Introduction to
Graph Database
with Cypher & Neo4;

Zeyuan Hu
April. 19th 2021
Austin, TX

History

* Lots of logical data models have been proposed in the history of

DBMS

e Hierarchical (IMS), Network (CODASYL), Relational, etc

* What Goes Around Comes Around

* Graph database uses data models that are “spiritual successors” of Network
data model that is popular in 1970’s.

* CODASYL = Committee on Data Systems Languages

Supplier (sno, sname, scity)

supplies

Supply (qty, price)

supplied_by

Part (pno, pname, psize, pcolor)

Edge-labelled Graph

* We assign labels to edges that indicate the different types of relationships
between nodes

acts_in

acts _in
Steve Carell ¥ The Office B.J. Novak

““'*-.

produces

* Nodes = {Steve Carell, The Office, B.J. Novak}

* Fdges = {(Steve Carell, acts _in, The Office)| (B.J. Novak, produces, The
Office), (B.J.Novak, acts_in, The Office

* Basis of Resource Description Framework (RDF) aka. “Triplestore”

The Property Graph Model

* Extends Edge-labelled Graph with labels

* Both edges and nodes can be labelled with a set of property-value pairs
attributes directly to each edge or node.

* The Office crew graph o-iexiactsin i
:—"--"----i--: é roIe=RyanHoward §
--- €12 acts in 5 ref = Wikipedia

' i] ’
ny : Person ' role = Michael G. Scott | ng : TV.Show S —zemezso------- - ng : Person

| ref = Wikipedia
name = Steve Carell \ ’ T : name = B.J. Novak
gender = male J HiG = The COffice gender = male

<gender, male>

* Edge e, has edge label acts_in with attributes: <role, Michael G. Scott>,
<ref, Wikipedia>

i€ : produces:

Property Graph v.s. Edge-labelled Graph

* Having node labels as part of the model can offer a more direct
abstraction that is easier for users to query and understand

o Steve Carell and B.J. Novak can be labelled as Person

 Suitable for scenarios where various new types of meta-information
may regularly need to be added to edges or nodes

Same Data, Different Model

* The same data represented in relational model

foreign key

foreign key

Acts in Person Produces

Redundant!

foreign key

ﬂ:ﬁ id2 role ref pid pname gender / id1 id2 \
n3 n2 Ryan Wikipedia n1 Steve Carell male n3 n2
Howard N\ /
Michael G. e
N V Scott Wikipedia n3 B.J. Novak male

foreign key

tid

title

n2

The Office

TV Show

Schema Extensibility (and/or) Link Discovery

graph: add an edge
SQL: redefine relational schema

ALTER TABLE TVSHOW(title, year,
production_ company references ..);

-- foreign key constraint

CREATE TABLE TVSHOW(title, year);

CREATE TABLE Production_ Company (name,
exec_prodcr)

i Produced_by
title = The Office J

year exec_prodcr

exec_prodcr

”Ricky P
Ricky

Gervais”

Gervais”

Link Discovery: Data mine to
determine new information

Property Graph v.s. Relational Model

* Graph Structure is more intuitive than a collection of tables (e.g., org
chart)

* Ambiguity in graph representation using relational model (directed or
undirected?)

* Avoid repetitive data storage from user perspective (e.g., primary key
& foreign key)

 Enable same relation name with different attributes
* CREATE TABLE TVSHOW(title, year);
* CREATE TABLE TVSHOW(title, year,
production company); //Not possible!

* Nice query language for graph problems

Neod|

* Neodj is a graph database that uses property graph data model with a
qguery language called Cypher

* In graph database domain, there is no standard query language (yet).

Many vendor-dependent flavors
* SPARQL for RDF

o i MATCH (xl:Person) -[:acts_in]->
Cypher, Gremlin, etc. for property graph i Tveton (Litles the bffice’))

» EXx: Find co-stars of The Office <-[:acts_in]- (x2:Person)
RETURN x1, x2

PREFIX : <http://ex.org/#>

SELECT ?x1 ?x2 g.V().has("TVSHOW", "title", "The Office").

WHERE { in('acts_in').hasLabel ("Person").
?x1 :acts_in ?x3 . ?xl1 :type :Person . values ("name")
?x2 :acts_in ?x3 . ?x2 :type :Person .
?x3 :title "The Office" . ?x3 :type :TVSHOW .
FILTER(?x1 != ?x2)

Graph Query Language (GQL

* Ongoing standardization effort just like SQL for relational model

- RPQs with data tests (node & edge properties)
Academia
GXPath - Read only

- Path macro (complex path
expressions)

Extanded by

Academia
RPQs
(Regular
Path
Queries)

Reading graphs T

Complax path expressions

- Construct & project graphs
- Composable ORI H

Reading graphs

CRUD
Catalog
Construct & project

Views/omnigraph

~~~~~~~~~~~~ Sl
H \

Reading graphs
cocsccacacisd '
T 1
Academia ! graphs
STRUQL S . \ Complex. path espressions
- Advanced complex path expressions .
- Construct & project graphs O
= -

e - Composable
caaemia Construct & project graphs
Regular Composable

Queries

- Create, Read, Update, Delete
- Complex path expressions

- Configurable match semantics
- Construct & project graphs

- Composable (views, omnigraphs)

- Catalog
- Schema

Named graphs
Catalog

Schema
Views/omingraph

Tigergraph

GSQL




First Property Graph with Neo4|

_______________

' .o + role = Ryan Howard
4 € ractsan \ ref = Wikipedia

...............

ny : Person \ role = Michael G. Scott | ny : TVShow e mmeso oot ’ ng : Person

] E ref = Wikipedia
name = Steve Carell \

gender = male J - title = The Office

name = B.J. Novak
gender = male

CREATE
(nl:Person {name: "Steve Carell", gender:
(n2:Person {name: "B.J. Novak", gender: "male"}),

(n3:TVShow {title: "The Office"}),

(nl)-[:acts_in {role: "Michael G. Scott", ref: "Wikipedia"}]->(n2),
(n2)-[:acts_in {role: "Ryan Howard", ref: "Wikipedia"}]->(n3),
(n2)-[ :produces]->(n3);



Let’s Practice MIFFLIN:

PAPER COMPANY

* Let’s create the org. chart of the paper company Dunder Mifflin,
Scranton Branch !in The Office.

* All edges have labels e;: manages with i being numbers from 1 to n,
the number of edges

e Some useful commands & notes
* See the graph- MATCH (n) RETURN n LIMIT 50
* Delete the graph-MATCH (n) DETACH DELETE n

* To create list of values, use "[]”
* Forexample, role: ["Sales", "Assistant Regional Manager"]



ny : Person i€; 1 Tnanages:

name = David Wallace
role = CFO
dept = management

If some text is illegible, please reference
Y http://my.ilstu.edu/~llipper/com329/dunder_mifflin_org_chart.pdf

ny : Person

ny : Person

name = David Wallace
role = CFO
dept = management

name = Ryan Howard
role = VP, North East Region
dept = management

ngy : Person ng : Person ns : Person

name = Todd Pecker
role = Travel Sales Rep.
dept = Sales

name = Michael Scott
role = Regional Manager
dept = management

name = Tobby Flenderson
role = HR Rep.
dept = HR

ng : Person ny : Person ng : Person ng : Person nyo : Person ny, : Person
name = Angela Martin name = Dwignt Schrute name = Jim Halpert name = Pam Beesley _ _ e
role = Senior Accountant role = Sales, Assistant to the role = Sales, Assistant role = Receptionist role r:aén:aﬁthSes% mgnﬁ ep ol :Emvsa_r e?\gm':.rg:g'; -
dept = Accounting, Party Regional Manager Regional Manager dept = Reception, Party Ee t= Qyu ality Control ’ a ent = Warehouse
Planning Committee dept = Sales dept = Sales Planning Committee L= L=
%\
nys : Person ny3 : Person nyy : Person nys : Person -
g nyg : Person ny7 : Person nyg : Person
. . - -
name = Kevin Malone name = Oscar Martinez nalrri Slilerl_éamni 'I atl.mer " Ea(r:ne ; {eIIySI tapoorR
le = Accountant role = Accountant role = Supplier Relations role = Customer Service Rep. _ — _ B ) )
ro - | dept = Supplier Relations, dept = Customer Service, Party name = Jerry DiCanio name = Madge Madsen name = Lonnie Collins
dept = Accounting dept = Accounting Party Planning Committee Planning Committee dept = Warehouse dept = Warehouse dept = Warehouse
-
v

nyg : Person

name = Andy Bemard
role = Regional Director in

Sales
dept = Sales
Ny : Person ny) : Person
ime = Phyllis Lapi
name yliis Lapin name = Stanley Hudson
role = Sales role = Sales
dept = Sales, Party Planning dept = Sales

Committee




Graph Query Languages

* Two important usage patterns for graph query languages:
* Graph Pattern Matching
* Graph Navigation

* We’ll focus on Cypher in this tutorial. However, any significant graph
qguery languages will have these two important patterns in their
languages.



Graph Pattern Matching

* Graph Pattern Matching

* A match is a mapping from variables to constants such that when the
mapping is applied to the given pattern, the result is, roughly speaking,
contained within the original graph (i.e., subgraph).

_______________

P 0 role = Ryan Howard !
P e1 : acts_in :———\\ ! ref = Wikipedia

_______________

ny : Person i role = Michael G. Scott ! ns : TVShow e cmmees oo ’ ng : Person

= I . L
: ref = Wikipedia [
name = Steve Carell \ R

gender = male J >L title = The Office

name = B.J. Novak
gender = male

The Office Crew graph 77777

2y : Person

ns : TVShow

[ o -

| acts_in

I 2
Steve Carell | B.J. Novak
B.J. Novak | Steve Carell

...............

Result set (i.e., matching) for Q;

9 : Person

’L title = The Office J‘

graph pattern for Q,

X

-




Graph Pattern Matching in Cypher

* Cypher has no-repeated-edges, bags semantics
* . Find co-stars of The Office

2y : Person ny : TV Show 29 : Person

| acts_in | | acts_in |
"""""""" ' >L title = The Office J< L
@ > (:TVSHOW {title: "The Office"}) <-[:acts_in]- (x2:Person)
RETURN x1, x2

Match pattern x1 has to connect to TVShow node through an incoming edge with edge label acts in

We want to match variable x;to node with node label Person

* Cypher manual:
* https://neodj.com/docs/cypher-manual/current/syntax/patterns/



Example

* Who's inside Party Planning Committee (PPC)? (hint: PPC is a dept)

MATCH (p:Person)

WHERE "Party Planning Committee" in p.dept
return p.name

* How many people does Michael directly manage? (hint: use count ())

MATCH (p:Person)<-[:manages]-(n:Person)
WHERE n.name = "Michael Scott"
RETURN count(p)



Let’s Practice

* Find all the employees that are directly managed by someone that
reports to Michael

MATCH (p {name: 'Michael Scott'})-[:manages]->()-[:manages]->(q)
RETURN g.name

* Does Michael directly manage more employees than Jim Halpert?
Each MATCH ... WHERE can be thought as

TCH (p:Person)<-[:manages]-(n:Person a SELECT ... FROM ... WHERE

RE n.name = "Michael Scott” MATCH (p:Person)<-[:manages]-(n:Person)
WITH count(p) AS Tl WHERE n.name = "Michael Scott"
MATCH (p:Person)<-[:manages]-(m:Person) MATCH (g:Person)<-[:manages]-(m:Person)
WHERE m.name = "Jim Halpert” WHERE m.name = "Darryl Philbin"

RETURN cl > count(p) RETURN p.name, {.name



Graph Navigation

* A mechanism provided by graph query languages to navigate the
topology of the data.

* Two important query classes:

e Path Query
* Path Query + Graph Pattern Matching (i.e., navigational graph pattern)



Path Query

* Previously, we match a graph pattern; now, we

/

.

Often represented
using Regular
Expressions

~

)

a
* Path query has the general form P = x — y where «a specifies
conditions on the paths we wish to retrieve and x and y are the

endpoints of the path.

ref = Wikipedia
name = Steve Carell | A title = The Office

gender = male L

The Office Crew graph 77777777

* ;. Find co-stars of The Office

P =x

ny : Person i role = Michael G. Scott ! na : TVShow e soemeo oo d

ns : Person

name = B.J. Noval
gender = male

W

. @ Edge has direction!
acts_in -acts_1
>y

attern.



Path Query in Cypher

* Cypher has no-repeated-edge, bags semantics
* Qy Find co-stars of The Office e

i role = Ryan Howard

, e acts_in i ref = Wikipedia
ny : Person role = Michael G. Scott . na : TV.Show B ’ ng : Person
' ref = Wikipedia ! (
name = Steve Carell | R N : name = B.J. Novak
gender = male J 'L i = Tha Ofioo gender = male

................

MATCH \p (p:Person)-[:acts _in]->(:TVShow)<-[:acts in]-(g:Person)
return path

“path"

[{"gender":"male","name":"Steve Carell"},{"ref":"Wikipedia", "role":"Mi

¢ NOthing new bUt We rEtu rn a path nOW! chael G. Scott"},{"title":"The Office"},{"title":"The Office"},{"ref":

"Wikipedia“,"role":"Ryan Howard"},{"gender":"male","name":"B.J. Novak"

}H

[{"gender":"male","name":"B.J. Novak"},{"ref":"Wikipedia","role":"Ryan
Howard"},{"title":"The Office"},{"title":"The Office"},{"ref":"Wikipe
dia","role":"Michael G. Scott"},{"gender":"male","name":"Steve Carell"

}H




Navigational Graph Pattern in Cypher

* We can combine path query with graph pattern matching by allowing
edge labels in the graph pattern to be paths n1 : Peraon

* Q2: Find all the people that Michael Scott manages @T%:g’“oil?ﬂfn‘ﬁ’j}

dept = management

MATCH path=(p:Person)-[:manages*l..]->(g:Person) TJ"JQJ"?
WHERE p.name = "Michael Scott” S :
return g.name 1

* Resources: https.//neodj.com/docs/cypher- r _ T
manual/current/syntax/patterns/#cypher-pattern-relationship




Example

e Get the Dunder Mifflin employees that are on the same level as
“Michael Scott” (hint: use 1ength ( )on path)

MATCH pl = (n:Person)<-[:manages*]-(p:Person)
MATCH p2 = (m:Person)<-[:manages*]-(p:Person)
WHERE length(pl) = length(p2) AND m.name <> n.name AND n.name = "Michael Scott”

RETURN m



Same Data, Different Model

* Let’s query the same data in Relational Model

- Actual schema and data see “sql-ex-2.sq

III

emplD name role dept mgriD
1 David Wallace {"CFO"} {"management”}
2 Ryan Howard {’VPF,{:;E:: .EaSt {"management”} 1
3 Tobby Flenderson {"HR Rep."} {"HR"} 2
4 Michael Scott {"Regional Manager'}| {"'manas~ant"} 2
‘d Pecker =




MATCH pl = (n:Person)<-[:manages]-(p:Person)

MATCH p2 = (m:Person)<-[:manages]-(p:Person)
WHERE length(pl) = length(p2) AND m.name <>
n.name AND n.name = "Michael Scott"

Same Data, Different Model =~

e Get the Dunder Mifflin employees that are on the same level as
“Michael Scott”

with recursive samelevel(sl, s2, s3, s4) as (
ct al.name, al.mgrID, a2.name, aZ.
from dunderMifflin al, dunderMifflin a2
l.mgrID = a2.mgrID)

their manager has to be the same.

Recursion: Same idea as
base case but

use the base relation and
the result table we just
computed in base case.

ect al.name, al.mgrID, a2.name, a2.mgrID
from dunderMifflin al, dunderMifflin a2, samelevel 11
rID = 11.s2 and a2.mgrID = 11

Base case: if two people are at the same level,

) select 12.s3 from samelevel L2 where 12.s1l = 'Michael Scott' and 12.sl1l <> 12.s3;



Let’s Practice

* Does Jim Halpert manage Phyllis Lapin?

MATCH path=(p:Person)-[ :manages*1l..]->(q:Person)
WHERE p.name = "Jim Halpert" and g.name = "Phyllis Lapin"
return count(path) > 0

* Find all people that are indirectly managed by Michael Scott (hint: use
distinct)

MATCH path=(pl:Person {name: "Michael Scott"})-[:manages*1l..]->()
- [ :manages*1l..]->(p2:Person)
return distinct p2

Why do we use distinct p2
rather than distinct path?



Graph Algorithms in Cypher

* Cypher and many graph query languages allow user to directly embed
graph algorithms inside the query

* Q3: Find the shortest path between David Wallace and Andy Bernard

MATCH path = shortestPath(
(p:Person {name: "David Wallace"})-[:manages*l..]-(g:Person {name: "Andy Bernard"}))
RETURN path

* More graph algorithms: PageRank, Centrality, Connected Component
algorithms, etc.



Understand a Cypher Query

* Neodj has EXPLAIN command; just like EXPLAIN in any RDBMS vendor

* Running example for this section

e Data modelled in Relational Model

CREATE TABLE R3(a char(1l));

CREATE TABLE R2(a char(l), b integer); =
CREATE TABLE R1l(b integer); 777
INSERT INTO R3(a) VALUES (‘A’),('B’),('B’);
INSERT INTO R2(a,b) VALUES
(‘a",1),('Aa",1),('B",1),('B",2);

INSERT INTO R1(b) VALUES (2),(3);

* Query: SELECT * FROM rl NATURAL JOIN r2 NATURAL JOIN r3;



Understand a Cypher Query (cont’)

* The plan for SQL query looks like

ee382v=# explain select * from rl natural join r2 natural join r3;
QUERY PLAN
Merge Join (cost=25087.23..6928.67 rows=293913 width=12)
Merge Cond: (rl.b = r2.b)
-> Sort (cost=179.78..186.16 rows=2550 width=4)
Sort Key: rl.b
-> Seq Scan on rl (cost=0.80..35.50 rows=2550 width=4)
-> Sort (cost=2327.45..2385.08 rows=23852 width=12)
Sort Key: r2.b
-> Merge Join (cost=3081.085..657.83 rows=23852 width=12)
Merge Cond: (r2.a = r3.a)
-> Sort (cost=142.54..147.64 rows=2040 width=12)
Sort Key: r2.a
-> Seq Scan on r2 (cost=0.00..30.40 rows=20848 width=12)
-> Sort (cost=158.51..164.16 rows=2260 width=8)
Sort Key: r3.a
-> Seq Scan on r3 (cost=0.00..32.60 rows=2260 width=8)
(15 rows)



Understand a Cypher Query (cont’)

* Let’s model the same data in property graph model

* Guidelines to map relational model to graph model
* Arow is a node
* Atable name is a label name
* Ajoin or foreign key is a relationship (i.e., edge)



Understand a Cypher Query (cont’)

Not So Correct Attempt

CREATE

(nl
(n2
(n3
(n4
(n5
(né6
(n7
(n8
(n9

:R3
:R3
:R3
:R2
:R2
:R2
:R2
:R1
:R1

{a: "A"}),
{a: "B"}),
{a: "B"}),
{a: "A", b
{a: "A", Db
{a: "B", b
{a: "B", b
{b: 2}),

{b: 3});

: 1}),
: 1}),
: 1}),
2 2}),

MATCH (rl:R1l),(r2:R2)
CREATE (rl)-[:e]->(r2)

MATCH (r2:R2),(r3:R3)
CREATE (r2)-[:e]->(r3)

R3 R2 R1
YAl a:'A' .
a'A b: 1 b:2
R3 R2 A1
o a:'A' .
a:'B & b: 3
R3 R2
o a:'B'
aB b:1
Violates a join or
foreign key is a
relationship: we A2
have cartesian a:'B'
b:2

product




Understand a Cypher Query (cont’)

Better Attempt

CREATE

(nl:R3 {a: "A"}),
(n2:R3 {a: "B"}),
(n3:R3 {a: "B"}),
(n4d:R2 {a: "A", b: 1}),
(n5:R2 {a: "A", b: 1}),
(n6:R2 {a: "B", b: 1}),
(n7:R2 {a: "B", b: 2}),
(n8:R1 {b: 2}),

(n9:R1 {b: 3});

MATCH (rl:R1l),(r2:R2)
WHERE rl.b = r2.b
CREATE (rl)-[:e]->(r2)

MATCH (r2:R2),(r3:R3)
r3.a
CREATE (r2)-[:e]->(r3)

WHERE r2.a

R1

b:2

R1

b:3

R3 R2

A a'A'

a'A b: 1
R3 R2

o a'A'

a:'B b: 1
R3 R2

o a:'B'

a:'B b: 1
R2

a:'B'

b:2




Understand a Cypher Query (cont’)

* Resulting graph in Neo4;j | B
X
@

e Observation

* Neodj doesn't have notion of undirected edges during graph creation; user
can ignore directions when they query the graph

* Unlike relational model, part of join computation is done during the graph
model creation (e.g., when create relationships)



Understand a Cypher Query (cont’)

* Recall SQL query
« SELECT * FROM rl NATURAL JOIN r2 NATURAL JOIN r3;

* In Cypher

MATCH (rl:R1l),(r2:R2),(r3:R3)
WHERE rl.b = r2.b AND r2.a = r3.a
RETURN r2.a, rl.b

* Let’s check the query plan

« EXPLAIN MATCH (rl:R1l),(r2:R2),(r3:R3) WHERE rl.b =
r2.b AND r2.a = r3.a RETURN r2.a, rl.b



Understand a Cypher Query (cont’

¥ NodeBylLabelScan@neod) | ¥ NodeByLabelScan@neod)

- R | * Three-way join is computed using
| | hash join in a pipeline fashion in
i | et | Neodj 4.2 optimizer

W ValueHashJoin@neodj \ ¥ NodeByLabelScan@neodj
rl, r2 r3

cache[rl.b] = r2.b r3:R3

This query builds a cartesian product between disconnected patterns.

If a part of a query contains multiple disconnected patterns, this will build a cartesian product between all those parts. This may produce a
large amount of data and slow down query processing. While occasionally intended, it may often be possible to reformulate the query that

ri, r2, r3 avoids the use of this cross product, perhaps by adding a relationship between the different parts or by using OPTIONAL MATCH (identifier
cache[r2.a] » r3.a ] is: (r3))

EXPLAIN MATCH (r1:R1),(r2:R2),(r3:R3) WHERE rl.b = r2.b AND r2.a = r3.a RETURN r2.a, ri.b

ri, ‘ri.b", r2, r3, ‘r2.a’

cache[r2.a] AS "r2.a”, cache[ri.b]
AS ‘ri.b”

S Suggests the above Cypher query is "anti-pattern”

rl, ‘ri.b", r2, r3, ‘r2.a

‘r2.a’, ‘ri.b’

Result



Understand a Cypher Query (cont’)

* Recall in HW4, we saw the semantics of semi-join in graph

A X B means given a set of starting vertices in B, return the set of vertices in
A that connect to those starting vertices via edges

* A multi-way join query = Graph Pattern Matching query
* Cypher query
MATCH (r3:R3)-[:e]-(r2:R2)-[:e]-(rl:R1l)

WHERE r2.a = r3.a and r2.b = rl.b
RETURN r2.a, rl.b



Understand a Cypher Query (cont’)

r

'w NodeBylLabelScan@neodj ‘

|ri:R1 |

‘v Expand(All)@neo4j

ri, anon_27, r2

(r1)-[anon_27:e)-(r2)

r1, anon_27, r2

r2.b = cache(ri.b] AND r2:R2

v Expand(All)@neo4j

ri, anon_14, r2, r3, anon_27

(r2)-[anon_14:e)-(r3)

ri, anon_14, r2, r3, anon_27

cache[r2.a] = r3.a AND not anon_14
= anon_27 AND r3:R3

ri, 'ri.b’, anon_14, r2, r3, anon
27, 'r2a

cache[r2.a] AS “r2.a’, cache|r1.b]
AS b

W ProduceResults@neo4j

ri, 'ri.po, anon_14, r2, r3, anon
27,'r2a

rza’,'r.p

Result

Expand(All)
* Given a start node, and depending on the pattern relationship, the
Expand(All) operator will traverse incoming or outgoing relationships.
* =breadth-wise expansion of the search tree
Join = Expand(All) + Filter
* The execution starts with r;and follows the edges from r; by one more level to
find all r, that satisfies (r1l)-[anon 27:e]-(r2)
e Then Filter is applied with predicate r2.b = rl.b.

Recall: Each MATCH ... WHERE can be thoughtasa SELECT ... FROM ...
WHERE

MATCH (r2:R2)-[:e]-(r3:R3)
WHERE r2.a = r3.a

with r2

MATCH (r2)-[:e]-(rl:R1)
WHERE r2.b = rl.b

RETURN r2.a, rl.b



Relational vs. Graph: A Case Study

* A term project done by a student in the same class in Spring 2019

* The goal is to enable run queries against a large collection of data
(~¥2.2M rows) gathered from student’s workplace
* Example query: Where are all my photos?

* Similar scenarios:
* Query against files stored in S3 bucket
* Query against log files collected over time from different services on AWS

* Method: model data in relational model (Postgres 11) and graph
model (Neo4j 3.5) and compare performance

* Independent of the DBMS, the raw data comprised a labeled directed
graph



Relational vs. Graph: A Case Study (cont’)

* Query 1: Exact Filename Match
* Return full paths of files that match a given file name

WITH RECURSIVE filetree AS ( match(f:file) where f.name = "all.txt"
select file_id, filename, parent_file_id, host, path as path_org, match(r:is_root)
filename as path, 0 as depth, parent_file_id as tpid from files match p = (r)-[:parent_of#]->(f)

where filename ='all.txt' // The reduce notation concatenates the parent nodes to reconstruct the path
UNION return reduce(acc = "/", x IN nodes(p)[1..] | acc ﬁ]”/” Plx.name),
select ft.file_id, ft.filename, ft.parent_file_ id, ft.host, reduce(acc = 0, x IN nodes(p)[1..] | acc # 1)
ft.path as path_org, f.filename '/' || ft.path as path, . - 5
ft.depth + 1 as depth, f.parent_file_id as tpid Cypher query Is much shorter* than
trom :?iei ! . SQL counterpart = easier development
join filetree .
on ft.tpid = f.file_id and code maintenance
)
select * from filetree where tpid = -1

*average < 1/3 LoC. Newer, similar
studies show even greater reduction
(e.g., occasionally < 1/10 LoC)



Relational vs. Graph: A Case Study (cont’)

Query Database Speed
Find exact “all.txt” Neod) 1 ms
Find exact “all.txt” Postgresql 1 ms
Find all *.txt (using :is_root) Neodj 4013 ms
Find all *.txt (using WITH) Neod)j 777 ms
Find all *.txt (using WHERE) Neodj 947 ms
Find all *.txt Postgresql | 5949 ms
Find all *.txt ordered limit 10 (executing limit late) Neod) 833 ms
Find all *.txt ordered limit 10 (push limit early) Neod) 236 ms
Find all *.txt ordered limit 10 (executing limit late) | Postgresql | 6008 ms
Find all *.txt ordered limit 10 (push limit early) Postgresql 32 ms

Find all *.txt ordered limit 1000 Neodj 636 ms
Find all *.txt ordered limit 1000 Postgresql 56 ms
Find all *.txt ordered limit 10000 Neod) 636 ms
Find all *.txt ordered limit 10000 Postgresql | 5720 ms
Find all *.txt ordered limit 10000 (no recursion) Postgresql 183 ms

* Postgres outperforms Neo4j for certain queries

* Cypher query still needs many hand tuning*
to reach acceptable performance = indicates
lack of maturity for Neo4j optimizer

*writing query in a different way, and/or
overriding Neo4j’s Cypher Query Optimizer’s
choice of query plan.



Conclusion

* Introduced Edge-label Graph, Property Graph

e Discussed their difference with each other and with Relational Model

* Introduced graph query languages
e SPARQL for RDF (i.e., Edge-label Graph), Gremlin and Cypher for Property Graph
* Introduced three important usage patterns in graph query languages
* Graph Pattern Matching

e Path Query
* Navigational Graph Pattern Matching

 Demonstrated and practiced those usage patterns in Cypher with Neo4j
* Introduced Cypher query profiling in Neo4j

* A real world case study on relational model vs. graph model

* Graph query is easier to write and maintain
* Neodj has a long way to go to build a sophisticated optimizer like Postgres



Moving Forward

e Gremlin
* https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
* https://tinkerpop.apache.org/docs/current/tutorials/getting-started/

* Contrast among Cypher, SQL, and Datalog on the same data
e https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/sql-datalog-
cypher
* Code for this tutorial
e https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/intro-to-
sraphdb-with-neo4j
* Slides available
e https://zhu45.org/introduction-to-graph-database-with-neo4j.pdf



https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://tinkerpop.apache.org/docs/current/tutorials/getting-started/
https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/sql-datalog-cypher
https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/intro-to-graphdb-with-neo4j
https://zhu45.org/introduction-to-graph-database-with-neo4j.pdf

