
Identifier Inference through Neural Networks

Zeyuan Hu
Computer Science Department
University of Texas at Austin

Austin, Texas
iamzeyuanhu@utexas.edu

Abstract

Source code can be treated similar as cor-
pus constructed by natural language (Hin-
dle et al., 2012). In this paper, we use
the neural network model to study iden-
tifer naming convention problem. We
find that neural network model can predict
16.5% identifiers correctly on a randomly-
selected source file by training on the un-
related projects. In addition, we compare
the performance of model on character
level and word level and explore the im-
pact of different input sentences construc-
tion methods on the model performance.

1 Introduction

The idea of applying natural language processing
(NLP) towards code corpus is first proposed by
Hindle et al. (2012). The authors think software
code is similar to the natural language in the sense
that they are both “natural product of human ef-
fort”. Like word “bank” usually follows “Federal
Reserve“ in natural language, software engineers
often know what is coming up next after seeing
the code fragment for(i=0;i<10. Thus, we
can use NLP techniques to perform infernece on
the code in a similar way that we do with the nat-
ural language. The inference task on the code
includes identifier naming convention, code for-
matting preference, design patterns, which are re-
ferred as coding convention inference problem in
general(Allamanis et al., 2014). Formally speak-
ing, coding convention inference problem is de-
fined as “the problem of automatically learning the
coding conventions consistently used in a body of
source code” (Allamanis et al., 2014).

In this paper, we explore the identifier naming
convention subproblem, which is to predict the
identiifer given the context of the source code.

Figure 1: Python identifiers lexical definition

Specifically, we carry out our study on Python1.
Identifiers (also referred to as names) in Python
are defined in Figure 1 (Rossum, 1995). They can
include class names, function names, argument
names, and variable names. As a demonstration of
the identifier naming convention prolem, suppose
we have seen if len(sys.__) < 2: in the
code, we may want to fill in the blank with argv
instead of other identifiers.

We use the long short-term memory (LSTM)
model to approach this problem. Previous work
has shown that LSTM model is an effective frame-
work on language modeling task (Sundermeyer
et al., 2015). We find that by learning from train-
ing corpus, we can predict 16.5% identifiers cor-
rectly on a randomly-selected test source file.

2 Model and Evaluation Metric

We use a two layer architecture shown in Figure
2, which is similar to the neural network LM ar-
chitecture proposed by Sundermeyer et al. (2015).
The first layer is an embedding layer that maps
each identifier represented by the index appeared
in the vocabulary from input sentences into dense
vectors of fixed size. Then we feed the output
of the embedding layer into the LSTM layer and

1https://www.python.org/

https://www.python.org/
https://www.python.org/


Figure 2: Neural network architecture

then we apply a softmax activation function at the
dense layer to produce normalized probability val-
ues for each word in the vocabulary. As suggested
by Sundermeyer et al. (2015), we use the cross en-
tropy error as our loss function, which is the same
as maximum likelihood. The input sentences are
constructed by the identifers, which will be dis-
cussed in details in the “Experimental Results”
section.

Perplexity is often used to quantify the perfor-
mance of language models. However, as sug-
gested by Jurafsky and H.Martin (2017), an (intin-
sic) improvement in perplexity does not necessar-
ily indicate a (extrinsic) performance increase in
NLP tasks. Thus, in addition to perplexity, we use
the Single Point Suggestion (SPS) evaluation met-
ric proposed by Allamanis et al. (2014) as a way to
perform “an end-to-end evaluation” (Jurafsky and
H.Martin, 2017). The steps for calculating the SPS
score is shown in Algorithm 1. The SPS score cal-
culates the fraction of identifiers that can be pre-
dicted correctly given all the identifiers appeared
in the test files. Ideally, the SPS score should be
100%. However, there is a real world implication
for a less-than-perfect SPS score. Suppose soft-
ware engineers use the same variable name for the
places that have the same semantic meaning (i.e.,
think about using idx for loop index in the source
file). However, he does not follow his naming
conventions consistently throughout the whole file
(i.e., he use i for some loop indices) and model
may suggest the most appeared variable names
(i.e., idx rather than i), which lead to the less-

than-perfect SPS score.

Algorithm 1 Single Point Suggestion

for each test file do
Total count = number of unique identifiers
Counter = 0
for each unique identifier do

Collect all of the locations where the iden-
tifier occurs and names the same entity
Ask model to suggest a new name and re-
name all occurrences at once
if new name = original name then

Counter += 1
end if

end for
Accuracy = Counter / Total count

end for

3 The GitHub Python Corpus

Construction of the corpus is inspired by Allama-
nis and Sutton (2013). In their work, they collect
14,807 Java projects from GitHub2 based on the
number of forks. They use the number of forks as
a way to measure the quality of projects. In this
paper, we present a different corpus that is based
on Python and uses GitHub’s star system to mea-
sure the quality of the projects.

In a report published by GitHub (2017), Python
is ranked the second most popular langauges on
the platform with about 1,000,000 opened pull re-
quests3, which surpasses the third most popular
language Java’s opened pull requests by around
14,000. We directly query GitHub through its
REST API v34 and filter individual projects that
have at least one star 5 and the programming lan-
guage is Python. We use GitHub’s star system
as a way to create a quality corpus. Study has
shown that there is a positive correlation between
the number of contributors and the number of stars
(Jarczyk et al., 2014). Since on GitHub, devel-
opers can only make contributions to the projects
by forking first. However, not all forks will be
turned into pull requests with code changes that
contribute back to the original projects. Thus, we

2https://github.com/
3In GitHub’s terminology developers need to make pull

request in order to have their code change merged back to the
original codebase

4https://developer.github.com/v3/
5the number of stars of a project indicates how many times

the project has been endorsed by the developers on GitHub

https://github.com/
https://developer.github.com/v3/
https://github.com/
https://developer.github.com/v3/


think the number of contributors can be interpreted
as the effective forks. Given the prior success
of the GitHub Java corpus (Allamanis and Sut-
ton, 2013) and the positive correlation between the
number of stars and the number of effective forks,
we think the star system can be a good measure of
both the quality and the popularity of the projects.

We then download (Clone in Git’s terms) the
top 1,000 most popular python projects across a
wide variety of domains amounting to 25,088,709
lines of code in 135,209 files. Tables 1 and 2
present some projects in our corpus. Only files
with the .py extension were considered. We split
the repository 80%, 10%, 10% based on the lines
of code assigning projects into the training, dev
set, and test set respectively.

Table 1: Top Projects by Number of Stars in Corpus

Name # stars Description

awesome-python 40,963 A curated list of Python resources
httpie 32,534 Modern command line HTTP client
thefuck 32,011 App that corrects previous cmd
flask 30,931 A web application framework
youtube-dl 30,911 console app to download videos

Table 2: Top Projects by LOC in Corpus

Name kLOC Description

spaCy 3059 NLP with Python and Cython
hue 880 Data analytics workbench
appscale 796 Implementation of Google App Engine
main 795 Python implementation for .NET framework
kbengine 502 A MMOG engine of server

A potential limitation of the resulting corpus
is that we exclude some variations of the python
files (i.e., .pyx and .pxd for Cython). Due to
the limit of computing resources, we use 670,536
LOC for training, 302,434 LOC as a dev set, and a
randomly-chosen source file from test set to report
model performance.

4 Experimental Results

We explore the impact of the charcacter level vs.
word level generation, input sequence handling,
and we compare the performance between lan-
guage model and neural network model. Without
special note, the experiments are based on the hy-
perparameter setting in Table 3.

Table 3: Hyperparameter settings

Description Values

vocabulary size 15000
embedding output dimension 64
dropout rate 0.2
LSTM memory units 64
time steps (word, context) 5
time steps (word, loc) 121
number of epochs 10
batch size 64
learning rate 0.01
optimizer Adam

4.0.1 Character Level vs. Word Level
Identifier naming convention problem can be
treated as a text generation problem. Essentially,
we try to generate (i.e., predict) given the context
of the surrounding identifers. Thus, we can gen-
erate the identifiers character by character or word
by word. The advantages of generating identifers
on character level are:

• A much smaller vocabulary size. The vo-
cabulary size on character level is 37, which
is much smaller than 15,000. Small vo-
cabulary size usually indicates low compu-
tation resource is needed. Neural network
model is especially computationally expen-
sive when we compute softmax in the output
layer (Jozefowicz et al., 2016).

• More diverse representation of identifiers.
Word level generation is limited to the identi-
fiers appeared inside the vocabulary. How-
ever, character level generation can poten-
tially generate the identifiers that are unseen
in the vocabulary.

We run the model on the character level and part
of the output is shown in Table 4. As one can see,
it is really hard to generate a meaningful identifier
on character level given the current architecture of
the model. The result is consistent with the pre-
vious work on the application of character level
neural language model on natural text in the sense
that the architecture of the character level model is
usually much more complex than the one on word
level given the same level of performance (Kim
et al., 2016).

We also run the same model on the word level
and the result on the identifier prediction is shown
in Tabel 5. We can see that predicted identi-
fiers are all meaningful words and we can get



Table 4: Part of the identifer prediction output using model
on character level

Identifier Top four predictions

absolute import,0 ”, ’fer’, ’cet’, ’clannetteeteet’
path ‘alr’, ‘teoetet’, ‘neteeeete’, ‘reee’
version info ‘ient’, ‘’, ‘seleehere eekertert ’, ‘feenert ’

Table 5: Part of the identifer prediction output using model
on word level

Identifier Top four predictions

absolute import ’UNK’, ’self’, ’VGroup’, ’None’
path ’path’, ’listdir’, ’UNK’, ’symlink’
version info ’version info’, ’socket’, ’UNK’, ’os’

some identifiers predicition correct (i.e., path
and version_info). Since the model is al-
lowed to predict UNK, we are indicating that the
rare identifiers can appear in the unusal context.

4.0.2 N-gram vs. Neural Network
Allamanis et al. (2014) and Hindle et al. (2012)
use the N-gram as the language model to study the
source code. Specifically, Allamanis et al. (2014)
implement a cache language model (i.e., “cross-
project language models” in the paper) and claim
to achieve 94% SPS score on the GitHub Java
Corpus. We fail to reproduce their result. Thus,
we implement a 5-gram language model with
Kneser-Ney smoothing based on KenLM frame-
work (Heafield, 2011) as our own baseline instead.
The performance comparison between the 5-gram
language model and our neural network model is
shown in Table 6.

Both language model and Neural network
model have similar performance in terms of per-
plexity. But it is really surprising to see that 5-
gram language model can hardly make any predic-
tion correct. However, our neural network model
can at least make 16% of identifier prediction cor-
rect. One reason for the low SSP score of 5-
gram language model is that there are large gaps
among the identifiers in terms of the number of

Table 6: Model performance comparison between 5-gram
and neural network model

Models Perplexity SSP Score

5-gram with Kneser-Ney smoothing 9.906 9.5%
Neural network (word, context) 8.729 16.5%
Neural Network (word, loc) 11.38 11.3%

appearances in the training corpus. We sort the
identifiers in the vocabulary by their word counts
in the training corpus and find that the most fre-
quent identifier self appears in the training cor-
pus 2,889,429 times while the 15,000th identifier
literal_block only appears 96 times. Dur-
ing the prediction, the identifiers with larger word
counts may be much more favorable than the iden-
tifiers with much smaller word counts.

For our neural network model, the model seems
to be real good at capturing certain identifier com-
bination with low varition of alternative writing
styles. For example, the model makes prediction
argv correctly for len(sys.__) < 2 across
different test files. The semantics for this code
fragment is to test the length of input arguments
for the program. Since software engineers always
use len(sys.argv) to test the length of input
arguments, there is not much variation compared
with i, idx in the loop index. Thus, our neural
network model can well capture this phenomenon.

For perplexity, the numbers are calculated based
on the first 500 identifiers of the test file. If we in-
clude all the identifiers of the test file, the perplex-
ity for our neural network models are infinities,
which are due to several extremely small proba-
bilities of pattern occurences.

4.0.3 Difference in Input Sentences
One thing to note is how we construct our in-
put sentences. We try two ways: one is to con-
struct the input sentence based on lines of code.
In other words, each line is considered as a sin-
gle sentence (i.e., “Neural Network (word, loc))”
in Table 6). The other way is to treat a whole
source file as one passage and use a context win-
dow to split the passage into sentences (i.e., “Neu-
ral network (word, context)” in Table 6). We
find that the latter one gives better performance in
neural network model. One possible reason be-
hind the performance difference is in the padding
of input sentneces. We examine the input sen-
tences based on the first method and find out that
the maximum length of a line of code can be
121 identifiers, which is a __init__ method
that contains over 14 arguments with several ar-
guments have complex data structure default in-
put (i.e., kwds = dict(axis=axis, ...).
However, there also exists lines of code with sim-
ply two or three identifiers (i.e., import os). If
we pad the input sequence based on the maximum
length of line of code, then lines with two or three



identifiers will be padded with many (i.e., 119)
placeholder numbers. Then, the model will put
more focus on learning the pattern of placeholder
numbers than the actual ones. However, if we set
a cutoff and truncate the lines of code, then certain
pattern will be lost. For example, given a line of
code mark = js.JSONInstance, the identi-
fiers are mark, js, JSONInstance. If we
set the cutoff to 2, then JSONInstance will be
discarded and have a chance of not to be learned.

Lastly, the running time are different between
two models. Context window construction method
has edge over the lines of code construction
method. This is because the number of words in-
cluded in the context window is much smaller than
121 and we do not need to padd every input sen-
tence to the length of 121.

5 Conclusion and Future Work

In this project, we explore the application of neural
network in solving the identifer naming conven-
tion problem. We experiment with both N-gram
language model and word-level neural networks.
We find out that neural network has better per-
formance both in terms of perplexity and the Sin-
gle Point Suggestion evaluation metric. However,
there are still several points waiting for the further
exploration:

• Explore cache language model (Allamanis
et al., 2014) use cache language model and
achieve astounding 94% SSP score. As one
can see, simple N-gram model may perform
poorly because we may implictly assume that
the word count distribution for a local project
that the test file belongs is the same as the set
of projects in the training set. Thus, we may
want to build a local language model for the
current project. This idea leads us to think
whether we can achieve performance gain by
building two neural network models in a sim-
ilar way.

• Neural network architecture exploration
We explore model both on character level and
word level. With all the advantages offered
by the character level model, we want to see
if given a more sophisticated architecture, we
can have better predicting power using char-
acter level model.

6 Acknowledgements

The author greatly appreciate Junyi Jessy Li, Mi-
los Gligoric, and Greg Durrett for their invaluable
feedback, precious time, and insightful comments.

References
Miltiadis Allamanis, Earl T. Barr, Christian Bird,

and Charles Sutton. 2014. Learning natural
coding conventions. In Proceedings of the
22Nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM,
New York, NY, USA, FSE 2014, pages 281–293.
https://doi.org/10.1145/2635868.2635883.

Miltiadis Allamanis and Charles Sutton. 2013. Mining
Source Code Repositories at Massive Scale using
Language Modeling. In The 10th Working Confer-
ence on Mining Software Repositories. IEEE, pages
207–216.

GitHub. 2017. The state of the octoverse 2017.
https://octoverse.github.com/.

Kenneth Heafield. 2011. KenLM: faster and
smaller language model queries. In Proceed-
ings of the EMNLP 2011 Sixth Workshop on
Statistical Machine Translation. Edinburgh,
Scotland, United Kingdom, pages 187–197.
https://kheafield.com/papers/avenue/kenlm.pdf.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark
Gabel, and Premkumar Devanbu. 2012. On
the naturalness of software. In Proceed-
ings of the 34th International Conference on
Software Engineering. IEEE Press, Piscat-
away, NJ, USA, ICSE ’12, pages 837–847.
http://dl.acm.org/citation.cfm?id=2337223.2337322.

Oskar Jarczyk, Błażej Gruszka, Szymon Jaroszewicz,
Leszek Bukowski, and Adam Wierzbicki. 2014.
GitHub Projects. Quality Analysis of Open-Source
Software, Springer International Publishing, Cham,
pages 80–94. https://doi.org/10.1007/978-3-319-
13734-6 6.

Rafal Jozefowicz, Oriol Vinyals, Mike Schus-
ter, Noam Shazeer, and Yonghui Wu. 2016.
Exploring the limits of language modeling.
https://arxiv.org/pdf/1602.02410.pdf.

Dan Jurafsky and James H.Martin. 2017. Speech
and language processing. Preprint on web-
page at https://web.stanford.edu/
˜jurafsky/slp3/.

Yoon Kim, Yacine Jernite, David Sontag, and
Alexander M. Rush. 2016. Character-aware
neural language models. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelli-
gence. AAAI Press, AAAI’16, pages 2741–2749.
http://dl.acm.org/citation.cfm?id=3016100.3016285.

https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635883
https://octoverse.github.com/
https://kheafield.com/papers/avenue/kenlm.pdf
https://kheafield.com/papers/avenue/kenlm.pdf
https://kheafield.com/papers/avenue/kenlm.pdf
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
https://doi.org/10.1007/978-3-319-13734-6_6
https://doi.org/10.1007/978-3-319-13734-6_6
https://arxiv.org/pdf/1602.02410.pdf
https://arxiv.org/pdf/1602.02410.pdf
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
http://dl.acm.org/citation.cfm?id=3016100.3016285
http://dl.acm.org/citation.cfm?id=3016100.3016285
http://dl.acm.org/citation.cfm?id=3016100.3016285


Guido Rossum. 1995. Python reference manual. Tech-
nical report, Amsterdam, The Netherlands, The
Netherlands.

Martin Sundermeyer, Hermann Ney, and Ralf Schlüter.
2015. From feedforward to recurrent lstm neu-
ral networks for language modeling. IEEE/ACM
Trans. Audio, Speech and Lang. Proc. 23(3):517–
529. https://doi.org/10.1109/TASLP.2015.2400218.

https://doi.org/10.1109/TASLP.2015.2400218
https://doi.org/10.1109/TASLP.2015.2400218
https://doi.org/10.1109/TASLP.2015.2400218

