removes dangling tuples while probing the hash tables, whereas CROWN does so

during the construction of the hash tables. Moreover, while TTJ guarantees to incur no additional

hash table operations as compared to binary hash join on the same plan, bottom-up algorithms like

CROWN cannot make such guarantees. Consider the case where the database contains no dangling

tuples. Then, consider building the hash table for relation 𝑅𝑝 with a child 𝑅𝑐 in the join tree. In

order to semijoin 𝑅𝑝 with 𝑅𝑐 on-the-fly during the hash table build, the algorithm must probe into

𝑅𝑐 for each tuple in 𝑅𝑝 . But because there are no dangling tuples, these probes will always return

true. After all hash tables are built, to output the final join result the algorithm must perform the

same probe again, and overall incurs 2x hash probes as compared to binary hash join.

Definition of Tree Convolution. Addressed above under common concerns.

Comparison with Recent Work. Addressed above under common concerns.

Response to Referee 3
Relevant changes in the paper are highlighted in purple.

Bloom and Bitmap Filters. As addressed above under common concerns, we added a comparison

with Robust Predicate Transfer [40] which is the most recent work using approximate filters for

robust query processing. We also took inspiration from this line of work and designed a new variant

(described in Section 5), TTJ𝜖 , that performs better in practice. As our results show, the use of filters

incurs additional overhead, while both TTJ and TTJ𝜖 are provably zero-overhead when hash table

operations are taken to be the main cost. We added a discussion of the related work in Section 2.

Implementation of tuple deletion. We use hash tables provided by the standard library. As we

discuss in a footnote in Section 4.2, deletion is fast because we save a pointer to the tuple being

deleted on the stack to avoid an additional hash table lookup, and each deletion occurs immediately

after a hash probe failure, exhibiting good temporal locality. In the new TTJ𝜖 variant, we further
avoid deletion by taking advantage of the query structure as well as primary/foreign key constraints.

We also discuss potential challenges surrounding deletion in the multi-threaded setting in Section 8.

Tree convolution and Tree Decomposition. Addressed above under common concerns.
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