
Introduction to
Graph Database

with Cypher & Neo4j
Zeyuan Hu

Dec. 2nd 2021
Austin, TX

(Graph) Database
Application View (e.g.,

social networks)External Level

Logic Level

Graph Model Relational
Model

tail head

Physical Level
Store graph natively (e.g.,
adjacency list, adjacency

matrix, edge list)

Store graph as a
collection of tuples (e.g.,
vertex = tuple, edge =
pointers between two

tuples)

Store graph as a
collection of tables (e.g.,
vertex table, edge table)

...

Store graph as a
collection of key-value

pairs
(e.g., key = vertex, value
= the vertex's neighbors)

...

(graph) database

History

• Lots of logical data models have been proposed in the history of
DBMS
• Hierarchical (IMS), Network (CODASYL), Relational, etc

• What Goes Around Comes Around
• Graph database uses data models that are “spiritual successors” of Network

data model that is popular in 1970’s.
• CODASYL = Committee on Data Systems Languages

Supplier (sno, sname, scity) Supply (qty, price) Part (pno, pname, psize, pcolor)
supplies supplied_by

Edge-labelled Graph

• We assign labels to edges that indicate the different types of relationships
between nodes

• Nodes = {Steve Carell, The Office, B.J. Novak}
• Edges = {(Steve Carell, acts_in, The Office), (B.J. Novak, produces, The

Office), (B.J. Novak, acts_in, The Office)}
• Basis of Resource Description Framework (RDF) aka. “Triplestore”

The Property Graph Model
• Extends Edge-labelled Graph with labels
• Both edges and nodes can be labelled with a set of property-value pairs

attributes directly to each edge or node.
• The Office crew graph

• Node 𝑛" has node label Person with attributes: <name, Steve Carell>,
<gender, male>
• Edge 𝑒" has edge label acts_in with attributes: <role, Michael G. Scott>,

<ref, Wikipedia>

Property Graph v.s. Edge-labelled Graph
• Having node labels as part of the model can offer a more direct

abstraction that is easier for users to query and understand
• Steve Carell and B.J. Novak can be labelled as Person

• Suitable for scenarios where various new types of meta-information
may regularly need to be added to edges or nodes

Graph v.s. Relational - Schema Extensibility

CREATE TABLE TVSHOW(title, year);
CREATE TABLE Production_Company(name,

exec_prodcr)

graph: add an edge
SQL: redefine relational schema
ALTER TABLE TVSHOW(title, year,

production_company references …);
-- foreign key constraint

2005

year

BBC

“Ricky
Gervais”

exec_prodcr

2005

year

BBC

“Ricky
Gervais”

exec_prodcr

Produced_by

Useful for data integration tasks (e.g., link discovery)

Same Data, Different Model

• The same data represented in relational model

Redundant!

Property Graph v.s. Relational Model

• Graph Structure is more intuitive than a collection of tables (e.g., org
chart)
• Ambiguity in graph representation using relational model (directed or

undirected?)
• Avoid repetitive data storage from user perspective (e.g., primary key

& foreign key)
• Enable same relation name with different attributes
• CREATE TABLE TVSHOW(title, year);
• CREATE TABLE TVSHOW(title, year,
production_company); // Not possible!

• Nice query language for graph problems

Data Modeling is still relevant in Graphs

Graph schema visualized in UML

Example Graph
Same data model, different physical model
(relational, property graph, etc)

Images are from "LSQB: A Large-Scale Subgraph Query Benchmark"

Neo4j
• Neo4j is a graph database that uses property graph data model with a

query language called Cypher
• In graph database domain, there is no standard query language (yet).

Many vendor-dependent flavors
• SPARQL for RDF
• Cypher, Gremlin, etc. for property graph
• Ex: Find co-stars of The Office

PREFIX : <http://ex.org/#>
SELECT ?x1 ?x2
WHERE {

?x1 :acts_in ?x3 . ?x1 :type :Person .
?x2 :acts_in ?x3 . ?x2 :type :Person .
?x3 :title "The Office" . ?x3 :type :TVSHOW .
FILTER(?x1 != ?x2)

}

MATCH (x1:Person) -[:acts_in]->
(:TVSHOW {title: "The Office"})
<-[:acts_in]- (x2:Person)

RETURN x1, x2

g.V().has("TVSHOW", "title", "The Office").
in('acts_in').hasLabel("Person").
values("name")

Graph Query Language (GQL)

• Ongoing standardization effort just like SQL for relational model

First Property Graph with Neo4j

• Demo: Create The Office crew graph in Neo4j

CREATE
(n1:Person {name: "Steve Carell", gender: "male"}),
(n2:Person {name: "B.J. Novak", gender: "male"}),
(n3:TVShow {title: "The Office"}),
(n1)-[:acts_in {role: "Michael G. Scott", ref: "Wikipedia"}]->(n2),
(n2)-[:acts_in {role: "Ryan Howard", ref: "Wikipedia"}]->(n3),
(n2)-[:produces]->(n3);

Let’s Practice

• Let’s create the org. chart of the paper company Dunder Mifflin,
Scranton Branch 1 in The Office.
• All edges have labels 𝑒$:𝑚𝑎𝑛𝑎𝑔𝑒𝑠 with 𝑖 being numbers from 1 to 𝑛,

the number of edges
• Some useful commands & notes
• See the graph - MATCH (n) RETURN n LIMIT 50
• Delete the graph - MATCH (n) DETACH DELETE n
• To create list of values, use ”[]”

• For example, role: ["Sales", "Assistant Regional Manager"]

1. Season 4 Ep 16. Source: https://www.officetally.com/wp-content/uploads/2008/05/dunder_mifflin_org_chart.pdf

If some text is illegible, please reference
http://my.ilstu.edu/~llipper/com329/dunder_mifflin_org_chart.pdf

Graph Query Languages

• Two important usage patterns for graph query languages:
• Graph Pattern Matching
• Graph Navigation

• We’ll focus on Cypher in this tutorial. However, any significant graph
query languages will have these two important patterns in their
languages.

Graph Pattern Matching

• Graph Pattern Matching
• A match is a mapping from variables to constants such that when the

mapping is applied to the given pattern, the result is, roughly speaking,
contained within the original graph (i.e., subgraph).
• 𝑄": Find co-stars of The Office

graph pattern for 𝑄"

The Office Crew graph
Result set (i.e., matching) for 𝑄"

MATCH (x1:Person) -[:acts_in]-> (:TVSHOW {title: "The Office"}) <-[:acts_in]- (x2:Person)
RETURN x1, x2

Graph Pattern Matching in Cypher

• Cypher has no-repeated-edges, bags semantics
• 𝑄": Find co-stars of The Office

• Cypher manual:
• https://neo4j.com/docs/cypher-manual/current/syntax/patterns/

Match pattern
We want to match variable 𝑥"to node with node label Person

𝑥" has to connect to TVShow node through an incoming edge with edge label acts_in

Example

• Who’s inside Party Planning Committee (PPC)? (hint: PPC is a dept)

• How many people does Michael directly manage? (hint: use count())

MATCH (p:Person)<-[:manages]-(n:Person)
WHERE n.name = "Michael Scott"
RETURN count(p)

MATCH (p:Person)
WHERE "Party Planning Committee" in p.dept
return p.name

Let’s Practice

• Find all the employees that are directly managed by someone that
reports to Michael

• Does Michael directly manage more employees than Jim Halpert?

MATCH (p {name: 'Michael Scott'})-[:manages]->()-[:manages]->(q)
RETURN q.name

MATCH (p:Person)<-[:manages]-(n:Person)
WHERE n.name = "Michael Scott"
WITH count(p) AS c1
MATCH (p:Person)<-[:manages]-(m:Person)
WHERE m.name = "Jim Halpert"
RETURN c1 > count(p)

Each MATCH ... WHERE can be thought as
a SELECT ... FROM ... WHERE

MATCH (p:Person)<-[:manages]-(n:Person)
WHERE n.name = "Michael Scott"
MATCH (q:Person)<-[:manages]-(m:Person)
WHERE m.name = "Darryl Philbin"
RETURN p.name, q.name

Graph Navigation

• A mechanism provided by graph query languages to navigate the
topology of the data.
• Two important query classes:
• Path Query
• Path Query + Graph Pattern Matching (i.e., navigational graph pattern)

Path Query

• Previously, we match a graph pattern; now, we match a path pattern.

• Path query has the general form 𝑃 = 𝑥→
0
𝑦 where 𝛼 specifies

conditions on the paths we wish to retrieve and 𝑥 and 𝑦 are the
endpoints of the path.

• 𝑄": Find co-stars of The Office

The Office Crew graph

𝑃 ≔ 𝑥
4567_$9 :4567_$9;

𝑦
Edge has direction!

Often represented
using Regular
Expressions

Path Query in Cypher

• Cypher has no-repeated-edge, bags semantics
• 𝑄": Find co-stars of The Office

• Nothing new but we return a path now!

MATCH path=(p:Person)-[:acts_in]->(:TVShow)<-[:acts_in]-(q:Person)
return path

Navigational Graph Pattern in Cypher

• We can combine path query with graph pattern matching by allowing
edge labels in the graph pattern to be paths
• Q2: Find all the people that Michael Scott manages

• Resources: https://neo4j.com/docs/cypher-
manual/current/syntax/patterns/#cypher-pattern-relationship

MATCH path=(p:Person)-[:manages*1..]->(q:Person)
WHERE p.name = "Michael Scott"
return q.name

Example

• Get the Dunder Mifflin employees that are on the same level as
“Michael Scott” (hint: use length()on path)
MATCH p1 = (n:Person)<-[:manages*]-(p:Person)
MATCH p2 = (m:Person)<-[:manages*]-(p:Person)
WHERE length(p1) = length(p2) AND m.name <> n.name AND n.name = "Michael Scott"
RETURN m

Same Data, Different Model

• Let’s query the same data in Relational Model

• Actual schema and data see “sql-ex-2.sql”

Same Data, Different Model

• Get the Dunder Mifflin employees that are on the same level as
“Michael Scott”

with recursive samelevel(s1, s2, s3, s4) as (
(select a1.name, a1.mgrID, a2.name, a2.mgrID
from dunderMifflin a1, dunderMifflin a2
where a1.mgrID = a2.mgrID)
union
(select a1.name, a1.mgrID, a2.name, a2.mgrID
from dunderMifflin a1, dunderMifflin a2, samelevel l1
where a1.mgrID = l1.s2 and a2.mgrID = l1.s4)

) select l2.s3 from samelevel L2 where l2.s1 = 'Michael Scott' and l2.s1 <> l2.s3;

Base case: if two people are at the same level,
their manager has to be the same.

Recursion: Same idea as
base case but
use the base relation and
the result table we just
computed in base case.

MATCH p1 = (n:Person)<-[:manages]-(p:Person)
MATCH p2 = (m:Person)<-[:manages]-(p:Person)
WHERE length(p1) = length(p2) AND m.name <>
n.name AND n.name = "Michael Scott"
RETURN m

Let’s Practice

• Does Jim Halpert manage Phyllis Lapin?

• Find all people that are indirectly managed by Michael Scott (hint: use
distinct)

MATCH path=(p:Person)-[:manages*1..]->(q:Person)
WHERE p.name = "Jim Halpert" and q.name = "Phyllis Lapin"
return count(path) > 0

MATCH path=(p1:Person {name: "Michael Scott"})-[:manages*1..]->()
-[:manages*1..]->(p2:Person)

return distinct p2

Why do we use distinct p2
rather than distinct path?

Graph Algorithms in Cypher

• Cypher and many graph query languages allow user to directly embed
graph algorithms inside the query
• Q3: Find the shortest path between David Wallace and Andy Bernard

• More graph algorithms: PageRank, Centrality, Connected Component
algorithms, etc.

MATCH path = shortestPath(
(p:Person {name: "David Wallace"})-[:manages*1..]-(q:Person {name: "Andy Bernard"}))
RETURN path

Understand a Cypher Query

• Neo4j has EXPLAIN command; just like EXPLAIN in any RDBMS vendor
• Running example for this section
• Data modelled in Relational Model

• Query: SELECT * FROM r1 NATURAL JOIN r2 NATURAL JOIN r3;

CREATE TABLE R3(a char(1));
CREATE TABLE R2(a char(1), b integer);
CREATE TABLE R1(b integer);

INSERT INTO R3(a) VALUES (‘A’),(‘B’),(‘B’);
INSERT INTO R2(a,b) VALUES
(‘A’,1),(‘A’,1),(‘B’,1),(‘B’,2);
INSERT INTO R1(b) VALUES (2),(3);

Understand a Cypher Query (cont’)

• The plan for SQL query looks like

Understand a Cypher Query (cont’)

• Let’s model the same data in property graph model
• Guidelines to map relational model to graph model
• A row is a node
• A table name is a label name
• Attributes in relational schema become properties associated with nodes
• A join or foreign key is a relationship (i.e., edge)

Understand a Cypher Query (cont’)
Not So Correct Attempt

CREATE
(n1:R3 {a: "A"}),
(n2:R3 {a: "B"}),
(n3:R3 {a: "B"}),
(n4:R2 {a: "A", b: 1}),
(n5:R2 {a: "A", b: 1}),
(n6:R2 {a: "B", b: 1}),
(n7:R2 {a: "B", b: 2}),
(n8:R1 {b: 2}),
(n9:R1 {b: 3});

MATCH (r1:R1),(r2:R2)
CREATE (r1)-[:e]->(r2)

MATCH (r2:R2),(r3:R3)
CREATE (r2)-[:e]->(r3)

Violates a join or
foreign key is a
relationship: we
have cartesian
product

Understand a Cypher Query (cont’)
Better Attempt
CREATE
(n1:R3 {a: "A"}),
(n2:R3 {a: "B"}),
(n3:R3 {a: "B"}),
(n4:R2 {a: "A", b: 1}),
(n5:R2 {a: "A", b: 1}),
(n6:R2 {a: "B", b: 1}),
(n7:R2 {a: "B", b: 2}),
(n8:R1 {b: 2}),
(n9:R1 {b: 3});

MATCH (r1:R1),(r2:R2)
WHERE r1.b = r2.b
CREATE (r1)-[:e]->(r2)

MATCH (r2:R2),(r3:R3)
WHERE r2.a = r3.a
CREATE (r2)-[:e]->(r3)

Understand a Cypher Query (cont’)

• Resulting graph in Neo4j

• Observation
• Neo4j doesn't have notion of undirected edges during graph creation; user

can ignore directions when they query the graph
• Unlike relational model, part of join computation is done during the graph

model creation (e.g., when create relationships)

Understand a Cypher Query (cont’)

• Recall SQL query
• SELECT * FROM r1 NATURAL JOIN r2 NATURAL JOIN r3;

• In Cypher

• Let’s check the query plan
• EXPLAIN MATCH (r1:R1),(r2:R2),(r3:R3) WHERE r1.b =
r2.b AND r2.a = r3.a RETURN r2.a, r1.b

MATCH (r1:R1),(r2:R2),(r3:R3)
WHERE r1.b = r2.b AND r2.a = r3.a
RETURN r2.a, r1.b

Understand a Cypher Query (cont’)
• Three-way join is computed using

hash join in a pipeline fashion in
Neo4j 4.2 optimizer

Suggests the above Cypher query is ”anti-pattern”

Understand a Cypher Query (cont’)

• Recall the semantics of semi-join in graph
• 𝐴 ⋉ 𝐵 means given a set of starting vertices in 𝐵, return the set of vertices in
𝐴 that connect to those starting vertices via edges

• A multi-way join query = A fixed-length path query
• Cypher query

MATCH (r3:R3)-[:e]-(r2:R2)-[:e]-(r1:R1)
WHERE r2.a = r3.a and r2.b = r1.b
RETURN r2.a, r1.b

Understand a Cypher Query (cont’)
• Expand(All)

• Given a start node, and depending on the pattern relationship, the
Expand(All) operator will traverse incoming or outgoing relationships.

• = breadth-wise expansion of the search tree
• Join = Expand(All) + Filter

• The execution starts with 𝑟"and follows the edges from 𝑟" by one more level to
find all 𝑟@ that satisfies (r1)-[anon_27:e]-(r2)

• Then Filter is applied with predicate r2.b = r1.b.
• Recall: Each MATCH ... WHERE can be thought as a SELECT ... FROM ...

WHERE

MATCH (r2:R2)-[:e]-(r3:R3)
WHERE r2.a = r3.a
with r2
MATCH (r2)-[:e]-(r1:R1)
WHERE r2.b = r1.b
RETURN r2.a, r1.b

Labels (i.e., relation names) are important

• Graph query focuses more on labels rather than properties à
properties in graph queries may not be as important as attributes in
relational queries

MATCH
(person1:Person)-[:KNOWS]-(person2:Person),
(person1)<-[:HAS_CREATOR]-(comment:Comment)-[:REPLY_OF]->(
post:Post)-[:HAS_CREATOR]->(person2)
RETURN count(*) AS count SELECT count(*)

FROM Person_knows_Person
JOIN Comment ON Person_knows_Person.Person1Id
= Comment.
hasCreator_Person
JOIN Post ON Person_knows_Person.Person2Id =
Post.
hasCreator_Person
AND Comment.replyOf_Post = Post.id;

Label (relation)
Properties (attributes)

Labels (i.e., relation names) are important

• Joins in graphs happen along predefined access paths, i.e.,
predeclared pointers (or edges)
• Joins in relational are value-based – arbitrary tables can be joined on

arbitrary columns as long as those columns have the same data types

Relational vs. Graph: A Case Study

• A term project done by a student in the same class in Spring 2019
• The goal is to enable run queries against a large collection of data

(~2.2M rows) gathered from student’s workplace
• Example query: Where are all my photos?
• Similar scenarios:

• Query against files stored in S3 bucket
• Query against log files collected over time from different services on AWS

• Method: model data in relational model (Postgres 11) and graph
model (Neo4j 3.5) and compare performance
• Independent of the DBMS, the raw data comprised a labeled directed

graph

Relational vs. Graph: A Case Study (cont’)

• Query 1: Exact Filename Match
• Return full paths of files that match a given file name

Cypher query is much shorter* than
SQL counterpart à easier development
and code maintenance

*average < 1/3 LoC. Newer, similar
studies show even greater reduction
(e.g., occasionally < 1/10 LoC)

Relational vs. Graph: A Case Study (cont’)
• Postgres outperforms Neo4j for certain queries

• Cypher query still needs many hand tuning*
to reach acceptable performance à indicates
lack of maturity for Neo4j optimizer

*writing query in a different way, and/or
overriding Neo4j’s Cypher Query Optimizer’s
choice of query plan.

Conclusion

• Introduced Edge-label Graph, Property Graph
• Discussed their difference with each other and with Relational Model

• Introduced graph query languages
• SPARQL for RDF (i.e., Edge-label Graph), Gremlin and Cypher for Property Graph
• Introduced three important usage patterns in graph query languages

• Graph Pattern Matching
• Path Query
• Navigational Graph Pattern Matching

• Demonstrated and practiced those usage patterns in Cypher with Neo4j
• Introduced Cypher query profiling in Neo4j

• A real world case study on relational model vs. graph model
• Graph query is easier to write and maintain
• Neo4j has a long way to go to build a sophisticated optimizer like Postgres

Moving Forward

• Gremlin
• https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
• https://tinkerpop.apache.org/docs/current/tutorials/getting-started/

• Contrast among Cypher, SQL, and Datalog on the same data
• https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/sql-datalog-

cypher
• Code for this tutorial
• https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/intro-to-

graphdb-with-neo4j
• Slides available
• https://zhu45.org/introduction-to-graph-database-with-neo4j.pdf

https://kelvinlawrence.net/book/Gremlin-Graph-Guide.html
https://tinkerpop.apache.org/docs/current/tutorials/getting-started/
https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/sql-datalog-cypher
https://github.com/xxks-kkk/Code-for-blog/tree/master/2020/intro-to-graphdb-with-neo4j
https://zhu45.org/introduction-to-graph-database-with-neo4j.pdf

