
Enhance Strata with Lease
Zeyuan Hu, Jianwei Chen, Junkai Liu

University of Texas at Austin

Background

Strata is a cross-media file system that leverages
the strengths of one storage media to compensate
for weaknesses of another. Its main design principle
is to log operations to NVM at user-level (LibFS)
and, digest and migrate data in kernel (KernelFS).
In dosing so, Strata provides high performance,
low-cost capacity and crash consistency.

Figure 1: Strata architecture.

Problem & Motivation

•Strata implements the file access control for
multi-threads within a process. However, for
concurrent file access (e.g., read or write of the
same file) from multiple processes, there is no
mechanism to properly coordinate the access
within Strata.

•File lock for each libfs is advisory. We need a
mechanism to enforce the file access control.

•File lock is not ideal as one process may crash
while holding the lock of the file, which prevents
other processes from accessing the file.

Solution

We implemented Lease within Strata that has the
following features:

•Support leases on files and directories
•Exclusive writer, shared readers

The architecture of Strata with Lease is shown
below.

Figure 2: Strata with Lease architecture. For any POSIX
operation, Libfs will contact lease manager to acquire lease.
Lease manager maintains the lease information for a given file
path.

As strata uses a transaction mechanism to write ap-
plication logs, it is expensive to abort the transaction
to conform to the correct lease semantics. There-
fore, we set a relative long default lease time (2s in
our current setting) to make sure most of the read-
/write operations would fall within that time frame.
To compensate for potential degrade of performance
in this setting, we adopt three strategies:

•Allow application voluntarily release of leases
after the operation was done

•Allow application to poll the status of the file at a
relatively short interval if the lease is denied

•Delegate the complex concurrent process
interaction to the Libfs; KernelFS is designed to
be simple and fast: deny or accept lease requests.

Technical Highlights

Figure 3: Read operation initiates digest request for write-
intensive workload. The design favors write-intensive work-
load as read operation will request digestion before performing
read in the concurrent access scenario. For the read-intensive
workload, the system can be switched to ask write operation
request digestion before releasing its lease.

Figure 4: Lease Manager Data Structure. Lease manager
maintains a hash table with file paths as keys. In the entry, the
lease manager tracks the expiration time for the lease assigned
to each file path. In addition, lease manager also maintains the
state of file. States include UNK, DEL, CRT, which are used
to keep track of file state changes that might be unknown to
individual process. For example, a concurrent process accesses
a file with DEL status will get an update notification, which
indicates that the file is deleted by other processes. Libfs will
perform digestion and notify application about the change with
an error. During digestion, the file states of lease manager will
be reset.

Performance

Figure 5: Process runtime for read-intensive workload vs.
write-intensive workload. Each process read or write 100MB
to the 0.45GB simulated NVM. The figure shows that the
write-intensive performance does not degrade much compared
with the read-intensive performance. This is because the syn-
chronous digestion is done selectively during read operation to
maintain file consistency.

Figure 6: Process runtime as poll time increases.


