
HyperPebblesDB: An Enhanced Fragmented Log-Structured Merge Trees
Key-Value Store

Zeyuan Hu
University of Texas at Austin

Wei Sun
University of Texas at Austin

Jianwei Chen
University of Texas at Austin

ABSTRACT

Log-structured Merge Tree (LSM) [17] is a data struc-
ture that is widely used in write-intensive storage system.
However, it suffers from write amplifications, which
can hinder the write throughput. Another data structure
called Fragmented Log-Structured Merge Trees (FLSM)
[19] is proposed recently to reduce write amplification
while maintaining high write throughput. In this project,
we build a key-value store called HyperPebblesDB

based on PebblesDB [19]. We enhance db_bench

by calculating the sstables distribution and implement
guard-based parallel compaction strategy. We empir-
ically investigate the impact of empty guards and the
guard-based parallel compaction on the FLSM-based
key-value store. In addition, we integrate Succinct
Range Filter (SuRF) [23] into HyperPebblesDB. Our
results show that empty guards have no impact on the
Read throughput; in certain scenario, guard-based paral-
lel compaction can improve system performance; SuRF
can improve the range query performance but with limi-
tations.

1 INTRODUCTION

the Log-structured merge tree (LSM) has become the
central data structure for the modern key-value store im-
plementation. At the same time, LSM-based Key-Value
store has been a very hot research field [21, 20, 15,
13, 22, 9]. LSM-based storage engine originated from
Google’s LevelDB [2] exploit the sequential writes to
improve the write performance. Specifically, the data are
appended to log file and multiple log files are organized
into levels. Later, the logs in multiple levels are merge
sorted into one. This behavior brings the write amplifi-
cation effect as we have to read the log from the local
disk. Recently, another LSM-ish data structure called
Fragmented Log-Structured Merge Trees (FLSM) has
been invented [19] to reduce write amplification while

improving the write performance. However, several fea-
tures are not implemented in the FLSM-based key-value
store PebblesDB. Whether those implementation deci-
sions are based-on empirical evidence is left unkown to
us. In addition, how those implementations affect the
store performance under distributed database MongoDB
is also uninvestigated. Thus, in this work, we enhance
PebblesDB by implementing both guard-based parallel
compaction and the new filter option: SuccinctRange Fil-
ter (SuRF) [23]. At the same time, our empirically in-
vestigation shows that whether to implement the guard
deletion is uncritical.

Our paper is organized as follows: we first intro-
duce LSM, FLSM, SuRF, MongoDB in 2 section. Then,
in section 3, we examine one implementation decision
made by PebblesDB: not implementing guard deletion
and we show that not implementing guard decision is
a good decision. In section 4, we enhance PebblesDB

by implementing the guard-based parallel compaction
and our experiment result shows that guard-based paral-
lel compaction can improve performance when there are
many guards in the being-compacted level. In section 5,
we integrate SuRF, a replacement for bloom filter, and
we show that SuRF can outpeform bloom filter for range
query in PebblesDB. Lastly, we conduct experiment on
MongoDB, a distributed database.

2 BACKGROUND

2.1 LSM-Tree and PebblesDB
Log-structured Merge Tree (LSM) [17] is a data struc-
ture that is used to provide good write performance by
leverage log organizations. In details, write to LSM-
based storage system is first written to in-memory log
called MemTable by appending the corresponding key-
value pair at the end of log. Doing the write through
appending is the key differentiator from the B-tree-based
storage system as we are doing the sequential write in-

Figure 1: PebblesDB Compaction Example: From Level 1 to Level 2

Name Description
fillseq write N key-value pair in sequential key order

fillrandom write N key-value pair in random key order
readseq read N times sequentially

readrandom read N times in random order
readreverse read N times in reverse order
readmissing read N missing keys in random order

readhot read N times in random order from 1% section of DB
seekrandom N random seeks

deleteseq delete N keys in sequential order

Table 1: Read/Write options in db bench

stead of the random update, which can reduce write am-
plification [6, 4] and improve the write performance.

To improve the read performance and make the system
scalable to the large datasets, LSM-based storage system
organizes their logs into levels. The first layer (numbered
as 0), which contains MemTable is stored in memory. All
the logs (sstables) in the rest levels are written to the
persistent storage devices [3, 2]. Acceptable read per-
formance is maintained by lowering down the number of
logs. This is done by compactions, which merges the
logs in the upper level into the lower level (i.e., merging
sstables from level 1 to level 2). However, there is prob-
lem with the merging process as we need to read both
logs from the upper level and lower level into memory
and perform the merge. This mechanism naturally intro-
duces the write amplifcation effect, which decreases the
write performance. To combat this issue, Fragmented
Log-Structured Merge Trees (FLSM) and its implemen-
tation PebblesDB are proposed [19]. The key idea is
shown in Figure 1. FLSM uses guard, which can be
thought of as the key for a collection of logs. the keys in
the collection of logs have to be in the range between the
current guard’s key and the previous guard’s key. Dur-
ing the compaction, the the log in the upper level is split

across the guard keys in the lower level. In the exam-
ple shown in Figure 1, 10 and 80 from level 1 is split
to 10 in guard 60 and 80 to guard 100 in level 2. As
one can see, this split and append avoids reading the data
from lower level (e.g., level 2), which reduces the write
amplification and improve the write performance. Read
performance stays still thanks to the guard as we can first
search guard key and then logs within the guard to locate
the corresponding value for the given key.

2.2 Bloom Filters and Succinct Range Fil-
ter

Creating an LSM Tree involves the trade-off between
read performance and some additional storage space for
faster random inserts[18]. Sstables are distributed across
different levels in disk. Querying a key have to cost many
disk I/Os to sstables. Therefore, LSM based storage en-
giens create a Bloom filter[8] for each sstable to predict
whether a given key is in the sstable. A Bloom filter is a
probabilistic data structure which cost space efficiently.
It allows LSM to avoid reading unnecessary sstables and
reduce the read overhead. However, it cannot make a dif-
ference to range query tasks since it does not keep knowl-

2

edge of adjacent keys. When dealing with range query
in PebblesDB, it must keep on seeking for the next key
in a set of candidate sstables until the end of the given
range, which takes significant memory cost and search
complexity.
HyperPebbleDB manages to integrate start-of-art in-

dex structure Succinct Range Filter (SuRF)[23] as an al-
ternative of the Bloom filter. The high level idea is to
utilize a succinct trie to keep an approximate member-
ship structure as well as the capability to traverse keys
approximately. It requires to insert keys in order, which
fit the property of sstables well. HyperPebbleDB can
build up SuRF on sstable-level and achieve better query
range performance.

2.3 MongoDB
MongoDB [16] is a NoSQL database, which can be
used in both distributed and single instance settings. It
can scale horizontally and achieve the high availabil-
ity. In distributed setting, MongoDB is organized into
clusters. There are two major components within a
cluster: replica sets and sharding sets. Replica sets
provide redundancy and high availability along with
automatic failover. Sharding is used to partition the
data across multiple machines. In this project, we use
HyperPebblesDB as the storage engine for MongoDB
to evaluate the HyperPebblesDB’s performance in the
distributed database setting.

3 IMPACT OF EMPTY GUARDS

Several features described in FLSM are not imple-
mented in PebblesDB. One of them is guard dele-
tion. Whether we implement the guard deletion fea-
ture in HyperPebblesDB largely depends on the im-
pact of empty guards. That is, if the system perfor-
mance (e.g., read throughput) is negatively correlated
with the number of empty guards, then it is necessary
to have the guard deletion feature implemented. Authors
of PebblesDB carries out an empirical study of empty
guard performance impact and claim that there is no sig-
nificant performance drop given the existence of empty
guards. However, there are several issues that are not
fully addressed in their discussion:

• Only the read throughput for sequential write and
read is reported. However, how the empty guards
impact the sequential write, random write, and
many other read/write patterns are not discussed.

• Read throughput is varied between 70 and 90 KOp-
s/s in the PebblesDB. Whether this throughput is
significant or not is un-addressed.

• The distribution of empty guards (e.g., number of
empty guards, fraction of empty guards among total
guards) in the experiment is not disclosed.

3.1 Experiment Setup

3.1.1 Experiment 1

We replicate PebblesDB’s experiment setup in our
empty guards investigation. The experiment procedure
is following: for a given read/write pattern, we repeat-
edly execute the pattern for 20 iterations. At the end of
each iteration, Similar to YCSB benchmark experiment
setup on HyperDex [1, 9], we sleep 5 minutes to quiesce
and we calculate the desired statistics. The list of read-
/write patterns are shown in Table 2 and the description
of each read/write pattern is detailed in Table 1.

For all the experiments in this section, unless
specific noted, we have value size 512B, and data
size: 504MB by default. We turn off snappy com-
pression for fair comparison with PebblesDB. Be-
tween each iteration, we increment the base key
by 10M. For example, given Pattern A, we do
fillseq,readseq,seekrandom,deleteseq: we in-
sert 10M key-value pairs (0 - 10M) in sequential key
order, perform 5M sequential reads operations, 5M ran-
dom seeks, and delete all keys. For the next iteration,
we use the same pattern but with keys ranged from 10M
to 20M. This is the same experiment as PebblesDB’s.
The motivation behind the experiment setup as stated in
PebblesDB is to maximize the number of empty guards:
in each iteration, empty guards are expected to accumu-
late due to the deletion of all the inserted keys.

3.1.2 Experiment 2

Experiment 2 follows the exact experimental procedure
as the Experiment 1 with the same environmental setup.
The only thing changed is the datasize, which scales from
504MB to 5GB. The motivation for this experiment is
that datasize may have huge impact on the system perfor-
mance [12, 7, 13]. In our scenario, 504MB may well be
cached in memory and the cache hit ratio may be high.
Thus, we scale up our datasize that is inporportional to
the size of memory. With this setup, we want to see the
impact of empty guards on the “big data” setting.

3.2 Implementation

We use db bench, a native benchmark shipped with Lev-
elDB family, to perform our experiment. However, to ad-
dress the issues we pose ealier, we extend the db bench

as follows:

3

Figure 2: Scatter plots for Patterns A,B,C,D in Experiment 1

Read/Write Patterns Description
A fillseq,readseq,seekrandom,deleteseq
B fillseq,readrandom,seekrandom,deleteseq
C fillseq,readreverse,seekrandom,deleteseq
D fillseq,readmissing,seekrandom,deleteseq
E fillseq,readhot,seekrandom,deleteseq
F fillseq,readseq,readrandom,readreverse,readmissing,readhot,seekrandom,deleteseq
G fillrandom,readseq,readrandom,readreverse,readmissing,readhot,seekrandom,deleteseq

Table 2: Read/Write Patterns for Empty Guards Experiment

• db bench shipped in PebblesDB does not allow the
sequential write and random write on the existing
database, which is crucial for our experiment as the
motivation behind the experiment design is to accu-
mulate as many guards as we can. Thus, we modify
the benchmark to meet our goal.

• db bench does not have a clear summary of the
sstables and guards distribution. Specifically, the
benchmark does not give the sstables per guard
across all levels in an intuitive way. In addi-
tion, there is no built-in statistics calculation on the
number of guards, average number of sstables per
guards, number of empty guards, the fraction of
empty guards, the variance and standard deviation
of sstables per guard. Thus, we enhance db bench

to support those statistics calculation by introducing

one extra knob emptyGuards.

3.3 Experiment Results & Analysis

We use Ubuntu 16.04 Server VM, 1GB RAM, 2 cores of
i7 8700K with 50GB SSD to perform our experiments.
The experiment result shown in Table 3. We list out the
number of guards, number of empty guards, fraction of
empty guards, read throughput, and write throughput in
the first iteration, the last iteration, and on average. There
are several observations we can make given the table:

Many iterations do not mean many empty guards.
For example, for Pattern A, we have 7 empty guards at
the very first iteration but the number stays the same
at the end of 20th iteration. In other words, the empty
guards does not accumulate linearly with the number of
iteration we run with the experiment. This scenario is

4

Figure 3: Scatter plot for Pattern A in Experiment 2

possible as the deletion is lazily-handled. When a key is
deleted, a deletion tomb flag is appended to memtable.
At this moment, the key is not actually deleted (i.e., oc-
cupied memory is freed); it only becomes inaccessible
during the read. The actual deletion happens during the
compaction. Thus, the number of empty guards depends
on how aggressive we perform compaction. In addition,
we observe the empty guards reuse during the experi-
ment. In other words, even some empty guards appeared
in the previous iteration, some of them may be reused by
covering future inserted keys, which may even out the
number of newly-created empty guards.

Empty guards impact is negligible to the Read-
/Write performance. For example, in Pattern B, we
have three empty guards in the first iteration and the
20th iteration. However, the Read throughput attains 143
KOps/s in the first iteration and degrades to 75 KOps/s
in the last iteration. Given the relative stable experiment
environment, the only change for this Pattern is the num-
ber of guards, which increases from 7 to 40. Thus, the
number of guards that HyperPebblesDB has to search
through impacts the read performance more significantly
when compared with number of empty guards. To fur-
ther verify this, we have Pattern F, which we have the
same number of guards but the number of empty guards
drops between two iterations (2 vs. 6). In this scenario, if
we take a look at read throughput for readrandom (“ran-
dom” in the table) and the sequential write throughput,
we can see that the both write and read performance
are actually dropped. Since the experiment is performed
on SSD, we think that the performance degration might
be due to the underlying SSD characteristics: good per-
formance for instanteous workload but the performance
may be dropped in the long-term (i.e., unsustainable)
[10]. How can we separate the SSD impact from the
HyperPebblesDB’s performance measurement is left for
the future study.

To further examine the impact of empty guards, we

also make scatter plots on both read and write through-
puts against the number of empty guards for each it-
eration. In addition, we calculate the R-squared statis-
tics. The results shown in Figure 7. As indicated by the
R-squared statistic, the number of empty guards cannot
explain fully about the variation in both read and write
throughputs. However, for Pattern B (readrandom), the
number of empty guards can seem explain the write per-
formance decrease (R2 = 0.344). However, we think that
may be due to the effect of SSD, which needs further
investigation. The observation from plots also hold for
large data setting (see Figure 3). In fact, in large data
setting, R-squared statistic becomes even lower, which
attains 0.005 for Read and 0 for Write.

In conclusion, we think that the number of empty
guards has limited impact on both read and write per-
formance, which is consistent with PebblesDB’s result.
Implementation-wise, since we can access the number of
sstables covered under each guard (via. GuardMetaData
structure), we can check whether the guard is a empty
guard in constant time and no disk I/O is performed if the
guard is empty. Thus, we think the overhead of existence
of empty guards is small for both read and write. Further-
more, empty guard reuse amortizely decreases the space
wasted by the empty guards. Therefore, we conclude
that there is no reason to implement the guard deletion
in HyperPebblesDB especially when the deletion may
introduce additional overhead.

4 GUARD-BASED PARALLEL COM-
PACTION

According to the original PebblesDB paper, the author
mentioned that the compaction of FLSM data structure
is trivially optimizable. As indicated in the structure of
the guard distribution, compaction of the sstable under a
guard would only involves compacting the items of the
same guard range at the next level. Therefore, compact-
ing one guard never interferes with compacting another
guard in the same level. However, the published code
base of PebblesDB did not implement such feature be-
cause the author argue that the compaction time of the
non-parallelized version is much better than its rivals like
RocksDB.

In this project, we implemented this feature in our
PebblesDB fork (HyperPebblesDB) to see how much
performance increase it would bring to the system.

4.1 Implementation Detail
We forked PebblesDB to create a new version called
HyperPebblesDB to implement the feature. The code
base of the PebblesDB Implementation is complex with
legacy contribution from LevelDB and HyperlevelDB.

5

1st Iteration 20th Iteration Overall
Pattern Guards

#
Empty
Guards
#

Empty
Guards
%

Read Write Guards
#

Empty
Guards
#

Empty
Guards
%

Read Write Guards
#

Empty
Guards
#

Read Write

A 40 7 17.5% 2387 190 40 7 17.5% 673 150 40 6.85 543 141
B 7 3 43% 143 187 40 3 7.5% 75 138 38.35 5.35 103 138
C 40 7 17.5% 2000 192 40 7 17.5% 46 148 40 6.9 139 143
D 40 7 17.5% 1233 198 40 3 7.5% 370 152 40 4.5 359 126
E 40 7 17.5% 603 180 40 3 7.5% 610 153 40 5.2 555 138

F seq

30 6 20%

1642

183 30 2 6.7%

2907

124 30 2.2

2755

162
random 183 50 58
reverse 1434 2475 2368
missing 739 186 196
hot 78 752 706

G

seq

40 7 17.5%

2488

187 40 7 17.5%

36

143 49 6.95

335

156
random 119 159 98
reverse 2584 47 267
missing 1748 131 285
hot 824 775 767

Table 3: Empty Guards Experiment 1 Results. Read and Write are measured in KOps/s. The highlighted
numbers are based on the comparison between 1st iteration and 20th iteration.

Significant portion of our study was focused on under-
standing the structure of the codebase as most of the doc-
umentation are for API users rather than developers.

From what we found during the study, the ma-
jor part of the code concerning compaction lies in
data impl.cc and version set.cc. PebblesDB imple-
ments compaction in a separate thread that is started
in the constructor of the class DBImpl. From the
constructor, it invokes the 1 thread wrapper called
DBImpl::CompactMemTableWrapper and multiple in-
stances DBImpl::CompactLevelWrapper, The latter of
which is of our concern in this project. All the wrapper
does is just hold the mutex of the DB and initialize a file
level bloom filter builder. During normal operation, the
function then enter an infinite loop and checks whether
the current version set of the database needs compaction.
If not, the thread is set to wait for other event to wake it
up.

The major compaction work lies in the method
DBImpl::BackgroundCompactionGuards. This func-
tion takes in the file level bloom filter we just cre-
ated then pick an level to compact by call the current
version’s PickCompactionLevel. Here the function
will check whether the level to compile is the high-
est level to determine if it’s a horizontal compaction.
Once this is done, the function will use the function
PickCompactionForGuards of current version set to
create a Compaction object and fill in a list of com-
plete guards that should be present after the compaction.
Before the major work, the function also has to set the
bit for the lock of the levels involved in the compaction.
With the previous preparation done, the authors used a
CompactionState object to describe the Compaction

they just created and finally call the actual compaction al-
gorithm DoCompactionWorkGuards with paramethers
like the compaction state, the list of all guards to be used

and the file level filter builder. One the compaction work
is finished, this method logs the state and does some
cleanup then return its upper caller with the status.

The DoCompactionWorkGuards is bit trickier to un-
derstand as it involves multiple modules of the system,
and some of the modules are ill-documented. A blurry
picture we have established by reading the code and
the reference paper is as follow. At the beginning of
the function, it does some sanity checks and initialize
some variables. Then it call the current version set’s
MakeInputIteratorForGuardsInALevel to generate
a iterator to go through all the data involving all the
guards to compact in a sequential manner based on keys.
In the main while loop, the method iterates through all
the data entries, removing stale and deleted keys and
checking the boundaries for the guards to move along.
In the meanwhile, it also monitors the current output
file size via the compaction states’ builder variable and
flush them to disk when the file size is appropriate. If
the FILE LEVEL FILTER is turned on, the method also
builds the file level bloom filter along the way.

4.2 Design Strategy
As mentioned above, the original implementation of
PebblesDB is single threaded execution that does
compaction whenever needed. Based on the prin-
ciple of minimal alternation, we intend to keep this
thread as the handler of compaction work and let it
spawn multiple threads when encountered a com-
paction whose top level thread involves multiple
guards. We created a parallel version of method
DBImpl::BackgroundCompactionGuards that check
such occasions and spawn one thread for each up-
per level guards. A more ideal design is to use a
fixed-number thread pool and producer-consumer

6

model, since that would incur less overhead in race
condition, thread creation and destruction. However,
our empirical results shows that in a typical 7-level
PebblesDB and reasonable size (10 - 20 million),
the max number of guard of the compaction is 5. As
most server-grade CPUs has 4 - 16 cores, Our current
implementation would achieve good performance
without the complexity. To reuse existing code, we still
call the same DoCompactionWorkGuards under our
DBImpl::BackgroundCompactionGuardsParallel

and split the original guards and compaction state object
in multiple by the upper level guards.

During our debugging process, we found the major
problem is the handling of the mutex of DBImpl. The
original design requires holding the lock during pick-
ing compaction level and gathering the guards and re-
lease the lock while actually running the compaction
algorithm, then it reacquire the lock to actually in-
stall and write the output files. Such implementa-
tion assumes holding the mutex lock in the executing
of DBImpl::BackgroundCompactionGuards and only
releasing them in DoCompactionWorkGuards. To avoid
deadlock while maintaining the original locking schema,
we release the lock before spawning the threads and reac-
quire the lock after all threads are joined. We also added
lock acquire and release lock in the lock in the individ-
ual thread wrapper that does the actual compaction work.
In future version of the work, we intend to implement a
thread-pool model to reach maximum compaction speed
in a parallel setting.

4.3 Experiments and Evaluation

In this section, we measure the effect of introducing par-
allel guard-based compaction in two ways. In the coarse
grained approach, we analyze how HyperPebblesDB

perform with and without this feature under different
workloads using db bench. And in the fine grained ap-
proach, we logged each compaction time in the database
log, and analyze how the compaction speed up with each
compaction.

4.3.1 Coarse Grained Measurement

For hardware configuration, we used a desktop machine
with Intel Core I7 8700K and 32GB RAM and ran the
program on a 500GB SSD storage. We used Ubuntu
16.04 as our compiling and running program.

To measure the overall performance with the integra-
tion of parallel guards-based compaction, we used the
db bench utility that ships with HyperPebblesDB. As
parallel guard based compaction can only be triggered
on writes, we used two different write workloads to test
it: fillseq and fillrandom. We ran each workload

Number of Guards Number of Compactions

0 361
1 22
2 5
3 3
5 3
6 6
7 1
8 1
9 2

10 1
15 1
61 1

Table 4: Compaction Guards Distribution

three times to compare the throughput as in Figure 5.
As we can see, this feature does not lead to perfor-

mance improvement significantly as we supposed. The
throughput on sequential write was actually smaller than
non-parallel version while random writes won by a small
margin. As we examine the result of the actual running
process, we found that it is numbers fluctuate much and
this does not lead to a convincing result that parallel com-
paction yields better performance. To further investigate
this, we devised a fine grained experiment in the next
section.

4.3.2 Fine Grained Measurement

To investigate how the parallel compaction did not lead
to much higher increase in performance. We enabled de-
tailed logging of each compaction process in the previ-
ous db bench approach. Specifically, we logged each
compaction’s input files, upper level guards, compaction
level, sum of input file sizes and actual running time.

Table 4 gives the counts of number of guards at the up-
per level in a total of 407 compaction. we shall see that
94% of compaction has 0 or 1 guards at the upper level,
which means they are essentially still single-threaded ex-
ecutions. We expect to see more fraction of multiple
guard compaction under bigger workloads. In the work-
load of 1 million keys, multi-threading does not show an
significant improvement of performance because single
threaded execution play a bigger role.

For each compaction job, we used the (sum of) size of
input files processed divided by the compaction time to
use as a notion of compaction speed. We then compared
the average compaction speed grouped by the number
of guards and scatter plot it in Figure 6. We shall see
that although different data points represent significantly
different number of compaction, the parallel version has
apparently higher compaction speed. However, multiple-

7

Figure 4: The transformation from single-threaded compaction to parallel compaction in function calls

Figure 5: Comparison of Throughput with and without
parallelism

guard compaction instances are rare in general thus they
do not contribute to a higher throughput in the previous
experiment.

As a rough estimate, most parallel multi-guard com-
pactions has twice the speed than single threaded version,
and such ratio does not vary with guard size. We think
that thread creation and destruction in each compaction
is causing large amount of overhead in the process. By
the way, we also noticed that the compaction at upper
level contains guard size way larger than other levels,
spawning threads proportional to the number of guards
might not be a good approach. In our future work, we
intend to refactor our parallel compaction routine to a
fixed-size thread-pool implementation, which can avoid
these caveats.

Figure 6: Compaction Speed with respect to number of
guards

5 IMPROVING RANGE QUERY BASED
ON SURF FILTER

Guard based design results in range query performance
degrade [19] in PebblesDB. PebblesDB can return all
key-value pairs falling within a given range for a range
query request based on seek() and next(). However, the
set of associated sstables in a guard does not follow a
total sequence. It brings extra complexity to seek the
next key among sstables. HyperPebblesDB integrates
the state-of-art Succinct Range Filter (SuRF) [23] to sim-
plify range query complexity by the capability to query
the prefix as well as decrease space consumption.

8

Workload Description
Load A 100% writes
A 50% reads, 50% writes
B 95% reads, 5% writes
C 100% reads
D 95% reads (latest value), 5% writes
Load E 100% writes
E 95% Range queries, 5% writes
F 50% reads, 50% Read-modify-writes

Table 5: YSCB Workloads. The running order of
YCSB workloads follows the exact ordering of the ta-
ble

5.1 Drawback of FLSM

The main design of PebbleDB is Fragmented Log-
Structured Merge Trees(FLSM) compared to traditional
LSM storage engine. FLSM is a trade-off between per-
formance and write-IO. It weakens the sequence assump-
tion in the traditional LSM and decreases IO effort to
maintain the sequence. It may increase the complex-
ity a bit to read due to the loose of sequence. Mean-
while, it also decreases the complexity of sorting keys
among sstables. Thus, performance on some read tasks
improves in PebblesDB. However, the performance on
range query degrades obviously compared to LevelDB,
RocksDB, etc[19].

Given a range (key1, key2), the range query returns all
key-value pairs from key1 to key2. It is implemented by
calling a iterator to do a seek() to key1 and do next() calls
until key2. In traditional LSM based engine, keys have a
strict sequence between sstables. Thus, it just requires to
seek in order to find the next key for one sstable to a next
sstable. FLSM weakens the sequence restrict as it guar-
antees strict sequence only between guards, which con-
sists a set of associated sstables. When the iterator tries
to seek the next key of key1, it not only have to seek in
the local sstable of key1 but also have to seek other ssta-
bles in the same guard. It also have to sort these canditate
keys and maintain these keys. Although Pebbles put a
lot of effort to optimize range query, such as seek-based
compaction and parallel seeks, there still 30% overhead
of small range queries and 11% overhead of large range
queries[19].

5.2 Bloom Filter and its limitation

It is challenging for LSM structure to query fast because
keys can reside in SStables from all levels. Querying a
key directly from a sstable may incur multiple disk I/Os.
Bloom filter is a approximate membership data structure
which is small enough to reside in memory. It has one-
sided errors. If the key exists, the bloom filter return

true and query in the sstable; If the key is absent, the
bloom filter will return false in a high possibility. Bloom
filter trades off between space efficiency and false posi-
tive rate. It requires only 10 bits for each key along with
around 1% false positive rate commonly[23].

However, bloom filter can not provide any assist to
the range query in LSM based storage engines. Given a
range query request from key1 to key2, the engine must
read related sstables in all levels and implement merge
sort on these sstables. It become even worse in FLSM
since FLSM stores have to read more sstables on per
level. bloom filter can just predict whether the key is
in or not, it cannot predict the next key’s approximate
value. There are some extensions of bloom filter such
as prefix bloom filter which can optimize certain fixed-
prefix queries, despite they are inflexible for more gen-
eral range queries[19].

5.3 Succinct Range Filter

HyperPebblesDB integrates the state-of-art uncom-
pressed index structue Succinct Range Filter (SuRF) [].
SuRF also guarantees one-sides errors for point query
and range query basically. Besides, SuRF builds upon an
advance trie and supports level cursor to move sequen-
tially in itself for range queries. Therefore, SuRF assists
range queries between sstables since it maintains addi-
tional key sequence knowledge.

SuRF builds up on a space-efficient data struc-
ture called the Fast succinct Trie(FST), which is an
extension of classical Level-Ordered Unary Degree
Sequence(LOUDS)[11]. FST consumes few bits per
node which is close to information-theoretic lower
bound. FST designs prefix level of a key as a dense
LOUDS. It records the prefix precisely. Meanwhile, FST
designs the suffix of a key as sparse LOUDS. It maps
this part into a simple data bits. Therefore, if a key is in-
serted into FST, its prefix is stored in LOUDS-Dense and
its suffix is mapped in LOUDS-Sparse. A false positive
case can only happens when prefix is equal and suffix
maps to a same value in a low possibility.

Intuitively, FST keeps the property of trie and ordinal
tree to traverse keys. It encodes keys in a sstable effi-
ciently and uses the rank & select primitives. When the
storage tries to a range query by seeking the next key,
it can utilize a cursor in FST to move to next key effi-
ciently. The engine can search and sort keys in SuRFs
for sstables from different level and choose much fewer
candidate keys as well as fewer disk I/Os.

The improvement can be more significant for FLSM
after it integrates with SuRF as an alternative of Bloom
filter. FLSM will involve much more sstables from all
levels and its weakened key sequence causes it harder
to merge sort among these associated sstables. With the

9

assist of SuRF of each sstables, the storage engine can
preprocess on filters and degrade search space in sstables.

5.4 Evaluation
Zhang[23] has present various micro benchmark on false
positive rate, performance and space of SuRF.In this pa-
per, we focus more on the performance and space in
HyperPebblesDB comparing to PebblesDB. The exper-
iment is set up on the server with Inter Core i7-8700k and
32 GB RAM. We mainly use benchmark in db bench

and include the performance on sequential write and a
several different read task. We insert 10 million key-
value pairs and execute 4 million reads. Due to we
does not apply an isolated environment, there is always
a bit variance for each patch of experiment. There-
fore, we run experiments more than 10 rounds and take
the mean value of them after discarding outliers. In
all, HyperPebblesDB achievement a % improvement for
range query and with a bit trade off on some other tasks.

Table 6 presents the comparison of micro benchmark
on range query, read and write of HyperPebblesDB and
PebblesDB.Range query which is corresponding to ran-
dom scan improves 40% compared to PebblesDB while
sequential read degrades 8.8%. It indicates that the gain
of range query does not come from potential improve-
ment on read performance. It benefits more from the
in-memory search of SuRF. Besides, sequential write of
HyperPebblesDB downgrade a bit compared to original
PebblesDB with Bloom filter, which indicts that con-
structing a SuRF costs a bit more complexity.

However, HyperPebblesDB does not have good per-
formance on space usage. It consumes comparable and
even more memory than PebblesDB. There should still
be some implementation bugs for HyperPebblesDB and
SuRF. We have even fixed serious memory leak of SuRF
before. There may be some other implicit errors in-
side SuRF and between the interference of SuRF and
HyperPebblesDB. In the future work, we will fix all the
errors and make the performance more stable.

6 EVALUATION

In previous sections, we implement parallel guard-
based compaction to improve read-throughput and used
SuRF to improve the range query performance in
HyperPebblesDB. In this section, we used the indus-
try standard Yahoo! Cloud Serving Benchmark to eval-
uate the performance of HyperPebblesDB. We used
HyperPebblesDB as the engine of MongoDB to used as
a driver of YCSB. As we didn’t touch the entire archi-
tecture of Pebbles in our experiment, mongo-pebbles
works out of box for our HyperPebblesDB develop-
ment. We ran the benchmark along with other well-

Figure 7: YCSB Benchmark Performance of Mon-
goDB when using different key-value stores as the
storage engine. For convenience, the throughtput is
presented in a relative value to PebblesDB

known KV stores such as RocksDB, WiredTiger as well
as our prototype HyperPebblesDB.

6.1 Experiment Setup

We used a Game Laptop with 256GB SSD to run our
experiment. It comes with Intel Core i7-6700HQ and
8 GB RAM. We chose such configurations because
smaller RAM would incur more disk read/write in the
same workload, we can thus mimic the huge industry
workload with fewer running time and small amount
of disk space. We utilize MongoDB[16] to integrate
HyperPebblesDB as the storage engine. MongoDB is
a widely-used NoSQL store. It supports a single in-
stance as well as distributed instances. However, we
have not considered experiments on distributed instances
for two issues. First, there are some unexpected diffi-
culties on configure MongoDB with non-default storage
engine, which is time consuming for out limited project
cycle. Second, we find that network latency and schedul-
ing is the dominate factor for the throughput of dis-
tributed nodes according to empirical knowledge from
our prior project on distributed key-value store, which is
not the emphasis of our modification and enhancement
on HyperPebblesDB. From the view of this paper, The
single instance can bring enough information of latest
design on HyperPebblesDB. Finally, we experiment on
MongoDB with four storage engines: HyperPebblesDB,
PebblesDB, the default WiredTiger[5] and RocksDB.
WE set up the record count as 5M and operations count
as 1M for each workload. Besides, there will be a 300

10

Task HyperPebblesDB(KOps/s) PebblesDB(KOps/s) Improvement
scan random 108.12 77.17 40.1%
fill seq 20.98 22.4 -6.3%
read seq 1658.37 1818.18 -8.8%
read reverse 1600 1686.34 -5.1%
read random 206.87 168.66 22.66%

Table 6: Range Query/Read/Write comparision on HyperPebblesDB and PebblesDB

seconds sleep for each run.

6.2 Experiment Result

Figure 7 shows different throughput of workload A-
F. HyperPebblesDB and PebblesDB has similar per-
formance in most tasks although there are some weird
throughput such as Load A and Load E. In a general
view, they both outperform WiredTiger and RocksDB

except full write task. However, HyperPebblesDB does
not perform better than PebblesDB, especially on work-
load E which is all range query tasks. This is not so
convincing that PebblesDB even performs much better
than RocksDB on range query, which is opposite to the
conclusion in prior work[19]. We investigated why these
suspicious throughput result in our set. It mainly results
from both hardware side and software side. The laptop is
stale and the SSD in it has degraded during these years.
This hardware environment may cause fluctuations for
each run. From the software side, there are a consider-
able meta data and files generated which results a nega-
tive effect on the next run. The total SSD space has even
been consumed up in some rounds, which reflects that
there are some implicit errors in the storage engine. In
all, most of the throughput results are reasonable. We
can develop a more stable version as well as provide a
better isolated hardware platform for better benchmark
of these storage engines.

7 FUTURE WORK

Impact of Empty Guards. Even though we have per-
formed careful empirical study on the impact of empty
guards. There are still some work left to be done in the
future. For example, db_bench can be further improved
to incorporate the detailed statistics on read amplifica-
tion, write amplification, and space amplification, which
is similar to RocksDB. In addition, for Pattern A, C, D,
we observe high read performance in the first iteration
and low read performance after, which might be coupled
with the instantaneous performance and long-term per-
formance of SSD [10] and the interaction between key-
value store and underlying file system [14]. How we can
improve HyperPebblesDB to have more steady long-

term performance on SSDs is important for further inves-
tigation. Furthermore, our experiment is still not fully-
controllable since we cannot predetermine how many
empty guards we want to have at the end of each iter-
ation. We think manual_compaction might be helpful
for this, which we are left out for future implementation.
All those investigations are tightly linked with the accu-
rate measurement of overall system performance. In our
experiment 2, we have not measured the cache hit ratio
and other system statistics and thus we need to perform
more detailed experiment environment measurement and
possible statistic study on the relationship between read-
/write performance and different variables in our future
study.

Parallel Guard-based Compaction In our current
implementation, we have successfully added the feature
of parallel guard-based compaction, however it is not
without limitations. During our experiment and evalu-
ation, we found that the performance improvement is not
consistent and apparent under all write workloads, and
we further attribute it to the small fractions of multiple-
guard compaction. It remains to test it against much big-
ger workload to demonstrate the performance improve-
ment of this feature as bigger workloads would trigger
more multiple guard compaction.

In our fine grained analysis, we did found our imple-
mentation boosted the compaction speed in the cases of
multiple guard compaction. We found the parallel effi-
ciency is not great (averages to 2 on a 6 core machine)
due to overhead of spawning threads and thread destruc-
tion. Therefore we also intend to refactor the code to use
a fixed size thread pool to do all compaction jobs.

Guard Level SuRF Filter HyperPebblesDB imple-
ments SuRF for each sstable. We consider to integrate
SuRF for each guard. One main issue is that SuRF con-
struction requires providing a sorted key list. It is pos-
sible to extend SuRF to accept out-of-order keys, which
will bring huge complexity in construction. Since ssta-
bles are sorted when they are built up, it is naturally to
construct SuRFs at the same time. However, sstables re-
siding in a guards are not in a totally order and they will
dynamic changes for each compaction. Therefore build-
ing a SuRF for each guard requires a bit extra effort. In
another side, it can benefit range query by a better in-

11

dex to seek the next key as well. The sequence between
guards are strictly guaranteed. We can open a set of
guard SuRFs and operate merge sort among them. There
are fewer SuRFs as well as fewer keys since duplicate
keys among sstables are unique in guard SuRFs. Then
we can search sstables of the candidate guards following
the hierarchy structure efficiently. We can explore the
potential of guard level SuRF in the future.

8 CONCLUSION

We build a key-value store called HyperPebblesDB

based on PebblesDB [19]. We empirically investigate
the impact of empty guards and show that guard deletion
is uncritical to the HyperPebblesDB’s performance. We
also implement the guard-based parallel compaction and
we attain better performance compared to PebblesDB

when there are a large amount of guards in the com-
paction level. Furthermore, by integrating the SuRF
into HyperPebblesDB, we have a better performance in
range query but with the cost of increased memory usage
and a slight write degration. We test out our implementa-
tion on MongoDB and we performance improvement in
workload A of the YCSB benchmark.

9 ACKNOWLEDGEMENTS

We thank Vijay Chidambaram for his helpful discussion
on the potential improvements to PebblesDB and the
preliminary experiment results of HyperPebblesDB.

10 AVAILABILITY

We have made the source code for HyperPebblesDB

available at the following URL: https://github.com/
xxks-kkk/HyperPebblesDB.

References
[1] Hyperdex benchmark setup. http://hyperdex.org/

performance/setup/, 2018.

[2] LevelDB. https://github.com/google/leveldb, 2018.

[3] RocksDB. https://github.com/facebook/rocksdb, 2018.

[4] RocksDB Tuning Guide. https://github.com/facebook/

rocksdb/wiki/RocksDB-Tuning-Guide, 2018.

[5] Wiredtiger. http://www.wiredtiger.com//, 2018.

[6] ATHANASSOULIS, M., KESTER, M. S., MAAS, L. M., STO-
ICA, R., IDREOS, S., AILAMAKI, A., AND CALLAGHAN, M.
Designing access methods: The rum conjecture. In EDBT (2016),
vol. 2016, pp. 461–466.

[7] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value
store. In ACM SIGMETRICS Performance Evaluation Review
(2012), vol. 40, ACM, pp. 53–64.

[8] BLOOM, B. H. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM 13, 7 (1970), 422–426.

[9] ESCRIVA, R., WONG, B., AND SIRER, E. G. Hyperdex: A dis-
tributed, searchable key-value store. SIGCOMM Comput. Com-
mun. Rev. 42, 4 (Aug. 2012), 25–36.

[10] HE, J., KANNAN, S., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. The unwritten contract of solid state drives. In
Proceedings of the Twelfth European Conference on Computer
Systems (2017), ACM, pp. 127–144.

[11] JACOBSON, G. Space-efficient static trees and graphs. In Foun-
dations of Computer Science, 1989., 30th Annual Symposium on
(1989), IEEE, pp. 549–554.

[12] JIN, X., LI, X., ZHANG, H., SOULÉ, R., LEE, J., FOSTER, N.,
KIM, C., AND STOICA, I. Netcache: Balancing key-value stores
with fast in-network caching. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (2017), ACM, pp. 121–
136.

[13] LU, L., PILLAI, T. S., GOPALAKRISHNAN, H., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Wisckey:
Separating keys from values in ssd-conscious storage. ACM
Transactions on Storage (TOS) 13, 1 (2017), 5.

[14] MEI, F., CAO, Q., JIANG, H., AND TINTRI, L. T. Lsm-tree
managed storage for large-scale key-value store. In Proceed-
ings of the 2017 Symposium on Cloud Computing (2017), ACM,
pp. 142–156.

[15] MERRITT, A., GAVRILOVSKA, A., CHEN, Y., AND MILOJICIC,
D. Concurrent log-structured memory for many-core key-value
stores. Proceedings of the VLDB Endowment 11, 4 (2017), 458–
471.

[16] MONGODB. Mongodb. https://www.mongodb.com/, 2018.

[17] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL, E. The
log-structured merge-tree (lsm-tree). Acta Inf. 33, 4 (June 1996),
351–385.

[18] ONEIL, P., CHENG, E., GAWLICK, D., AND ONEIL, E. The
log-structured merge-tree (lsm-tree). Acta Informatica 33, 4
(1996), 351–385.

[19] RAJU, P., KADEKODI, R., CHIDAMBARAM, V., AND ABRA-
HAM, I. PebblesDB: Building Key-Value Stores using Frag-
mented Log-Structured Merge Trees. In Proceedings of the 26th
ACM Symposium on Operating Systems Principles (SOSP ’17)
(Shanghai, China, October 2017).

[20] REN, K., ZHENG, Q., ARULRAJ, J., AND GIBSON, G. Slimdb:
a space-efficient key-value storage engine for semi-sorted data.
Proceedings of the VLDB Endowment 10, 13 (2017), 2037–2048.

[21] SEARS, R., AND RAMAKRISHNAN, R. blsm: a general purpose
log structured merge tree. In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data (2012),
ACM, pp. 217–228.

[22] TAN, W., TATA, S., TANG, Y., AND FONG, L. L. Diff-index:
Differentiated index in distributed log-structured data stores. In
EDBT (2014), pp. 700–711.

[23] ZHANG, H., LIM, H., LEIS, V., ANDERSEN, D. G., KAMIN-
SKY, M., KEETON, K., AND PAVLO, A. Surf: Practical range
query filtering with fast succinct tries. In Proceedings of the
2018 ACM SIGMOD International Conference on Management
of Data (2018).

12

https://github.com/xxks-kkk/HyperPebblesDB
https://github.com/xxks-kkk/HyperPebblesDB
http://hyperdex.org/performance/setup/
http://hyperdex.org/performance/setup/
https://github.com/google/leveldb
https://github.com/facebook/rocksdb
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
http://www.wiredtiger.com//
https://www.mongodb.com/

	INTRODUCTION
	BACKGROUND
	LSM-Tree and PebblesDB
	Bloom Filters and Succinct Range Filter
	MongoDB

	IMPACT OF EMPTY GUARDS
	Experiment Setup
	Experiment 1
	Experiment 2

	Implementation
	Experiment Results & Analysis

	GUARD-BASED PARALLEL COMPACTION
	Implementation Detail
	Design Strategy
	Experiments and Evaluation
	Coarse Grained Measurement
	Fine Grained Measurement

	IMPROVING RANGE QUERY BASED ON SURF FILTER
	Drawback of FLSM
	Bloom Filter and its limitation
	Succinct Range Filter
	Evaluation

	EVALUATION
	Experiment Setup
	Experiment Result

	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	AVAILABILITY

