
Enhance Strata with Lease

Zeyuan Hu
University of Texas at Austin

Jianwei Chen
University of Texas at Austin

Junkai Liu
University of Texas at Austin

ABSTRACT

Strata [2] is a cross-media file system on a single node.
Strata implements multithreading file access control.
However, it lacks of concurrent file access control across
processes. In this project, we fill this gap by implement-
ing lease [1]. Our design is optimized toward write-
intensive workload. Our implementation provides nec-
essary infrastructure to make Strata become distributed
file system.

1 INTRODUCTION

Strata is a cross-media file system that leverages strength
of one storage media to compensate weaknesses of the
other. Its main design principle is to log operations to
NVM at user-level (LibFS), and digest and migrate data
in kernel (KernelFS). In dosing so, Strata provides high
performance, low-cost capacity and crash consistency.

Strata implements multithreading file access control.
However, for concurrent file access across processes,
there is no mechanism to properly coordinate file access
within Strata. We need to design an approach to enforce
the file access control. The file lock is a common and
effective way used to share data consistently. However,
file lock is not ideal for our project since one process
may crash while holding the lock of a file, which pre-
vents other processes from accessing the file.

Therefore, we enhance Strata with lease, a mechanism
commonly used in distributed systems. A lease is a con-
tract that grants the holders access to some resources
with a time limit. We implement lease within Strata that
has following features: (1) support leases on files and di-
rectories and (2) introduce exclusive writer and shared
readers. Experiments demonstrate that our design and
implementation are reliable and effective.

KernelFS 

User level
Kernel level

Application

Kernel bypass Synchronous IO

LibFS 

…renamewritecreate

digest

Private Operation Log (NVM) 

Shared NVM Area

migrateSSD

HDD

Figure 1: Strata architecture.

2 DESIGN

2.1 Overview
Lease[1] is a concept of cache mechanism in distributed
systems such as distributed file system like NFS [3],
which shares some resemblance with Strata in that per-
application file operation logs act as cache and persistent
storage (NVM, SSD, HDD) act as server. Lease is simi-
lar to a file lock but with a timeout: it allows concurrent
read and exclusive write access. Kernel revokes file ac-
cess of a process when lease is expired. We customized
our lease design towards Strata unique features. For ex-
ample, Strata uses transaction encapsulated application
logging. Unlike RAM cache, Strata’s logs are written to
NVM, which is expensive. To ensure correct lease se-



Figure 2: Digest on read

mantics, we may need to abort transaction if lease is ex-
pired during the transaction and ask application to redo
the transaction if necessary. The high cost of such oper-
ation forbids us from setting a short lease timeout.

2.2 Optimization
With a relatively long lease timeout, we can avoid abort-
ing transaction but racing processes would need to wait
for lease timeout. To mitigate such performance issue,
we added following features to our lease design.

Voluntary Lease Releasing Similar to lock con-
cept, we allow applications to call a primitive
mlfs_release_lease to release lease to a file once
they finish their operations. Other processes would then
be able acquire lease and avoid long timeout. This is
based on the observation that most file operations are
fairly short and long lease period could act as a fail safe
for long consecutive writes.

Lease Polling Lease releasing do solve part of the uti-
lization ratio problem but is still insufficient for solving
racing condition. This is because the other application
have no knowledge about how soon its counterpart will
finish using the lease when its lease got rejected. To
resolve this, we designed a lease polling scheme which
is after a relative short interval, an application can send
acquire_lease again to the kernel to see if it can get
the lease. We think this scheme is better because it re-
lieved kernel from keeping track of how many process
are waiting on a lease if using a upcall / notification
scheme.

Digest on Read Because each application keeps its
own version of cache (file operation logs), its critical for
applications to make sure the file operations are correctly

Figure 3: Strata with Lease architecture. For any POSIX
operation, Libfs will contact lease manager to acquire
lease. Lease manager maintains the lease information
for a given file path.

serialized per file and the processes are reading consis-
tent states. One potential solution is to use kernel upcall
to notify application to digest after writing, but we used
a different approach to solve this problem. Considering
a pure write scenario when multiple processes are trying
to write to the same file, there’s no need to do digestion
because their modification might be overwritten. There-
fore we designed a write friendly scheme which only do
digestion on read. This requires us to keep an file state
alongside the expiration time in the kernel data structure
and send the states back to processes on lease acquisi-
tion.

3 IMPLEMENTATION

3.1 LibFS
From POSIX operations’ perspective, lease is no more
than a lock with interface shown below:

int

Acquire_lease(const char *path,

mlfs_time_t *expiration_time,

file_operation_t operation,

inode_t type);

void

mlfs_release_lease(const char* path,

file_operation_t operation,

inode_t type);

To acquire a lease, operation needs to provide file path,

2



an mlfs_time_t struct to hold expiration time, opera-
tion type to indicate current operation (e.g., read, create,
write, delete), and whether the lease is for file or direc-
tory. All the lease-related logic is encapsulated inside
Acquire_lease implementation, which is irrelevant to
the caller.

Internally, Acquire_lease will contact KernalFS to
initialize expiration_time at the very beginning. In
the subsequent lease call, if necessary, Acquire_lease
will contact KernalFS to renew the lease. If KernalFS
indicates error (e.g., some other process has modified the
file), a synchronous digestion request will trigger before
returning the error code to operation. Motivation for di-
gestion request is that the current process may want to
see the latest file state change. If KernalFS indicates that
the lease request is blocked, Acquire_lease execution
will be block for a poll time before contacting Ker-
nalFS again to acquire (renew) lease. Acquire_lease

exits only when acquire lease request is fulfilled. Be-
sides OK and error, Acquire_lease may also return
an exit code indicating there is renewal failure inside
the function call (i.e., renewal request is blocked at least
once). This exit code is critical for certain POSIX oper-
ation. For example, if the lease has been given up inside
Acquire_lease before, read operation need to invali-
date its cache and trigger synchronous digestion request
to make sure it can read the latest file change.

Whenever POSIX operations finish with lease, they
need to release lease through mlfs_release_lease

call. This call is important to lease performance as our
lease time is relative long to accommodate the transac-
tion write (i.e., long enough so that write transaction can
finish). Thus, we do not want to wait for lease expire
whenever possible. Besides lease interface taking file
path as a input parameter, we also provide interface that
can take in inode number as input parameter. To support
this interface, we also maintain a hash table that maps file
path with its inode number. The entry to the hash table is
added whenever a POSIX open is called.

3.2 KernelFS

The kernel keeps track of lease status of all files by main-
taining a hash table from file path to lease states. The
lease states contains three parts: current lease expiration
time, current state of the file, last process to modify the
state of file. The lease expiration time is expressed in
mlfs_time_t with zero as indicator of nobody is hold-
ing the lease. On lease_acquire, lease manager will
check the type of file operation type, for mlfs_read_op

it will try to acquire a read lease for that file and
other operations ( mlfs_write_op, mlfs_create_op
, mlfs_delete_op ) it will acquire a write lease for
that operation. Additionally, for mlfs_create_op,

Figure 4: Lease Manager Data Structure

mlfs_delete_op it will first check if the hash table has
unreleased lease for its subdirectory if the path is a folder.

The lease acquisition process is basically checking the
lease type and compare lease expiration time with current
time. Read lease can be shared but write lease is exclu-
sive. If the lease is granted, the lease expiration time is
updated to current time plus the lease interval and return
to the caller. Otherwise, the lease will be rejected with
current lease expiration time returned. Currently, this is
indicated by negating the tv_sec part of the return value.

The lease releasing process is just resetting the expi-
ration time. For mlfs_create_op, mlfs_delete_op,
the file state will also be reset to indicate the modifi-
cation. Additionally, on digestion complete, all the file
states will be reset to unknown because now the change
is visible to every process.

3.3 Connectting LibFS with KernelFS
In this part, we implement a client and a server in the
LibFS and KernelFS respectively. Here we adopt the
Unix domain socket to enable the communication be-
tween different processes executing on the same host
operating system. Since it is standard component of
POSIX operating systems, we can incorporate this fea-
ture in our project conveniently. The socket type we
use is the SOCK_DGRAM, which supports connectionless
messages of a fixed maximum length. In this way, the
server can receive datagrams from multiple clients using
recvfrom (which must specify the address to receive re-
quests from) and replies to them with sendto. Unlike
the Internet socket, all communication of Unix domain
socket occurs entirely within the operating system kernel
so we do not need to worry about the packet loss when
using SOCK_DGRAM.

In the client, we mainly design and implement an API
called send_requests. This API takes the file oper-
ation types, lease action types, node types and the file
path as input. The first three parameters are encoded into
a fix-length header which will then be sent to the server
together with the file path.

3



Figure 5: Process runtime for read-intensive workload
vs. write-intensive workload.

In the server, the most important function is
process_new_data. This function will receive a re-
quest from the client and decode the header of the mes-
sage. After that, it will determine which function should
be called (lease_acquire or lease_release) and
send the responses to the client. Additionally, we imple-
ment the server with synchronous connections handling
using epoll() system call and we make the socket to be
non-blocking.

4 EVALUATION

We perform all our experiments on a laptop with Intel(R)
Core(TM) i7-7700HQ CPU @ 2.80GHz, Kernel version
4.15.0, Ubuntu 16.04 LTS, and 8GB memory. We emu-
late two persistent memory with size of 474MB each.

We first measure process runtime under read-intensive
workload and write-intensive workload. We start 10
LibFS processes and all of them work with the same file.
Each process will either read or write 100MB of the file.
We measure how long it takes for all the processes finish
their work. The result is shown in Figure 5. As shown in
the figure, the best performance is achieved When all 10
processes perform read operations. Since lease allows
multiple readers and there is no synchronous digestion
request involved when no one modifies the file, the ob-
servation is expected. When there are 10 write processes,
the runtime is around 680 ms, which is lower than five
read and five write case. The overhead for 10 write case
is the wait time to acquire write lease. However, since

Figure 6: Process runtime change as poll time increases.

there is no wait time for digestion, 10 processes can fin-
ish in reasonable time. Worst case happens when there
is a mixture of read and write operations. Since each
read may need to wait for digestion finish at the very be-
ginning, there is extra overhead besides the wait time to
acquire write lease.

Since our lease implementation is polling-based, we
also measure the impact of poll time on process per-
formance. As shown in Figure 6, the worst runtime of
processes of each scenario increases as the poll time in-
creases becase the more frequent we poll the KernalFS,
the more likely we can acquire lease and finish opera-
tions.

5 CONCLUSION

We implemented lease mechanism in Strata to sup-
port concurrency file access control across multiple pro-
cesses. Our lease supports multiple readers and exclu-
sive writer. We optimize lease implementation towards
write-intensive workload by using voluntary lease releas-
ing, lease polling, and digestion on read.

6 ACKNOWLEDGEMENTS

We thank Simon Peter for his helpful discussion on Strata
and his sponsorship for machine.

4



7 AVAILABILITY

We have made the source code for Enhance Strata

with Lease available at the following URL: https:
//github.com/xxks-kkk/strata.

References
[1] GRAY, C., AND CHERITON, D. Leases: An efficient fault-tolerant

mechanism for distributed file cache consistency, vol. 23. ACM,
1989.

[2] KWON, Y., FINGLER, H., HUNT, T., PETER, S., WITCHEL, E.,
AND ANDERSON, T. Strata: A cross media file system. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles
(2017), ACM, pp. 460–477.

[3] SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D.,
AND LYON, B. Design and implementation of the sun network
filesystem. In Proceedings of the Summer USENIX conference
(1985), pp. 119–130.

5

https://github.com/xxks-kkk/strata
https://github.com/xxks-kkk/strata

	INTRODUCTION
	DESIGN
	Overview
	Optimization

	IMPLEMENTATION
	LibFS
	KernelFS
	Connectting LibFS with KernelFS

	EVALUATION
	CONCLUSION
	ACKNOWLEDGEMENTS
	AVAILABILITY

